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AN ELIMINATION OF THE PREDICATE ,TO BE A STANDARD
MEMBER" IN NONSTANDARD MODELS OF ARITHMETIC
Karel CUDA

Abstract: In the paper, we are interested in the follow-
ing problem: Let *JL be & nonstandard model of Peano arithme-
tic . Let 7L be the standard submodel of *% . Let us define
a new external %rodioato P(x) in *7 using the predicate "to
be a member of 7L " and arithmeticel (internal) means. We want
to find a new definition of P(x) in which the external part
and the internal part are separated. A method is described,
how to solve this problem. Namely, the new definition is ob-
tained by an algorithm which uses the synteotical form ef the
original definition.

Key words: Nonstandard model of Peano arithmetic , non-
sta.nda.ri model of zrﬁn, external, internal.

Classification: Primary O3H10
Secondary O3ETO

Introduction. In the paper, & procedure is given how a
new form of description of an external predicate can be found
in any nonstandard model of Peano arithmetic . We suppose that
only the predicate "o be a member of the standard submodel®™
and arithmetical (internal) means are used in the original
desoription of the predicate. The external part and the inter-
nal part of the desoription are separated in the new descrip-
tion.

The main result of the paper is the following theorem:
Let *JL be a nonstandard model of Peano arithmetic (we need
the induction for all formulas). Let 71 be the stendard sub-
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model of ™% , Let St(x)=x e % . Let P(x) =

="y = @ (x.al,...,qn). where ¢ is a formula in which only
the predicate St(x) and arithmetical means are used and
81recesy € ¥7L (0ug, o = (V2,54(2))(x<a 8&(3 t)(t =

= Zta, = S$(t))))e A formula W(t,x,al....,ah) of the langua-
ge of Peano arithmetic and a set X c { P;P;: 1 — % can be
found such that P(x) = (APeX)(Vnen)(*y = y(F(n),x,0,,...
...,qn)). More then: The syntactical form of Y can be found
by an algorithm using the syntactical form of 9 . X can be
defined from the standard system I of the model *7 by a for-
mula in which only the quantifications of natural numbers and
members of & are used, The syntactical form of the formula

A defining ¥ can be obtained by an algorithm using the syn-
tactical form of P .

Remember that the standara system ¥ of the nonstandara
model *71 is the system of parts X of 7 , such that for some
formula g(x.sl....,an) of the language of P.A, and some mem-
bers 81seccsn € *N ., nex =*n = g’(n.al.....an).

The paper is a free continuation of the paper [ 2], The
facts contained in [ & 2) are used only in remarks con cerning
the generalizations of the glven procedure, The leading ideas
of both the papers are the same but the technicalities oonnec-
ted with the work in nonstandard models of PeA, (or zrﬁ_n -
Zermelo-Praenkel set theory for finite sets) are not trivial
(we do not require the model * to be @,-saturated), The
Procedure can be (using some technicalities) generaliged for
compact enlargements and the author intends to write ano ther
free continuation of these papers in the language of nons tan-
dard analysis describing this generalization,
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The set-theoreticel language is mostly used in the paper.
The usage of this language is correct as the reader will be
able to prove the following fact after reading the first sec-
tion of the first chapter of [ V1. Fact: Let us define a new
predicate in Peano arithmetic a€b = a~th member of the dys-
die expression of b is 1= (3 k,m,n)(b=k:2% + m&m< %% x =
= 2n + 1). With respect to this new predicate we obtain the
Zermelo-Fraenkel set theory with the axiom of regularity and
with the negation of the axiom of infinity (the cardinality
of every set is a natural number) .

We find the formula y and the system ¥ 4in four stéps.

1) Using the operations I, , - eand an arbitrary in

f£inite natural number o as a parameter, we f£ind an external
set & %91 and & normal formula Y, (only members of *n
are quantified) such that ¢ (x,8) = (Ite6) ¥y(4,x,8,0).

2) We prove that © is a figure in an indiscernibility
relation. (A figure and an indiscernibility relation being
nonstandard topological notions,)

3) We find a connection with e standard compact metric
space, where % corresponds with a subset of this space oon-
nected with & -

4) We find the definition of ¥ from the standard sys-
tam S of *IL .

The numbering and contents of sections corresponds to the
described division on steps. In the section 0 we translate
our problem into the set-theoretical language.

The author believes that the paper is readable also with-
out usage of references except of the given fact, ano ther

fact in § O and remarks concerning generalizations.

- 787 -



§ 0. We use the notion olass for parts of ™9{ (external
sets) and the notion set for members of ¥} , We identify the
8et a with the class a = ix;x €at, Thus we use only € and not
g ., For classes we usually use the capital Roman letters., For
zeta, we usually use the lower case Roman letters., The small
Creek letters are used for subclasses of sets and natural num-
hers (finite or infinite), For finite natural numbers we use
NeilyKyeee o
Attention: 1) The members of ¥ are not called natural num-
hars from this moment, If we 8ay "x is a natural number", then
“2 2ean by this that x is g natural number in the sense of the
set theory (w.r.t, ),

2) A subclass of a get ig usually a set in the set theo-
ryY. In our case, this assertion does not hold. We prove that
the class PN (finite naturel numbers) of all natural numbers
being members of @ standard submodel ia & subclass of a get

not being a set.

Definition 0.1t 1) N ={ec $ &< 18 a natural number},
2) PN ={xcec Njoce 9Ly,

Lemma 0,2: 1) 8€bL = *3l a< b,
2) acb&bedl—aeIL.

Proof: 1) Look at the definition of & in the introduc-
tion,

2) As 7l is the standara submodel and *Jli1=a <b we have
acdl.

Lemma 0.3: (We use zrﬁn + reg.)
1) x¢ N-FR&nePfN = nec o « Thus (VOCEN-PN)(FN'_C_OC).
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2) For e N we define V,, by recursion. V, = {03;
Vdﬂ = P(V_ ). For every ncFN we have V, € v .

3) (Jos )< € N=FN),

4) -~ (3Ja)(e=FN).

Proof: 1) Ifxe€n then o < n (see LO,1)en 18 &
member of the standard submodel hence o is also & member of
7t - a contradiction.

2) If ae? then J(a) e ?t as PP(a) is definable from
a, ItV & 7L for some ne FN, then there must be first such n
(we use the fact that 91 is the standard submodel). But V, _,€
e 7l - a contradiction with P(V,_,) & N.

3) Using the regularity axiom we have (Va)(3cc e N)(ae
6Vy )e Let 8 €*% -7 , Let o be such that aeV, o If x€¥N
then Ve 91 , thus a € 21 (see L0.2) - a contradiction.

4) If a=FN then max(a)e FN, Hence max(a) + 1€ FN= a - a
contradiction with the maximality of max(a). (Any subset of N
must have a maximal element - we use Z!ﬁn.)

Definition 0.4t V = U{V, ;< & K}, Vg = UiV, jC€FN],

Theorem 0.5t 1) ae*? = aeV,
2) acN= a €& Vpye

Proof: 1) We use the regularity axiom.
2) Vpy € 7 (see L0e3¢2))e If a € 2L then the first o€
&€ N s.t. aeV, (the rank of a) is definable from a and hen-
ce oc must be in 2L .
Fact: A funotion G can be defined by the recursion such that
G:N<>V and G:FN > Vgye
Instead of the definition of G we find the value G(324).
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(For the definition of G and the proof of the faot see LV],)
324 = 284284225 8a23, 6222421, 2421, 3=21420,1220; a(0)=0;
G(1)= {03, G(2)= {1033, G(3)= {{03,0%; G(6)= {{{03},{0}} .
G(8)= {{{03,033; G(324)={{{{0},0%% , {{{03} ,103% , {{0333.
Let us note that the definition of € is connected with G,

Using the set-theoretical language we can consider the
class X = { x;P(x)} instead of the predicate P(x). The fact
that P(x) is defined by an arithmetical formula with the pre-
dicate St(x), and parameters 81500098, can be expressed by
the fact that X= { x; cy(x,al,...,en,vm)}. where @ is a normal
formula (only sets are quantified). To prove the equivalence
of these two formulations it is sufficient to prove the fol-
lowing assertion,

Assertion: (*7 = a+b=c) = G"l(c)-G'l(s)H}'l(b).
(*ra-bmo) = 6™1(c)=6"1(a)-a"1(D).

As the assertion concerns only the equivalence of the two
formulations of the problem we give here only the principal
mottos of the proof. 1) Leta@ b= (*N=a<b), let a S =
= G']'(a)< G'l(b). In both the orderings we compare in the
following manner: Order the members in the decreasing sequen-
ce and use the lexicographical ordering,

2) a@b=a g b, Let a be the © 1least member such
that & "a#s "a. Let b be the @ predecessor of a., We have
19b©aka l be But this is a contradiction with 1) and with
the faot that both a and b are sets of elements © 1less than
be

3) 2) implies ( *7%k=bma+l) = G~1(b)=G"1(a)+1 and the
required assertions we obtain by the induction.

As G:FNHVPN we can (using Th, 0.5.2)) reformulate the
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main theorem in the following form: Let V, € be a nons tan-
dard model of zrﬁn+ reg, let FN be the olass (external aset)

of standard natural numbers. An algorithm can be found which

to any normal formula 9(!,’3,1) gives & normal formula

y(x,d,t) and a system of functions K “vm sueh that
?(x.?,m) = (IPeX)(VneFRNV &=y (x,&,F(n))). Nore then,

% 48 found in the following forms: Let & be the standard
system of V (¥ = {XcFNj(3 ac V)(X=FENa)})e A formule ¥ can

be found in which only members of Vm and ¥ are quantified such
that % = {Fc Vs T(F, )3

§1

Lemma 1.1t 1) Let 6 < u. If %(t,'Z) is & normal formule
then (Vte6) g (t3) = 3 veu)(v 26&(Vtev) g (t,8)).

2) Espeoially (YneFN)(I< €N, >n)76(t,‘i) =
= (Joce N-FN) y (cC,2)e

Proofs 1) v-{tsu;%(t,z)}.

2) Let (3 be an arbitrary element of N-FN. Put
{(52,?,[5) = eB&(T o>k ) (€ N&ylec +%)). Uge 1) for
6'=FN, u= 8 (ct. [T 2)).

Lemma 1.2: Let © < u and let 7 (w,%) be a normal formule.
The following equivalence holds. (V t e 5)9(/(t,"5) =
= (3%eP(u -6))(Vteu-t)y o The equivalence holds also for
dual quantifiers.

Proof: Use L.l.1l.l).

Remarks: 1) The formulas on both the sides of the equiva-
lence have a similar syntactic form - a quantification restrio-

ted to a class followed by a normal formula. The restricted
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quantifications are dual one to the other. This fact mekes it
possible to put the quantifiers restricted to classes to the
beginning of the formula,

2) It is possible to generalize the lemma for classes T
as parameters, We require in this case that no proper subclass
of u can be defined by a normal formule using -i), € as parsme-
ters. (For more details see [& 21,)

3) PFor the "dualisation" of quantifiers wedo not need
the whole powerset axiom (the whole induction schema), The
following schema is sufficient, For any normal formula ¢ the
following formula is an axiom (¥ u)(3 v)(V ) t:9 (t,%) &

% teule v), We can also do some hiearchy restriction on for-
mulag in the schema if we want to use the "dualisation" only

for hierarchy restricted formulas,

Theorem 1,3: Let ot € N-FN, Let gp(x,g +2) be & normal
formula., A normal formula w(x,y,’%), a set u and a class
6 < u can be found such that ?(t,?ﬂ,g)E (3T e 6’)'qr('1-:,t,—§).
More then: u is defined from o¢ using the operations &, .and

@ is defined from o, FN using the operations P, = , - .

Proof: By the induction based on the complexity of the
formula @ -

1) xeFN = (3T cFN)(x=%t) (we put 6 =FN, u= oc ). Other
cases of atomary formulas are obvious (e.g. X=FN = x+Xx).

2) (3tre 6y yreh,4,2)8 (342 62 y3(¢2,4,8) =
= (3Te6l=x62)(T t1,t2) (T <tL,t2) &yt &y?), 12
61c ul £ 62< u? then we put ¢ = 61x 62 and u=ulx w2,

3) (3xN(3te6)y (R, t,&,x)= (F3Te6XIx)y.

8) ~1(3tte 6Nyttt 4@ = (vite 61yt 1ot
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% (u}, ) be the definition of ul from ¢ . Let us put u =
= P(ul), 6= P(ul-cl), Using L1.2 we obtain the equivalent
(3t e6)(3 ul, 9(’(u1.oc Y tte ul-t) o qyl having the requiir-
ed form,

Remarks: 1) The theorem can be generalized for several
*small® classes (instead of FN) and "large" classes as parame-
ters (see [& 2]).

2) If PN oceurs only in the prefix of @ then we can mo-
dify only the prefix. This modification and the definiticn of
© and u is dependent only on the syntactic Zorm of ‘he pre-

fix of P in this case.

§ 2

Definition 2,1: Let nv be an equivalence relation.

1) %g. ,(X)= (Vx,y)(xeX&yrvx=> y€X), X 18 a figu-
re in ~v .

2) Pig ,(X) = {y;(3 xeX)(y~x)}, the figure of X,

3) @ (x) = Big_,({x}), the monad of x.
Pact: FiglPig(X)).

Definition 2,2: 1) We use «r for words defined by the
following inductive definition: i) The empty word A is a word,
i1) 4t Uq, Uy BTE words, then (wlx "‘2) is a word,

111) 4if ¢ is a word, then Pu is a word,

iv) any word is obtained by finitely many applications
»f 11) and 1ii1) on the empty words.

2) For « € N (finite or infinite) and for a wrd = we
lefine a set uz: end an equivalence % on nz
'» based on the complexity of uw . i) vl oC

'

by the recursi-
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é = (Ia/PN)u ((ox = FN)x (o¢ = FN)), where Ia is the identi-
ty mapping Id(x)-x.

)
i) M ULZ = u::'l‘xu . <x1 x2> 10% * <y11y2> =

o+, Wy
N 7b4 = 3 v,
11) ¥ . P o v
= ug s x 3 y= Mgy (x) = Figg (y)e
% o

]

Remark: For o & FN all the equivalences are identical
with the equality.

Tpeorem 2,3: 1) (VYo e N-FN)( 3'4.9,_/\ (?PN)).

2) &gg(e>=> ﬂixm (w7 - 6)

3) 3'4.9.44,(6’1)& 329,“2(6‘2)@ %‘}waa
(6,%6,). =

9 g (6)= 9‘»‘9%,, (P(6)).

Proof: Only 4) is not obvious. Let us prove 4), We have
to prove that xEG&y%ﬂ' X=>yS% , We have ySFig 4 (y) =
&

= Fig , (x)= 6 as 6 is a figure,
&

Corollary 2.4t The set u from the theorem 1.2 is u:’

for
e suitable 4£, cc and the class ¢ from this theorem is a figu-

rcin%'o

Remarks The given siep can be done also for several "in-

put" classes, if we suppose that they are figures in suitable

equivalences,
§3
Th 1: It N then uy ¢ u” and
eorem 3.1: e e enu, & u,  an
(Vxyeugd NxZFy=xZy)

Proof: By the induction based on the complexity of w .

Only the step for Pw  1is not obvious. Let us prove this step.
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P
Let x,yc v let x%"’ y and let t¢ x, There is 2 sey s.t.

5 %—: t. As x,y€ u;fw we have s,te u;_f o Using the induction

agsumption we obtain s %" t. The proof of the essertion with

X, y ohanged and the proof of =—> are analogous.

Definition 3.2t PFor o, B € N 8.t. B e x and a word

let us define the funotion °\,_:t;;": u:—-ﬂt-) u; + Yo proceed by

the recursion based on the complexity of « .
A
1) ‘tﬁ ()= for 63,
= -1 for rex-0.

(g, =< )
1) B 1 Cxmem) = (27 (=) 1, ()
G
11) 650 = (1)
Lemma 3.3: 1) df(:" is described by & set-formula with
persmeters o, 3, & .

2) Por xeuzp we have “t;;"(x) = X,

“w @ w
3) If « =« 3 £ ¥ then pfac°—,r‘,g - L -

Proof: By the induction based on the complexity of 7.

Theorem 3,4t 1) Por any o, € N, B £ , any u and
any x,ye u::' the following implication holds:
22y = 1 (D F L 3.

2) If e N-FN then the opposite implication holds, too.

3) If <e N-FN and x,ycuy then x5y = (YnecFN)
(ot (2) = tn(3)) = (Ip e F-FEN B « & 2,7 (x) = 2%y

Proofs 1) By the induotio.n based on the ocomplexity of
4 , Only the induction step for Pn is not obvious. Let w
prove this step. Let t eecfg""(x) and let T¢x be such that
t= f;;'(?). There is a Vey s.te ?%?. By the induction

- T95 -



assumption we have t & e

a3 dfﬁ (¥). If we change x, y, then we pro-
seed analogously.

2) We again use the induction and only the step for
Ls not obvious, Let te x, It is sufficient to find a Fey s.t.
E%i. Let aeocff“"’(y) be s.t. dt:’(t) % s (the existence is
Implied by the assumption of the impliocation). Let S8ecy be s.t.
3= wf:’ (§)e By the inducticn assumption we have & % %,

3) The fact that the mecond assertion is implied by the
tirst one can be proved by 1) and the fact that for ne FN ..;‘5’
Is the identity. The fact that the third essertion is implied
by the second one follows from Ll.l.2). Using 2) we prove that

the first assertion is implied by the third one.

Corollary 3.5:¢ If PN < BsxeN&xe u: then ac!/:‘
“9 w 23 ue
Proofs Put y -Q,_fﬁ (x). ye u, hence ccfﬁ (y)=y= e‘f/s (x)

(x) % Xo

(see 3.3.2)). Hence y= x (see 3.4.3)).

Theo;qn 3.6t Let FN=sfB3 £« e N, If e’ﬁ/& & ug, ere f£i-
gures in ‘;7’: then “t:"' 6, = q;c A, and (dg:")'lns'p -
w =1 @
. Figg (s )e Hen:e 6, =( ccfp )= “fﬁ "6, ) and 6 =
UL S LI (Ot p el D P

Proof:s Let x € 6, . We have x;é““r(;"(x)e 6, N u. The
tirst equality is an easy consequence. The second equeality is

also an easy consequence of x %wf:(x).

Theorem 3,7: The operations - ,x<, P commutate with ¢

in the following sense: Let FN = A < x<ye N,
1) It &,,,cu, are figures in = then _f'" &)~
“ I M6y - @) N
2) It 6‘1/2911:”’ are figures then ("ff; " 6,) <

n 6'2-

- 796 -



4“2 (%1>‘VL)
X(ocfﬂ L 62) - otfp 2 "( 61 > 6’2)~ 2
3) It 6¢ u;': is e figure then J’(df;:"s)-ocf%”

[
For (,xt:' )'1 hold assertions analogous to 1),2),3).

F(e)e.

Proof: We use Th. 3.6. We prove only the most complicat-
ed case and namely the case 3). Let xeﬁ’(“f;"‘s') -
= P(an u,’;"). Thus xse‘&xsu?"'# x-acf;‘e"‘(x)
P
(see L.3.3.2)) = x € ‘fﬁ "P(6 ). Let on the other hand
«fg"‘ (7)&y € 6 . We have to prove that (V te x)(t ¢
3 d'fp""'c'(- 6 A u;:)). Let for an arbitrary te x an element
Bey be s.t. t = °cf;_;"(s). We have t% s (see C.3.5), teu;;
hence t € 6 n uﬂ"' as ¢ 1is a figure., We now give the proof for
L R -
(y %07 Lot xe P((L17)71"6) = PFigy (6)) (Lo x<
S Fig, (&) = § ). We have to prove that , £*(x) =
7
-,3!;""‘:: &6 , If t is an arbitrary element of x then
s (£) e Eaul =& (see T, 3.6). Let on the other hand
xe((, 22 ) Inp(6)). Honoe £ "x s & . If ¢ 1s an arbit-

I (t) e 6 . Hence x e P((, £)71ve ).

Definition 3.8t Let « ¢ N-FN, let €, < ul be a figure

rary element of x then

in ég + We define a system JCG, of functions F:FN —> V“
aC

in the following manner: P & SCS, =(3Ixe 6;6 Y(V ne FR)(F(n)=
o

= T (D).

Remarks: 1) The notation F 3(,“5.‘,c is not correot as F
cannot be a set., We use this notation as it is objective., € can
be understood in the external sense or in the sense of codable
classes (see [V]1),

2) Let us note that JCG,“ is & system of parts of the

standard submodel.
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Theorem 3.9:1 Let «< e N-FN, let g < u:’ be a figure
in % .
) tee, =(IFc X )VneFR)(Kn)= I (%) &
&tE“:)n
2) Por (3 > « let us put 5,5 = Pig, (S ). We have
7

'JCS'(’

- %o -

Proof:s 1) =—> see the definition of x""«,' <= Por t
satisfying the righthand side let T ¢ 6, be such that

(Vne PR £77(F) = £ (+)) (mee the definition of K  for
the existence of t). We have t %? (see Th., 3.4.) and hence
$60C, -

2) For x €6, we have pt:(x) - tn ﬂt:'(x)) (noe

L-303-3)) and bt:(X) & 6;5 (see Th, 306)0

Corollary 3.10: For any normal formula ¢ (x, g‘ ,'E) there
are a normal formula ¥ (X,y,%) and a system of functions
% c T,y such that for any 2, t the following equival ence
holdss ¢(t,PN,8) = (IPeX)(VneFR) v (t,F(n),R).

Proofs Let us denote (1),(2) the lefthand side and the
righthand side of the equivalence respectively. Using the theo-
rem (Th, 1.2) and the corollary (C.2.4) we find an equivalent
of (1) of the form (3% € &, ) ¥ (t,%,8). We know that @ <
< u: is a figure in % for a suitable word «x+ and an arbit-
rary infinitely large o« ., Using the theorem Th, 3.9 we obtain
an equivalent (3) of the form (3P ¢ JCG.“' )(V nePN)

¥ (®(n),n, «, t,8). We know that x‘,.x is not dependent on the
ohoice of o¢ and that ofy < oC, => (?(r(n),n,ecl.t,'i) ——

=> Y (P(n),n, ,,%,8)) (The 3.9.2), The 1.3, Th. 3.6). < does
not ocour in the formula ¢ . Using the logical law
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@ = y(xt)- @ = (3cc) y (<) we obtain the equivalent (4)
(3P s 3(36-“ )(3e¢ € F-FPR)(V ne FN) § (F(n),n,x,t,d). We prove
that (4) is equivalent to (5) (3P € ¥g )(VneFR)(3e < N,
o«>1n) ¥ (P(n),n,oc,t,8). Let us fix a P ¢ xgoc . Let feXN =~
- FN be an arbitrary element of N-FN, let & 6‘,3 be such that
(Y ne FN)(F(n) 'n"'; (s)) (for the existence of s see Df, 3,8,
The 3¢9¢2))s Let us define the set function g by the following
desoription: Por o < f 1let g(0") = the least o¢c = 3 such
that ﬁ(it:(g),d',cc,t.'i). We have PNcdom(g) hence there is
a 7 € N-FN such that o = dom(g). Let us put o, = max {g(J);
de7i. oLye N-FN and we have (Y ne FN) ?(nf: (s),n, oco,t,z)
(remember that (o, <o, & ﬁ(...ocl...)) = ¥ (e Apeee))e

We have proved (5) => (4) in view of F(n) = nf;;'(s). (4)=> (5)
is obvious. To finish the proof it suffices only to put
Y(xy B = (3 x),x)) (x =<x,x,> & (Ioc € N, ol>x,) F(x),%,,
«,3/E)) and K ={P;aom(F) = FH&(IF 6 Kg ) (VneFH)(P(n)s
= {P(n),m>)}.

Remarks: 1) PFor oc € N-FN the factor space u:'/ :’% can
be endowed with a natural topology (a compact metriec space is
obtained 1f *7U is @, -saturated). U{w jmecPN] forms a dense
subset, The members of :!C(,-“o are sequences and their limits
form a subset of the topological space corresponding to the fi-
gure 6, o For more details see LV]. Interesting is also the
connection between the obtained space and the Cantor ‘s disconti
nuum,

2) We have found an equivalent of the promised form in i
set-theoretical language except of the usage of the function
cmu-»v". Using the section O we can translate the found equ
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valent into the arithmetical language. In the last section we
give the description of X using only the stendard submodel and
the standard system of the model.

§ 4. In this section we have to solve a problem typical
for the beginning of the € - d° method in the calculus. Namely:
How to find new definitions of notions easily definable with
the help of infinitely large (infinitely small) quantities,

The new definitions may be more complicated, may be less objec-
tive but must not use infinitely large or infinitely small quan-
tities, In our case we consider the operations -,>= , J° (power

class in formally finite sets).

Definition 4.1: We put & = {xnVpgxe Vi. We call & the
standard system (of our nonstandard model V),

Remarks: 1) Remember that we suppose the powerset axiom
(the whole induction schema) hence we are in accordance with
the usual definition of the standard system,

2) Note that if our model is a)l-u.t\n'ated then ¥=
= {X3X=Vpyl.

Lemma 4,2t If F e & is a function then there is a func-
tion f such that F = fn Vpy. Especially: If F e S &% dom(F) =
= FN then there is a function £ such that F = £/PN,

Proof: Let x be such that F = xnvm. Let g:(oc »X) be the
formula "xnV, is a function"., @ is satisfied for every ne FN
hence there is an oc € N-FN such that ¢ is satisfied (see
L.1.1.2))e It is sufficient to put £ = xn 7V, .

Theorem 4,3: Let < € N-FN. 1) Xy (g > “2) =
G
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= {Fsdom(F) = FR& (I P X ja, ) (3 P& u, )V neFN)(F(n) =
9 ol
- <Pl(n),F2(n)))§. We also have ’JC“G(Cu,.wz) e ¥.
2) X oo {P;dom(F) = FN&F e ¥ & (V nec FR)(F(n)e ult ) &

& (Vmme FY) (m<n=> (F(m) = 27 (RN} = F-

w,
Proofs 1) Let ¥, e Z:lCm‘,,"/2 < It xy 5€ uoc"/z are such
&

that (¥ neFN) (P, ,,(n) -ecf:"/z (x/)) then (Vme FN)(P(n) =
(t, > v, )
- nf: ’ ({zys257) = {P;(n),F;(n))). Ve also have F =
(o, > w,)
={Ce PR Lec & b 27 Y €x,%))iN Vpye On the other

(y >« t,)
hand let P € ‘quiw',‘wz) . It <x1,12)€ u, corresponds

to F then P1/2 corresponding to X, /p 8Te members of '}Cuw% .
(-

2) < 1s obvious. We prove 2 , Let F be a member of the
righthand side of the oonsidered equality. Let g be a function
prolonging F. Let @ (¢ ,g) be the formula g(oc )& uf"’ &

(VB B<o)alf) -acf?"(s(co)). This formula is satis-
fied for every oc « FN and hence there is a (3 ¢ N-FN such that
g;((s s8)s Hence F € GCi:' .

Definition 4.4: 1) T’Cl ®R 'JCa = {Fjdom(P) = FN &
2) Por Pe JC:d‘andHex? let us define PO H =
= (Vne FN)(F(n)e H(n)).
«%

3) For X=X , 1letus define ={He K g,¢
o< u

ok

(VPO H)(Ps X )i

Theorem 4,5: Let « & F-FR. 1) If &) ,,cul are figu-
w = —
Tes in = then 'xs;..s;_ = ¥e, - X, -

-, v
2) It 61/25“«.”2 are figures in i’% then
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Keme, = X & Xoey » )
3) 1t ¢ u': is a figure in -—-‘c'f then dc%=:1c6 "

Proof: Only the case 3) is not obvious and hence we pro-
ve only this case., c - let H ¢ ZKI%, , let yeuf‘ be an ele-
ment corresponding to H ((V ne PN)(H(n) -&I:u (y))), hence
Yy c© .Let P@H and let g be a prolongation of P, We know
that for every ne PN, g(n) s&f:u' (Y& (VB<n) (&) =
"ntrs (g(n))), hence this formula is satisfied also for an in~
finite 7 < oc (see L.1.1.2)). Hence g(7) ad‘f,f}" (y)= 6 end
Te 'JCe,. 2-let He scé@ and let y< u‘f‘" be an element cor-
responding to H., We have to prove y = 6 . Let x be an arbitra-

ry element of y, Let Fe X , be a function corresponding to
ulb
xo Por any nec FN we have F(n)e H(n) as F(n) -‘f:'(x) <

e ‘f.:«' (y) = H(n). Hence P@H and F € X; . Hence x « 6 (see

Th. 3.9).

Remarks: 1) The elimination of the predicate "to be in-
finitely large® (IL( )) is commonly used in the case of one
quantification (3 , IKx)) @ (Robinson s overspread lem-
ma). The author has got to know the elimination methed for twe
quantifiers (Ve¢ ,IL(cc))(3 B ,IL(3)) ¢ Zfrom P, Vopinka [see
8 1]. It is apparent that the Cauchy ‘s £ -3 expression of the
notion of a 1limit is an implicit form of such an elimination.
The equivalent for three quantifiers (3 , IL(cc))( VA3,
IL(3))3 ¥ ,Iu(y)) ¢ was found by A. Vencovské in the case
of wl-saturatod models. A help variable for real numbers (or
for parts of natural numbers) appears in this equivalent.

2) An example, proving that help variables for natural
numbers do not suffice, was found by P, Vopinka in the case of

wl-aaturatod models, Let us note here that if the prediocate
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"x 18 a member of the satisfactory relation on the standard
submodel™ (cf.§ O for the possibility of the usage of the set-
theoretical language) is a member of the standard system of the
model, then it can be expressed in the form

(Joo »IL(6 )Y B HIL(B Iy 4y IL(¢ )@ (ocy B4 2 9X),

where @ is a normal fommula., If we suppose that this predicate
is equivalent to & formula having the prefix bounded to the
standard submodel followed by & normal formula, then it is equi-
valent to a normal formula in the sense of the standard submodel
in the case of elementary equivalence of the model and its stan-
dard submodel. An easy diagonal eonsideration proves that this
is not possibdle.
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