

Werk

Label: Article **Jahr:** 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log68

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23,4 (1982)

ULTRAFILTERS WITHOUT IMMEDIATE PREDECESSORS IN RUDIN-FROLIK ORDER M. BUTKOVIČOVÁ

Abstract: We describe a construction of an ultrafilter on the set of natural numbers not belonging into the closure of any countable discrete set of minimal ultrafilters in Rudin-Frolik order of ρ_{N-N} . We use the technique of independent linked family developed by K.Kunen.

Key words: Ultrafilter, Rudin-Frolik order, independent linked family, stratified set.

Classification: 04 A 20

§ 0. Introduction. Petr Simon has raised the following question known as Simon's problem [1]: Does there exist a non-minimal ultrafilter in Rudin-Frolik order of $\beta N-N$ (shortly written RF) without an immediate predecessor?

Let us call such an ultrafilter Simon point.

Two simple lemmas translate the property "being a Simon point" into the topological terminology.

Lemma 0.1: An ultrafilter $p \in \beta N-N$ is nonminimal in RF iff there exists a countable discrete set $X \subseteq \beta N-N$ of ultrafilters such that $p \in \overline{X}-X$.

Lemma 0.2: An ultrafilter $p \in \beta N-N$ has an immediate predecessor in RF iff there exists a countable discrete set X of minimal ultrafilters in RF such that $p \in \overline{X} - X$.

Therefore, Simon point p is an ultrafilter in $\beta N-N$ for which there exists a countable discrete set X such that $p\in \overline{X}-X$

and if Y is a countable discrete set of minimal ultrafilters in RF then $p \notin \overline{Y}$.

The main result we want to present is the following

THEOREM. There exists a Simon point in GN - N .

One can easily see that a Simon point p has to be in the closure of a countable discrete set of Simon points X_4 . Since each point of X_4 is a Simon point, there exists a countable discrete set X_2 of Simon points such that $X_4\subseteq \overline{X}_2-X_2$, and so on. Therefore, we shall construct countably many countable discrete sets X_∞ , $\infty\in \infty$ of Simon points such that $X_\infty\subseteq \overline{X}_{n+1}-X_{n+1}$.

The original proof of Theorem needed the assumption th_at every set of functions from ${}^{\omega}\omega$ of cardinality smaller than λ^{κ_o} is bounded modulo fin. We are grateful to Petr Simon who has suggested us to use Kunen technique of independent linked family [3] to avoid this assumption.

We would like also to thank Lev Bukovský for his manifold help and encouragement.

§ 1. <u>Preliminaries</u>. We shall use the standard notation and terminology to be found e.g. in [4],[1]. If $\mathcal F$ is a filter then $\mathcal F$ is the dual ideal. If $\mathcal G$ is a centered system of sets then (6) denotes a filter generated by this system. F refers to the Fréchet filter.

Definition 1.1: due to K.Kunen [3]. Let $\mathcal F$ be a filter on N and $\mathcal F$ 2 F . A $_{\mathcal T}$ $\in N$.

- a) Let $1 \le m < \omega$. An indexed family $\{A_{\eta} ; \gamma \in J\}$ is precisely m-linked with respect to (w.r.t.) \mathcal{F} iff for all $\sigma \in [J]^m$, $\bigcap_{\eta \in \sigma} A_{\eta} \notin \mathcal{F}^*$, but for all $\sigma \in [J]^{m+1}$, $\bigcap_{\eta \in \sigma} A_{\eta}$ is finite.
 - b) An indexed family $\{A_{\gamma m}, \gamma \in J, m \in \omega\}$ is a linked

system w.r.t. \mathcal{F} iff for each m, $\{A_{\gamma m}; \gamma \in \mathcal{I}\}$ is precisely m-linked w.r.t. \mathcal{F} , and for each m and γ , $A_{\gamma m} \subseteq A_{\gamma m+1}$.

o) An indexed family $\{A_{7N}^{\xi}; \gamma \in \mathbb{J}, \xi \in \mathbb{I}, n \in \omega\}$ is a \mathbb{J} by \mathbb{I} independent linked family (ILF) w.r.t. \mathcal{F} iff for each $\xi \in \mathbb{I}$. $\{A_{7N}^{\xi}; \gamma \in \mathbb{J}, n \in \omega\}$ is a linked system w.r.t. \mathcal{F} . and $\bigcap_{\xi \in \mathcal{T}} \bigcap_{\gamma \in \mathcal{T}_{\xi}} A_{7N_{\xi}}^{\xi}) \notin \mathcal{F}^{*} \qquad \text{whenever } \mathcal{T} \in [\mathbb{I}]^{<\infty} \text{, and for each } \xi \in \mathcal{T}$, $1 \leq N_{\xi} < \omega$ and $\mathcal{T}_{\xi} \in [\mathbb{J}]^{N_{\xi}}$.

Remark 1.2: If $\{A_{2m}^{\S}; \S \in I, ? \in J, n \in \omega\}$ is independent linked family w.r.t. $\mathcal{F} \supseteq F$, $C \in \mathcal{F}$, $\mathcal{T} \in [I]^{<\omega}$, $\sigma_{\S} \in [J]^{\S}$ and $B \supseteq \bigcap_{f \in \mathcal{T}_{f}} (\bigcap_{f \in \mathcal{T}_{f}} A_{2m_{\S}}^{\S}) \cap C$, then $\{A_{2m}^{\S}; \S \in I - \mathcal{T}, ? \in J, n \in \omega\}$ is independent linked family w.r.t. $(\mathcal{F} \cup \{B\})$.

K.Kunen [3] has also proved the following

<u>Proposition 1.3</u>: There exists a 2^{ω} by 2^{ω} independent linked family w.r.t. Fréchet filter.

<u>Definition 1.4</u>: A countable set $\{\mathcal{F}_n : m \in \omega\}$ of filters on ω is discrete iff there exists a partition of ω (into disjoint sets) $\{A_m : m \in \omega\}$ such that $A_m \in \mathcal{F}_m$ for each $m \in \omega$.

<u>Definition 1.5</u>: A filter \mathcal{F} is in a closure of a discrete set of filters $\{\mathcal{F}_m : m \in \omega\}$ iff for each $A \in \mathcal{F}$ the set $\{m \in \omega : A \in \mathcal{F}_m\}$ is infinite.

<u>Definition 1.6</u>: A set of filters $\{F_{n,m} \mid n, m \in \omega\}$ is stratified iff

- (1) the set $\{\mathcal{I}_{m,m} : m \in \omega\}$ is discrete for each $m \in \omega$,
- (2) the filter $\mathcal{F}_{m,m}$ is in the closure of the set $\{\mathcal{F}_{m+1,\ell} \mid \ell \in \omega\}$ for each $m, m \in \omega$.

<u>Definition 1.7</u>: Let $\{\mathcal{F}_{m,m} : n, m \in \omega\}$ be a stratified set of filters and C be its subset. We define

C(0) = C $C(\mathcal{L}) = \bigcup_{0 \le \ell} C(\mathcal{B}) \text{, if } \mathcal{L} \text{ is limit.}$ $C(\mathcal{L}+1) = C(\mathcal{L}) \cup \{ \mathcal{F}_{m_{\ell},m_{\ell}} : \exists B \in \mathcal{F}_{m_{\ell},m_{\ell}} \text{ such that} \{ \mathcal{F}_{m_{\ell},\ell}, \ell : B \in \mathcal{F}_{m_{\ell},\ell} \} \subseteq C(\mathcal{L}) \}$ and $C = \bigcup_{\alpha \le C(\mathcal{L})} C(\mathcal{L}).$

We shall need the following result proved by M.E.Rudin [4].

Lemma 1.8: If X, Y are countable discrete sets of ultrafilters and $\rho \in \overline{X} \cap \overline{Y}$ then $\rho \in \overline{X} \cap \overline{Y}$ then $\gamma \in \overline{X} \cap \overline{Y} \cap \overline{Y} \cap \overline{Y} \cap \overline{Y} \cap \overline{Y} \cap \overline{X} \cap \overline{X}$.

§ 2. Construction of a stratified set. The proof of Theorem will be done via a construction of a stratified set of ultrafilters with properties described in the following proposition.

Proposition 2.1: There exists a stratified set of ultrafilters $\{q_{m_i,m_i} \mid m_i, m \in \omega\}$ on ω satisfying for each partition $\{D_{i,j}, i \in \omega\}$ of ω the following property (P): Let $C = \{q_{m_i,m_i}, (\exists i \in \omega)(D_i \in q_{m_i,m})\}$. If $q_{k,\ell} \notin \widetilde{C}$ then there exists a family $\{U_{i,j}, i \in \mathcal{L}^{\omega}\} \subseteq q_{k,\ell}$ such that for each $i \in \omega$ and for each $\mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \mathcal{$

For to prove the proposition we need some auxiliary results.

Lemma 2.2: If $\{F_{m_1,m_2}, m_1, m_2\omega\}$ is a stratified set of filters, of = $\{A_{7k}^f : f \in I, |I| > \omega, 7 < L^{\omega}_{1} \neq \omega\}$ is ILF w.r.t. $F_{m_1m_2}$ for every $m_1, m \in \omega$ and $B \subseteq \omega$ then there exists a stratified set of filters $\{\overline{F_{m_1,m_2}} : m_1, m \in \omega\}$ and

 $\overrightarrow{ot} = \{A_{Tk}^{\S}; \ \S \in \overline{I}, \ 7 < 2^{\omega}, \& \in \omega \} \quad \text{an ILF w.r.t.} \quad \overrightarrow{f_{m,m}}$ for each $m, m \in \omega$ such that $\overrightarrow{f_{m,m}} \supseteq \overrightarrow{f_{m,m}}$, B or ω -B belongs into $\overrightarrow{f_{m,m}}$, $\overline{I} \subseteq I$ and $\overline{I} - \overline{I}$ is countable.

Proof. Let us consider the set

 $C = \{ \mathcal{T}_{i,j} \mid \text{ of is not ILF w.r.t.} (\mathcal{T}_{i,j} \cup \{B\}) \}.$ If $\mathcal{T}_{i,j}$ belongs to the set C then there exist sets $\mathcal{T}_{i,j} \in [I]^{\infty}$ and $E \in \mathcal{T}_{i,j}$ such that $B \cap E \cap \bigcap_{f \in \mathcal{T}_{i,j}} \bigcap_{\gamma \in \mathcal{I}_{i}} A_{n k_{f}}^{f} = \emptyset$, i.e. $\omega - B \supseteq E \cap \bigcap_{f \in \mathcal{I}_{i,j}} \bigcap_{\gamma \in \mathcal{I}_{i,j}} A_{n k_{f}}^{f}$.

Evidently $\{A_{n k_{f}}^{f} \mid f \in I - \mathcal{T}_{i,j}, \gamma < 2^{\omega}, k \in \omega\}$ is ILF w.r.t. $(\mathcal{F}_{i,j} \cup \{\omega - B\})$.

We denote $\overline{I} = I - U\{T_{L,j} : \mathcal{T}_{l,j} \in \mathbb{C}\}$. Therefore, $cf = \{A_{1L}^{j} : j \in \overline{I}, T < 2^{\omega}, k < \omega\}$ is LLF w.r.t. $(F_{L,j} \cup \{\omega - B\})$ for $F_{L,j} \in \mathbb{C}$. If $T_{L,\ell} \notin \widetilde{C}$ then A is LLF w.r.t. $(F_{L,\ell} \cup \{B\})$.

It remains to show that of is ILF v.r.t. $(\mathcal{T}_{A,\ell} \cup \{\omega - B\})$ if $\mathcal{T}_{A,\ell} \in \widetilde{C} - C$. Suppose the opposite in order to get a contradiction. Let β be the least ordinal such that $\mathcal{T}_{A,\ell} \in C(\beta)$ and of is not ILF v.r.t. $(\mathcal{T}_{A,\ell} \cup \{\omega - B\})$. Hence there exist sets $E \in \mathcal{T}_{A,\ell}$ and $\mathcal{T} \in [\widetilde{I}]^{-C}$ satisfying $E \cap (\omega - B) \cap \bigcap_{\{X, Y, E_{\ell}\}} \cap \bigcap_{\{X, Y, E_{\ell}\}$

According to the foregoing discussion we denote $\widetilde{\mathbb{T}}_{n,m} = \begin{cases} \widehat{\mathbb{T}}_{n,m} \cup \{\omega\} \} & \text{for } \widehat{\mathbb{T}}_{m,m} \notin \widetilde{\mathbb{C}} \\ \widehat{\mathbb{T}}_{n,m} \cup \{\omega-1\} \} & \text{otherwise.} \end{cases}$

Lemma 2.3: If $\{f_{n,m} \mid n,m \in \omega\}$ is a stratified set of filters, $\mathcal{A} = \{A_{2k}^{\frac{1}{2}}; \xi \in I, \gamma < 2^{\omega}, k < \omega\}$ is IIF w.r.t. $f_{n,m}$ for each $n,m \in \omega$ and $\mathcal{D} = \{D_{ij},i \in \omega\}$ is a partition of ω such that D_i or $\omega - D_i$ belongs into $f_{n,m}$ then there exists a stratified set of filters $\{\widehat{f}_{n,m} \mid n,m \in \omega\}$ and $\widehat{\mathcal{A}} = \{A_{2k}^{\frac{1}{2}}, \xi \in \widehat{I}, \gamma < I^{\omega}, k < \omega\}$ an IIF w.r.t. $\widehat{f}_{n,m}$ for each $n,m \in \omega$ such that $\widehat{f}_{n,m} \supseteq \widehat{f}_{n,m}$, $\widehat{f}_{n,m}$ possesses the property (P) for the partition $\widehat{\mathcal{D}}$, $\widehat{I} \subseteq I$ and $\widehat{I} - \widehat{I}$ is finite.

 $\begin{array}{cccc} & \underline{\text{Proof}} \colon & \text{Let us consider the set} \\ \mathcal{C} = \{ \; \mathcal{F}_{j,\ell} \; | \; (\; \exists \; \iota \in \omega \;) (D_{\iota} \in \mathcal{F}_{j,\ell} \;) \} \;\; . \\ & \text{If} \; \; \mathcal{F}_{s,t} \in \widetilde{\mathcal{C}} \quad \text{we put} \; \; \widehat{\mathcal{F}}_{s,t} = \mathcal{F}_{s,t} \; . \end{array}$

Let $\mathscr{F}_{s,\ell}\notin\widetilde{C}$. Take $\xi\in I$ and define (similarly as K.Kunen does)

$$\begin{split} &\mathcal{U}_{\gamma} = \underset{\boldsymbol{A} \in \omega}{\cup} \; (A_{\gamma \boldsymbol{A}}^{\S} \cap D_{\boldsymbol{A} + 1}) \;, \; \widehat{\boldsymbol{I}} = \boldsymbol{I} - \{\boldsymbol{b}\} \\ &\text{and} \; \; \widehat{\mathcal{F}}_{\boldsymbol{b}, t} = (\; \mathcal{F}_{\boldsymbol{b}, t} \; \cup \; \{\; \mathcal{U}_{\gamma} \;; \; \; \gamma < \boldsymbol{\lambda}^{\omega}\}) \;. \end{split}$$

 $U_{\gamma} = A_{\gamma, 1}^{\xi} \cap \bigcap_{i \in I} (\omega - D_i)$, therefore \widehat{A} is ILF w.r.t. $\widehat{F}_{s,t}$.

To verify the property (P), let $\beta_1 < \beta_2 < \ldots < \beta_\ell < 2^{\omega}$. The set $U_{\beta_1} \cap U_{\beta_2} \cap \ldots \cap U_{\beta_\ell} \cap D_i$ is a subset of $A_{\beta_\ell,i-1}^{\ell} \cap A_{\beta_\ell,i-1}^{\ell} \cap \ldots \cap A_{\beta_\ell,i-1}^{\ell}$ which is in fact finite.

The set $\{\widehat{\mathcal{F}}_{m,m} ; m, m \in \omega\}$ is stratified by the definition of \widetilde{C} .

q.e.d.

<u>Proof of Proposition 2.1.</u> We construct ultrafilters $q_{n,m}$, $n,m\in\omega$ by the transfinite induction in 2^{ω} stages. At each stage $\alpha < 2^{\omega}$ we will construct filters $\mathcal{F}_{n,m}$

and $q_{m,m} = \bigcup_{e \in \mathbb{Z}^{\infty}} f_{m,m}^{e}$. At the even stages we ensure that $q_{m,m}$'s become ultrafilters and at the odd stages we ensure that $q_{m,m}$'s will not belong into the closure of any countable discrete set of minimal ultrafilters. Simultaneously, at each stage we ensure that $q_{m,m}$ will belong into the closure of the set $\{q_{m+1,e} \mid \ell \in \omega\}$.

Let $\{B_{\mathcal{L}}; \ \mathcal{L} < 2^{\omega}, \ \mathcal{L} \text{ even}\}$ enumerate all subsets of ω and $\{D_{\mathcal{L}}; \ \mathcal{L} < 2^{\omega}, \ \mathcal{L} \text{ odd}\}$ enumerate all partitions of ω , $D_{\mathcal{L}} = \{D_{\mathcal{L}}; \ \dot{\nu} \in \omega\}$, in such a way that each partition occurs $\mathcal{L}^{2_{\omega}}$ many times in this enumeration.

Let $\{A_{2k}^{f}: f< 2^{\omega}, 7< 2^{\omega}, k<\omega\}$ be independent linked family w.r.t. Fréchet filter F.

For each $\{$, the system $\{A_{n,1}^{\{}; \ \gamma < 2^{\omega}\}\}$ is almost disjoint. Put $B_{1,m} = A_{m,1}^{1} - \bigcup_{j \in m} A_{j,1}^{j}$. Let $\{C_{m; m \in \omega}\}$ be a fixed partition of ω on infinite sets. Suppose $B_{m,m}$ is defined for each $m < \omega$. Put $B_{m+1,m} = B_{m,\ell} \cap (A_{m+1}^{m+1} - \bigcup_{j \in m} A_{j,1}^{m+1})$ iff $m \in C_{\ell}$. For each $m \in \omega$, the system $\{B_{m,m}; m \in \omega\}$ is pairwise disjoint.

Let $\mathcal{F}_{m,m}^{o}$ be a filter generated by $F \cup \{B_{m,m}\} \cup U \{\omega - B_{m,m}\} [\ell \in \omega\}$ for each $m, m \in \omega$ and $I_o = 2^{\omega} - \omega$.

The set $\{A_{n,k}^{f}: \{ \in I_{0}, n < 2^{\omega}, k < \omega \} \}$ is ILF w.r.t. $\mathcal{F}_{m,m}^{o}$ for all m, $m \in \omega$ according to Remark 1.2. (For each $D \in \mathcal{F}_{m,m}^{o}$ there exist $G \in F$ and $A_{n,n}^{f}$, $j \leq m+1$ satisfying $D \supseteq G \cap \bigcap A_{n,n}^{f}$). The system $\{\mathcal{F}_{m,m}^{o}: m, m \in \omega\}$ is evidently stratified.

By the induction on $\mathcal{L}<\mathcal{L}^{\infty}$ we construct filters $\mathcal{F}^{\kappa}_{n_1,n_2}$ and an indexed set I_{κ} with following properties:

- 1) If \mathcal{L} is even, we put $\mathcal{F}_{m_1,m_2}^{\mathcal{L}+1} = \overline{\mathcal{F}_{m_1,m_2}}$ and $I_{\mathcal{L}+1} = \overline{I_{\mathcal{L}}}$ (using Lemma 2.2 where $B = B_{\mathcal{L}}$).
- 2) If & is odd, $\mathcal{D}_{\&} = \{D_{\&\&;i} | i \in \omega\}$ is a partition of & and assume that:
- (A) for each $\dot{\nu} \in \omega$ there exists $\beta < \kappa$, β even such that $D_{\kappa,\dot{\nu}} = B_{\beta}$, λ being the first odd ordinal with this property. Hence for each $\dot{\nu} \in \omega$ we have $D_{\kappa,\dot{\nu}} \in \mathcal{F}_{m,m}^{\kappa}$ or $\omega D_{\kappa,\dot{\nu}} \in \mathcal{F}_{m,m}^{\kappa}$.

Then we define $\mathcal{F}_{m,m}^{\kappa+1} = \widehat{\mathcal{F}}_{m,m}^{\kappa}$, $I_{\kappa+1} = \widehat{I}_{\kappa}$ (using Lemma 2.3 where $\mathcal{D}_{\kappa} = \mathcal{D}$).

If the condition (A) does not hold true, we simply set $\mathcal{F}_{m,\,m}^{\,\alpha+1} = \mathcal{F}_{m,\,m}^{\,\alpha} \quad \text{and} \quad I_{\,\alpha+1} = I_{\,\alpha} \,.$

3) If \mathcal{L} is a limit ordinal we set $\mathcal{F}_{n_i,m_i}^{\mathcal{L}} = \bigcup_{\beta \in \mathcal{L}} \mathcal{F}_{n_i,m_i}^{\beta}$ and $I_{\mathcal{L}} = \bigcap_{\beta \in \mathcal{L}} I_{\beta}$.

Finally we put $q_{m,m} = \bigcup_{\alpha < 2^{\infty}} \mathcal{F}_{m,m}^{\alpha}$.

It remains to show that the set $\{q_m, m; m, m \in \omega\}$ satisfies the property required in Proposition 2.1.

Clearly, this set is stratified.

Assume that $\mathfrak D$ is a partition of ω . Since each partition of ω occurs $\mathcal L^{\mathcal R_0}$ many times in the enumeration $\{\mathcal D_{\omega}: \mathcal L\in\mathcal L^{\omega}, \mathcal L\text{ odd}\}$ there exists a sufficiently large odd $\mathcal L$ such that $\mathcal D=\mathcal D_{\omega}$ and the condition (A) is fulfilled. Now, we denote $C=\{q_{\Delta,\mathcal L}: (\exists \dot{\nu}\in\omega)(D_{\omega\dot{\nu}}\in q_{\Delta,\mathcal L})\}$. If $q_{m,m}\notin \mathcal C$ and $\mathcal F_{m,m}^{\omega}\notin \mathcal C_{\omega}$ where $C_{\omega}=\{\mathcal F_{\Delta,\mathcal L}^{\omega}: (\exists \dot{\nu}\in\omega)(D_{\omega\dot{\nu}}\in\mathcal F_{\Delta,\mathcal L}^{\omega})\}$ then the family $\{\mathcal U_q: \gamma<\mathcal L^{\omega}\}$ used in the construction of $\mathcal F_{m,m}^{\omega+1}$ according to the proof of Lemma 2.3 is the family desired by the proposition. Thus it $\mathcal L$ so show that

for qn,m & C also Fm, m & C.

In order to get a contradiction we suppose that there exists $q_{m,m} \notin \mathcal{C}$ and $\mathcal{F}_{m,m} \in \mathcal{C}_{\mathcal{L}}(\mathcal{B})$ where \mathcal{B} is the first ordinal with this property. Clearly, $\mathcal{B} \neq 0$. By the definition of $\mathcal{C}_{\mathcal{L}}(\mathcal{B})$, there exists $\mathcal{B} \in \mathcal{F}_{m,m}^{\mathcal{L}} \subseteq q_{m,m}$ such that $\mathcal{B} = \{\mathcal{F}_{m+1,\ell}^{\mathcal{L}} : \mathcal{B} \in \mathcal{F}_{m+1,\ell}^{\mathcal{L}} \} \subseteq \mathcal{C}_{\mathcal{L}}(\mathcal{B}^{-1})$. By the minimality of \mathcal{B} , each $q_{m+1,\ell} \supseteq \mathcal{F}_{m+1,\ell}^{\mathcal{L}} \in \mathcal{B}$ is an element of \mathcal{C} . This is a contradiction with the assumption of $q_{m,m} \notin \mathcal{C}$.

§ 3. Proof of the THEOREM. Now, we are ready to prove the main result. Theorem follows immediatelly from Proposition 2.1 and Lemma 3.1.

Lemma 3.1: If $\{q_{m,m} : n, m \in \omega\}$ is a stratified set of ultrafilters with the property (P) (of Proposition 2.1) then each $q_{m,m} : m, m \in \omega$ is a Simon point.

<u>Proof:</u> Since the set $\{q_{m,m}; n, m \in \omega\}$ is stratified, each $q_{m,m}$ is a nonminimal ultrafilter.

It remains to show that $q_{n,m} \notin \overline{D}$ whenever $D = \{j_i : i \in \omega\}$ is a countable disorete set of minimal ultrafilters in RF, $m, m \in \omega$. Let $\{D_i : i \in \omega\}$ be a partition of ω such that $D_i \in j_i$ for each $i \in \omega$. Let C be as in Proposition 2.1. We show that $\widetilde{C} \cap \overline{D} = \emptyset$. Clearly, $C(0) \cap \overline{D} = \emptyset$. We proceed by induction. Suppose that $C(\alpha) \cap \overline{D} = \emptyset$ and there exist $i, j \in \omega$ such that $q_{i,j} \in C(\alpha+1) \cap \overline{D}$. By Definition 1.7 there exists a set $B \in q_{i,j}$ with property $\{q_{i+1,i} \in B \in q_{i+1,i} \} \subseteq C(\alpha)$. This means that $q_{i,j} \in \overline{C(\alpha)} \cap X_{i+1}$. Hence $C(\alpha) \cap X_{i+1} \cap \overline{D} \neq \emptyset$. But, this is imposible by Lemma 0.1 and Lemma 1.8.

Thus, if $q_{A,\ell} \in \widetilde{C}$ then $q_{A,\ell} \notin \overline{\mathbb{D}}$.

Assume now $q_{k,\ell} \notin \widetilde{C}$ and $\{\mathcal{U}_{\kappa}; \kappa \in \mathcal{L}^{\omega}\} \subseteq q_{k,\ell}$ be such that for each $\dot{\nu} \in \omega$ and for each $\kappa, \langle \kappa_2 \rangle, \ldots \langle \kappa_{\dot{\nu}} \rangle$, $\mathcal{U}_{\mathcal{L}_1} \cap \mathcal{U}_{\mathcal{L}_2} \cap \ldots \cap \mathcal{U}_{\mathcal{L}_{\dot{\nu}}} \cap D_{\dot{\nu}}$ is finite (the existence of \mathcal{U}_{κ} follows from the property (P)). Then for each $\dot{\nu}$ there exist at most $\dot{\nu} - 1$ values of \mathcal{L} for which $\mathcal{U}_{\kappa} \in \dot{j}_{\dot{\nu}}$. Thus there exists an ordinal \mathcal{L} such that $\mathcal{U}_{\kappa} \notin \dot{j}_{\dot{\nu}}$ for each $\dot{\nu} \in \omega$. This yields $q_{k,\ell} \notin \overline{D}$.

q.e.d.

References

- [1] L. Bukovský, E. Butkovičová: Ultrafilter with \mathcal{R}_o predecessors in Rudin-Frolik order, Comment. Math. Univ. Carolinae 22(1981), 429-447.
- [2] Z. Frolik: Sums of ultrafilters, Bull. Amer. Math. Soc. 73(1967), 87-91.
- [3] K. Kunen: Weak P-points in N*, preprint.
- [4] M. E. Rudin: Partial orders of the types in /3 N, Trans. Amer. Math. Soc. 155(1971), 353-362.

Matematický ústav SAV
Februárového víťazstva 9, 041 54 Košice
Czechoslovakia
(Oblatum 2.8. 1982)