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PERIPHERALLY COMPACT MAPPINGS
Valéry MISKIN

Abstrgct: The well-known Hanai-Morita-Stone-Michael
theorem characterizing peripheral compactness of closed map-
pings of metrizable spaces onto arbitrary topological spa-
ces is extended to closed mappings of more general spaces
and to more general mappings of metrizable spaces. In some
general cases when a closed mapping £ is inductively irre-
ducible the set of the points at which f is peripherally
compact is considered.and described. Besides, it is estab-
lished that the images of rim compact spaces under certain
monotone peripherally compact mappings are rim compacte.

Key w ¢ Closed mappings, peripherally compact map-
pings, monotone mappings.

Classification: Primary 54Cl0
Secondary 54D30

All mappings below are considered to be continuous. The

set of all positive integers is denoted by N.

l. A Tl—space X in whioh any countable discrete system
of points is separated by a discrete system of their neigh-
bourhoods is called a & -space [L]. A space has property D,
[Mo, p. 691, if any two disjoint closed subsets, one of which
is countable and discrete have disjoint neighbourhoods (this
is not the usual definition of property D but is equivalent
to it in first countable regular spaces). Property D is wea-

ker than pseudonormality even in the class of separable Moore
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spaces (under the assumption of P(e)), [vD,w]. Spaces with
property D will be called almost pseudonormal., It turns out
that in a regular space the above mentioned properties are

equivalent (K. Morita).

Proposition 1. For a space X the following two conditi-
ons are equivalent:
(i) X is a regular B-space,

(i1) X is an almost pseudonormal T,-space.

Proof. (1)--> (ii), Let § = {si:ie N§ be a countable
discrete subset of X and let F be a closed set such that
FinS = @. Choose éos.zieN a discrete system of neighbourhoods
of Si» i¢ N. By reguiarity, for each iec N there exists an o-
pen neighbourhood Vsi of s; such that (clVSi):\F = @. If we put

W31= 081ﬂ Vsi and W =-lt10wsi' then the system {wsiEiGN is

obviously discrete and hence is conservative i.e. CII&sQws =
i
=f\ZN cl Ws » Thus, W is an open neighbourhcod of S such that
¢ i
{clW)nF = @,

(ii) =» (i). It is clear that a pseudonormal T)-space
is regular. If {xiiﬂ,n is a discrete system of ooints, then
th: set S = {xi:i( N§ is discrete in X. Je can easily find
by induction a disjoint system {Ox ji(N of open neighbour-

i
Oy,

i
is closed in X and FAD = ¢, Hence, there exists an open set

heocods of Xy5 1c¢ N. It is obvious that the set F = X \f;k

U>D such that the system fvxiQieN’ where Vxl

= Urwoxi, is

discrete and this completes the proor.

cefinition 1. 1If every compact subspace of a space X

has countable character in X, ther ¥ is cslled 2 space of
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strongly countable type.

Definiti 2. If every compact subspace K of a space
X has a g=-system i.e. a system {Vi}ieN of open neighbour-
hoods such that every sequence {xiGieN of distinct points
x4 € Vi\ K has an accumulation point, then X is said to be
a cq-space.
Metrizable spaces, spaces with a point-regular base, all sub-
spaces of perfectly normal compacta, spaces of countable ty-
pe with a countable network are examples of spaces of strong-
ly countable type, [Al], as well as their perfect images.
Spaces of strongly ccuntable type and regular locally
countably compact spaces are cq-spaces as well as perfect i-
mages of cg-spaces.
We recall that a space in which every closed, countably

compact subspace is compact is called isocompact.

Definition 3. Let £:X—> Y be a mapping of a topologi-
cal space X onto a topological space Y. A point y eY such
that f-l(y) (Fr f—l(y)) is a compact subspace of X is called
a point at which f is compe ct (peripherally compact). If £
is compact (peripherally compact) at each point ye Y, then
f is said to be compact (peripherally ccmpact), [Val.

Thecrem 1. If £:X ~Y is a closed mapping of an iso-
compact O-space X of strongly countable type onto a space
Y, then the following conditions are equivalent:

(1) Y is a space of strongly countable type,
(1i) Y is first cnuntable,
(1ii) Y is a q-space,

(iv) £ is peripherally compact.
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Proof. (i) => (i1i) and (1i) = (iii) are obvious.
(1ii) = (iv) follows from [Mi), Theorem 11. (iv) => (i).
If £ is peripherally comps ct, then f is inductively perfect
i.e. there exists a closed set Fc X such that £(F) = ¥ and
f]F is perfect. Since F is a space of strongly countable ty-
pe, so is its perfect image Y. Indeed, if K is a compact set
in Y, then (f|F)'1(K) is compact and hence has a countable
outer base {Uninen.in F. If V is an open set in Y such that
V5K, then (£])"2(V) 1s open in F and (le)-l(V)D(le)-l(K),

so for some n_e& N we have that U C'(fl )Ly, Thus,
o n, F

xc(f\F)*(Unol = Y\ £(F \Uno)cf(Uno)c V and therefore

%(f‘F)ﬁ(Un)EneN form an outer base of K in Y,
Similarly we can prove the following.

Theorepm 2. If f£:X—> Y is a closed mapping of an iso-
compact O©- and cq-space X onto a space Y, then the following
conditions are equivalent:

(i) Y is a cg-space,

(1i) Y is a g-space,

(iii) £ is peripherally compact.

And what is more, if we consider ccq-spaces instead of cq-

ones, i.e. spacesevery closed countably compact subspace of
which has a g-system, then we can obtain the following cha-
racterizatiSn of peripheral countable compactness of closed

mappings.

Theorem 3. For every closed mapping £f:X—>Y of a O~
and ccq-space X onto a space Y the following conditions are

equivalent:
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(1) Y is a ecq-space,
(ii) Y is a g-space,

(iii) £ is peripherally countably compact.

We recall that 2 mapping f:X--> Y of topological spa-
ces is said to be countably discrete LTJ if the image of e-~
very countable, discrete subset of X is closed in Y and f
is said to be pseudoopen if f is "onto" and for each vyeY

and every open U:Df_l(y),we have y € Int £(U) LAyl

Since a quotient image of a sequential space is sequen-
tial,[Azj, and every countably discrete mapping onto a Hais-
dorff, sequential space is closed, [T1, we obtain the follo-
wing version of the Hanai-Morita-Stone-Michael theorem

(LMH1, 1S1, M),

Theorem 4. If £f:X—> Y is a countably discrete, quoti-
ent mapping of a metrizable space X onto a Hausdorff space
Y, then the following conditions are equivalent:

(i) Y is metrizable,

(ii) Y is first countable,

(1ii) Y is a g-space,

(iv) £ is peripherally compact.

Theorem 5. If f:X—>Y is a countably discrete, pseudo-
oven mapping with a closed graph of a metrizable space X on-
to a space Y, then the following conditions are equivalent:

(i) Y is metrizable,

(ii) Y is first countable,

(iii) Y is a g-space,

(iv) f is peripherally compact.

- 15 =



Proof. (i) = (ii) and (ii) = (iii) are obvious. It
follows from [Mi;] that (iii) = (iv). (iv) == (i). Since f
is peripherally compact, f is inductively irreducible i.e.
there exists a closed set Fc X such that £f(F) =Y and f'F
is irreducible. It is clear that f]F is countably discrete
and Y is a fréchet-Urysohn space, as a pseudo-open image of
a metrizable space. Since f‘F has a closed graph, it follows
from [MiS] that f|F is pseudo-open and hence is closed. We
may assume that f|F is compact and therefore is perfect. Thus,

Y as a perfect image of a metrizable space is metrizable.

2. It can easily be verified that the preimage of eve-
ry nowhere dense set under pseudo-open, irreducible mappings
is nowhere dense as welle. Thus, the image ol a Baire space
under a pseudo-open, irreducible mapping is also a Baire one.

Mak ing use of [Miz, Theorem 1) we obtain the following

Theorem 6. If f£:X—> Y is a pseudo-open irreducible
mapping of an almost pseudonormal, sequential p-space X which
is a Baire one onto a Hausdorff space Y, then the set of all

points at which f is compact is a dense G;-set in Yo

Corpllary 1. If f :X—> Y is a pseudo-open, irreducib-
le mapping of a ﬁech-complete, sequential 8 -space X onto a
Hausdorff space Y, then there exists a dense qi—set ScX such

that f s is perfect.

We recall that a ae-space is a space in which every non-

isolated point is a limit of a sequence of distinct points.

Theorem 7. If f:X — Y is a closed mapping of a meta-

compact, almost pseudonormal p- and cq-space X onto a ag-spa-
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ce Y which is also a Baire space, then the set P of all points
at which f is peripherally compact is a G -set with a & =dis~-

crete complement.

Proof. By Proposition 1 X is an isocompact § -space and
therefore f is inductively irreducible iMiB]. Let FcX be a
closed set such that £(F) =Y and f\Y is irreducible. Since Y
is a Baire space, there exists a dense Gs-set McY such that
for each ye M (f\F)°l(y) is compact and hence the set S of
all points y eY such that (f‘F)_l(y) is compact is dense in Y.
Since F is a metacompact p-space, the set Y\ S is & -discrete
[V] and hence S is a dense Gy-set in Y. Since F is a cq-space,
by Theorem 2 we have that S is the set of all g-points in Y,
for a closed irreducible mapping is peripherally compact if
and only if it is compact. Now going over to f and again ma-
king use of Theorem 2 we get S =P,

Corollary 2. If £f:X— Y is a closed mapping of a meta-
compact, Ctech-complete 8 - and cgq-space X onto a at-space Y,
then the set P is a dense G, - with a &-discrete complement.

Note. This negligible complement can be non-void, as
exhibits the factorizstion of R by contracting Z into a
point.

Corollary 3. If £f:X—> Y is a closed mapping of a Q-
space X with a point-regular base onto a Baire snace Y, then
P is a dense Ga-set with a &~-discrete complement.

Corollary 4. If £:X—»> Y is a closed mapping of a Tech-
complete @ -space X with a point-regular base onto a space Y,

then P is n dense qf-set with a &-discrete complement.
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Gorollary 3. If f:X—> Y is a closed mapping of a
metrizable space X onto a Baire space Y, then the set P
coincides with the set of all points of countable charac-
ter in Y and is a dense G, with a €-discrete complement.

Taking into account [Mi4, Corollary 6] we obtain

Corollapy 6. If £:X—>Y is a closed mapping of a
completely metrizable space X onto a space Y, then there ex-
ists the set Sc X such that £(S) is dense in Y and f g 1s

clopen and peripherally compact.

3. We recall that a space every point of which has a
base of neighbourhoods with compact boundaries is called
rim compact and & mapping of topological spaces is said to
be monotone, if the preimages of all points are connected.
It is known that rim compactness is preserved by clopen map-
pings [M], and, if the image is Hausdorff, by open monotone

and quotient compact monotone mappings [K).

Theorem 8. If f£:X—> Y is a peripherally compact, clo-
sed, monotone mapping of a rim compact Ti-space X onto a

space Y, then Y is salso rim compact.

Proof. Let y be a non-isolated point in Y, then
Fr f-l(y) is compact, closed and non-void in X. If an open
U3y, then f-l(y)c £HU) ana W) s open in ¥X. Since Y
is obviously a T, -space, f-l(y) is closed in X. Hence
f-l(y)c f.l(.y)cf-l(U). For each point x e Fr f.l(y) we can
choose 3 neighbourhood ch:f-l(u) such that Fr Vx is compact.

Let Vxl,...,V be a cover of #r f-l(y) and let

Xk

- e
v v, V., ulnt f 1(y). Then we have fr V c Yy Fr v, v

=47 Ty i i
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U Fr Int f_l(y). Since Fr Int f-l(y)c Fr f-l(y), we have that
Fr V is a closed subset of 2 compact space iéz frv, o

U Fr f-l(y) and therefore it is comvact. Let us cons;der the
set B = £A(V) = YNF(X\V). It is clear that B is an open
neighbourhood of y and Bc U, We shall show that 7 Bctf(kr V).
Suppose the contrary, then there is a point ze (Fr B)\£(Fr V).
Hence £ 1(z)c X\ Fr V. Since V is open in X, Fr V = (c1 V) n
N (X\V) and X\Fr V = (X\cl V)uV. Since f is monotone, ei-
ther £z} eV or £ 1(z) cx\ el V. If £ 1(2) cV, then

z¢ £(X\V), so zeB. Contradiction. If £ *(z)c X\ cl V, then
z4 flcl V) = ¢l £(V) ond hence the set W = Y\ flcl V) is an
open neighbourhood of z and Wec Y\ £(V) c Y \B. Contradiction
again. Thus Fr Bc £(fr V) and hence Ffr B is compact. This

completes the proof.

Corollary 7. A monotone perfect image of a rim compact

T,-space is rim compact.

Corollory 8. If f:X—> Y is 2 monotone, closed mapping
of a pseudonormal isocompact, rim compact Tl-space X onto a

q-space Y, then Y is rim compact.

Corollary 9. A g-space which is 2 wonotone closed image

of 3 metrizable rim compact space is rim compact.

Corollary 1G. A g-space which is 2 monotone closed ima-
ge of a normasl rim compact space with a Gy-diagonal is rim

compacte.

Corollary 11. If f:X—> Y is a monotone, closed mapping
of a rim cecmpact Tl-space X onto a space Y and the set of all
points in which f is perirtherally ccmpact is dense in Y, then

Y has a & -base of open sets with compact boundaries.
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Corollary 12. Every monotone closed image of a comple-
tely metrizable rim compact space has a r~-base of open sets

with compact boundaries.

We recall that a mapping f:X—> Y of a topological spa-
ce X onto a topological space Y is said to be bi-quotient
[F1,IM,1, if for every cover {Q£§416A of £ 1(y) (yeY) by
open sets in X there exist a finite number of elements

&
qwl,...,qtk such that ye Int £( ;| QLi).

Lemmg 1. If f:X—>Y is a monotone, bi-quotient, irre-
ducible mapping of a Hausdorff space X onto a space Y and U
is an open set in X such that Fr U is compact, then Fr £(U)c

& £(Fr U).

Proof. By [Mis, Lemma 11 the set f(Fr U) is closed in
¥ and hence, if ye Fr £(U)\ £(Fr U), then Y\f(Ffr U) is a
neighbourhood of y. Since £ L(YI\ £(Fr Ul £~ (2(Fr U)) = g
and Fr U&f L(£(Fr U)), the sets V), = Un £ e\ £(er )
and V, = (X\cl U) £HY £(Fr U)) are the preimages rela-
tive to f of some sets. Since f-l(y) is connected, either
f‘l(y)cvl and then ye £(Vy)c¢ £(U), where £(V;) is open, for
f is quotient, which is impossible or f-l(y)r V,, which is
also impossible, for UnV, =P implies f(U)r\f(Vz) = 0. Thus,
Fr £(U)c £(Fr U),

Theorem 9. If f:X- »Y is a monotone, bi-quotient, ir-
reducible manring of a Hausdorff rim compact space X onto a

space Y, then Y is also rim compact.

Proof. If y is a non-isoclated coint in Y and U is its
neighbourhood, then f_l(y)c £ and W) is open in X.
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For each xe f_l(y) we can choose an open neighbourhood
ch:frl(U) such that fr Vx is compact. Since f is bi-quoti-

ent, we can find Vxl,...,V

Jo
%) such that for the set V ={§4in

[}

®
yeInt £(V) and Fr V Ci}fﬁ Fr Vx is compact. By Lemma 1
B i

Fr £(V) < £(Fr V), but Fr Int £(V)c fr £(V) and hence

fr Int £(V) is compact and (V)< U,

Note. If Y above is Hausdorff, then the statement of
Theorem § remains valid for monotone, quotient, peripherally

compact mappings (cf. [K1).

Lemma 2. Let f:X—> Y be a monotone, bi-quotient, ir-
reducible mapping of a2 Hausdorff space X onto a space Y and
let U be an open set in X such that Fr U is compact. If
£ (U)+ 8, then £#(U) is open in Y and fr £#(U) is compact.

Proof. By [Mig, Lemma 11 f£(fr U) is closed in Y and
hence £ 1(£(Fr U)) is closed in X and N Hemr 1) is o-
pen in X. Let & = £ L(Y\ £(Fr U)) = X\ £ 1(£(Fr U)). We shall
show that AnU = £ 1(£%U)). Obviously AnUs£ S(£¥(U)). If
x€AnU, then AnUr\f-l(f(x))zkﬁ. Since f is monotone and
ANFr U =0, AnU is the preimage of a set and hence
£72(£(x)) e AnU. Thus, we have £(x)e £HU) and xe £ L(£¥U)).
The set £™(U) is open in Y, for f is quotient. Since f is
monotone, r(cl U) = £¥(U)u f(ar U) [P]l. Now, taking into ac-
count that cl £¥(U) = £¥(U)u Fr £¥(U), £*¥(U)A Fr £#(U) = 0
and cl £#(U) ¢ £(cl U), we obtain Fr £¥(U) c £(Fr U), so
Fr £%(U) is compact.

Theorer 10. If f:X—> Y is a monotone, compact, pseu-
do-cpen, irreducible mapping of a Hausdorff, rim compact spa-

ce X onto a space Y, then f is closed and Y is rim compact.
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Proof. If on the contrary there exists a point
yecl £(F)N£(F) for some closed set F4 0, then an-l(y) =
=@ and f-l(y) is compact. Let us choose for each point
Jcefrl(y) en open neighbourhood O, such that O,AF = § and
Fr 0x is compact. If Oxl,...,oxn form a cover of f-l(y),

then for the set V =4.~\_f3, 0xi we have £ 1(y) SV, fr V =

< ;é?, Fr Oxi and therefore Fr V is compact. Since a pseudo-
open, compact mapping is bi-quotient and £¥V)+ 4, by Lemna
2 £R(V) is an open neighbourhood of y and £¥(V)n £(F) = g,
which is impossible, for ye cl f(F). Thus, f is closed and
by Theorem 9 Y is rim compact. This completes the proof.
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