

Werk

Label: Article **Jahr:** 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log64

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

REPRESENTATIONS OF COMMUTATIVE SEMIGROUPS BY PRODUCTS OF METRIC O-DIMENSIONAL SPACES Jiří VINÁREK

Abstract: For every commutative semigroup (S,+) there is constructed a collection $\{r(s), s \in S\}$ of complete metric 0-dimensional spaces such that the following conditions hold:

(i) r(s+s') is isometric to $r(s) \times r(s')$ (ii) r(s) is homeomorphic to r(s') iff s=s'

Key words: Semigroup, representation, product, O-dimensional space.

Classification: Primary 54Bl0, 54Hl0 Secondary. 20M30

Isomorphisms of products have been studied for various algebraic, relational and topological structures. One of original problems was to find a topological space X which is homeomorphic to X^3 but not to X^2 . After solving this problem, this question was investigated in special categories. A construction of an object X which is isomorphic to X^3 but not to X^2 is a special case of a representation of a commutative semigroup by products in a category, investigated by V. Trnková and the participants of the Seminar on General Mathematical Structures in Prague. A survey of this topic is given in [4]. Nevertheless, let us recall Trnková s result ([5]) that every compact metric O-dimensional space X which is homeomorphic to X^3 is also homeomorphic to X^2 .

The aim of this paper is to prove the following:

Theorem. For any commutative semigroup (S,+) there exists a collection $\{r(s); s \in S\}$ of complete metric 0-dimensional spaces such that the following conditions hold:

- (i) r(s + s') is isometric to $r(s) \times r(s')$
- (ii) r(s) is homeomorphic to r(s') iff s = s'

<u>Remarks</u>. 1. As a special case of Theorem we obtain a complete metric 0-dimensional space X isometric to X^3 but not homeomorphic to X^2 .

2. The theorem strengthens the Trnková's result 3. from [3]: the same theorem is proved in [3], except the fact that the spaces r(s) are 0-dimensional. Nevertheless, the construction of 0-dimensional spaces r(s) requires more subtle argumentation.

I am indebted to V. Trnková for valuable suggestions and reading the manuscript.

1. Conventions and notations. We shall use the symbol \sim for a homeomorphism, \cong for an isometry of spaces. Since the construction needs also metrizability of infinite products, our basic category \underline{C} will be that of complete metric spaces with a diameter $\neq 1$ and contractions (i.e. Lipschitz mappings with a Lipschitz constant $\neq 1$). This category has all products (denoted by Π , or x for finite collections) and all coproducts (denoted by Π). Actually, if Π is a set and $\{(X_L, \mathcal{C}_L); L \in \Pi\}$ is a collection of objects of \underline{C} then $\overline{\Pi}_{e,\Pi}(X_L, \mathcal{C}_L) = (\overline{\Pi}_{e,\Pi}X_L, \mathcal{C}_L)$ where $\mathcal{C}((X_L)_{e,\Pi}, (Y_L)_{e,\Pi}) = \sup_{e,\Pi} \mathcal{C}_L(X_L, Y_L)$. Moreover, one can see easily that the functor $\mathcal{F}:\underline{C} \to \underline{TOP}$ assigning to each metric

space (X, 0) a topological space with the topology induced by 0, preserves finite products (and all coproducts).

2. Denote by N the additive semigroup of non-negative integers and by N^{∞} its ∞ -th power, i.e. the semigroup of all the functions on ∞ with values in N, where the operation + is defined point-wise. exp N is the semigroup of its subsets with + defined by

 $A + A' = \{a + a'; a \in A, a' \in A'\}.$

Denote by N+ the set of all the positive integers.

By [4], any commutative semigroup S is isomorphic to a subsemigroup of exp N $^{\circ}$, card S . Hence, for a representation of any commutative semigroup by products of complete metric O-dimensional spaces, it is sufficient to construct for any subset A of \mathcal{H}_{\circ} , card S a complete metric O-dimensional space X(A) such that the following two conditions hold:

- (i) $X(A + A') \cong X(A) \times X(A')$
- (ii) $X(A) \sim X(A')$ iff A = A'

Since the distributivity of finite products of objects of \underline{C} is fulfilled, it suffices - due to Trnková s result ([4]) - to \mathcal{K}_0 card S a complete metric 0-dimensional space X(f) with a diameter ≤ 1 such that for every f, \mathcal{K}_0 card S and $A,A \leq N$ the following conditions hold:

- (1) $X(f + g) \cong X(f) \times X(g)$
- (2) $\underset{2^{4}}{\coprod}$ cards $\left(\underset{h\in A}{\coprod} X(h)\right)$ is 0-dimensional
- (3) $_{2}$ %. cardS $\left(\underset{h\in A}{\coprod} X(h)\right) \sim _{2}$ %. $\underset{ardS}{\coprod} \left(\underset{h\in A}{\coprod} X(k)\right)$

iff A = A'

where $\lim_{z \to \infty} Z$ denotes the coproduct of 2^{∞} copies of Z.

(Having constructed X(f)'s satisfying (1)-(3) one can put $X(A) = \coprod_{2^{N_0} \cdot \text{ eard } S} \left(\coprod_{f \in A} X(f) \right)$. Clearly, conditions (i) and (ii) are satisfied.)

Trnková's general method for constructing such X(f)'s is the following: find a collection $\{X_a; a \in \mathcal{K}_0, \text{card } S\}$ of objects of a given category such that for every $A, A \subseteq N$ the following condition holds:

(*)
$$2^{\kappa_0 \cdot \text{cardS}} \left(\prod_{h \in A} \prod_{a \in \kappa_0 \cdot \text{cardS}} X_a^{h(a)} \right) \sim$$

$$\sim \frac{1}{2} \kappa_{o} \cdot \text{cardS} \left(\frac{1}{k \in A}, \text{ a s} \kappa_{o} \cdot \text{cardS} \right) \text{ iff } A = A'.$$

Then one can define $X(f) = \prod_{a \in \mathcal{S}_{c} \cdot card S} X_{a}^{f(a)}$ and easily

check (1) and (3). Since arbitrary coproducts of 0-dimensional spaces in \underline{C} are 0-dimensional, but products of 0-dimensional spaces need not have this property, it will be necessary to prove 0-dimensionality of spaces X(f), too.

3. Construction. Let \underline{Cn} be the class of cardinal numbers. Denote by γ the first ordinal with card $\gamma = \mathcal{K}_0 \cdot \text{card S.}$ For every $\mathbf{a} \in \gamma$ choose a set $\mathbf{B}_{\mathbf{a}} = \{\beta_{\mathbf{a},\mathbf{n}}; \mathbf{n} \in \mathbb{N}^+\} \subseteq \underline{Cn}$ such that the following conditions hold:

$$2^{3} < \beta_{0,1}, \beta_{a,n} < \beta_{a,n+1}, \beta_{a,1} > (\sup \{\beta_{b}, b < a\})^{3}$$

where $\beta_b = \sup \{\beta_{b,n}; n \in \mathbb{N}^+\}$

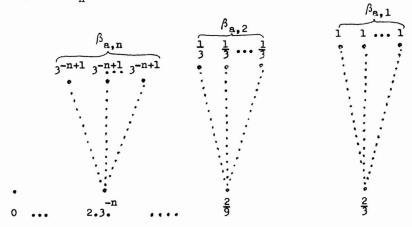
Denote

$$B = \bigcup_{\alpha \in \mathcal{T}} B_{\alpha}. \text{ Let } C = [0,1] \setminus \bigcup_{n=1}^{+\infty} \frac{3^{\frac{n}{2}}}{2^{\frac{n}{2}}}] \frac{2i-1}{3^n}, \frac{2i}{3^n} [$$

be the Cantor set (with the usual real-line metric),

 $C_n = [2.3^{-n}, 3^{-n+1}] \cap C$, $D = \{2.3^{-n}; n \in \mathbb{N}^+\} \cup \{0\}$ (again with the usual metric.

For every $a\in\gamma$ define a metric space X_a by glueing $\beta_{a,n}$ copies of C_n to the point 2.3⁻ⁿ of D (as shown in the picture).



More precisely, $X_a = (\overline{X_a}, \phi_a)$ where

$$\overline{X_a} = \underset{n \in \mathbb{N}^+}{\bigcup} ((\mathfrak{C}_n \setminus \{2.3^{-n}\}) \times \beta_{a,n}) \cup \mathbb{D},$$

 $\phi_{\mathbf{a}}(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}|$ whenever $\mathbf{x}, \mathbf{y} \in D$,

$$\varphi_{\mathbf{a}}((x,\infty),(y,\beta)) = \begin{cases}
|x-y| & \text{if } x,y \in \mathbb{C}_{n} \text{ and } \infty = \beta \\
|x-2.3^{-n}| + |2.3^{-n} - 2.3^{-m}| + |y-2.3^{-m}| \\
& \text{if } x \in \mathbb{C}_{n}, y \in \mathbb{C}_{m} \text{ and } n \neq m \text{ or } \infty \neq \beta,
\end{cases}$$

 $\mathcal{S}_{\mathbf{a}}((\mathbf{x},\infty),\mathbf{y}) = |\mathbf{x} - 2.3^{-n}| + |\mathbf{y} - 2.3^{-n}| \text{ if } \mathbf{x} \in \mathbb{C}_{n} \text{ and } \mathbf{y} \in \mathbb{D}.$ Denote $\| \cdot \| : \mathbb{X}_{\mathbf{a}} \longrightarrow \mathbb{C} \text{ by } \|\mathbf{x}\| = \mathbf{x} \text{ whenever } \mathbf{x} \in \mathbb{D}, \| (\mathbf{y},\infty)\| = \mathbf{y}$ whenever $(\mathbf{y},\infty) \in \mathbb{X}_{\mathbf{a}} \setminus \mathbb{D}.$

One can check easily that every X_a is a complete metric 0-dimensional space with diam $X_a=1$. It remains to prove (*) and 0-dimensionality of $X(f)=\prod_{\alpha\in\mathcal{X}}X_a^{f(\alpha)}$ for every $f\in N^{\mathcal{X}}$.

4. Recall the definition of a <u>dispersive character</u> (cf. [2]): Let y be a point of a topological space; then a dispersive character $\triangle(y) = \min \{ \text{card } V; V \text{ is an open neighbourhood of } y \}.$

Using dispersive characters we can introduce the following:

- 5. <u>Definition</u>. Let x be a point of a topological space. Then a <u>dispersive type</u> $\tau(x) = \bigcap \{\{\triangle(y); y \in U\}; U \text{ an open neighbourhood of } x\}$.
- 6. Observation. If X, Y are topological spaces, $x \in X$, $y \in Y$, then $\triangle((x,y))$ (in X×Y) is equal to the product of $\triangle(x)$ (in X) and $\triangle(y)$ (in Y).
- 7. For any $f: \gamma \longrightarrow \mathbb{N}$ denote by L(f) the set $\{(a,i); a \in \gamma, i \in \{1, \ldots, f(a)\}\}$. By the associativity of products there is $X(f) = \prod_{\alpha \in \gamma} X_a^{f(\alpha)} = \prod_{(\alpha,i) \in L(f)} X_a$. For any $(a,i) \in L(f)$ denote by $\mathcal{N}_{a,i}$ the corresponding projection of X(f) onto X_a .
- 8. Lemma. Let $x \in X(f)$ be given such that there exist $\sigma > 0$ with the following property: $| \| \pi_{a,1}(x) \| 2.3^{-n} | \ge \sigma$ for any $(a,i) \in L(f)$, $n \in \mathbb{N}^+$.

 Then $\Delta(x) = (2^{x_0})$ where $A_f = \{a, f(a) \neq 0\}$.
- <u>Proof.</u> Any non-empty open set in X_a has cardinality at least 2^{30} . Hence, $\triangle(x) \ge (2^{30})$ on the other hand, card $\{y \in \overline{X_a}: \mathcal{O}_a(\pi_{a,1}(x),y) < \sigma\} = 2^{30}$ for any $a \in A$ and $i \in \{1, \ldots, f(a)\}$ and card $\{y \in X(f); \mathcal{O}(x,y) < \sigma\} = (2^{30})$

Q.E.D.

9. Lemma. Let a ϵ % and $g \in \mathbb{N}$ be given such that

g(a') = 0 for any $a' \ge a$. If $x \in X(g)$ then $\triangle(x) \notin B_a$.

<u>Proof.</u> By the construction, card $X_b = \beta_b$ for any $b \in \mathcal{J}$. Hence, card $X(g) \leq \prod_{a < a} \beta_b < \beta_{a,1}$, $\Delta(x) < \beta_{a,1}$, and therefore $\Delta(x) \notin B_a$.

10. Lemma. Let $a \in \gamma$ and $h \in \mathbb{N}^{\gamma}$ be given such that h(a') = 0 for any $a' \in a$, $x \in X(h)$. Then $\triangle(x) \notin B_a$.

<u>Proof.</u> Let V be an open neighbourhood of x, b>a, $i \in \{1,...,h(b)\}$. Consider two cases:

(i) $\pi_{b,i}(V) \cap D = \emptyset$. Then card $\pi_{b,i}(V) = 2^{50}$.

(ii) π_{b.1}(V)∩D+Ø.

Then $\pi_{b,i}(V)$ contains a neighbourhood W of a point 2.3⁻ⁿ $\in X_b$ for a suitable n. Hence, card $\pi_{b,i}(V) \ge \text{card } W \ge \beta_{b,n} > \beta_a$.

Obviously card $V = \prod_{\substack{k \in \mathcal{T} \\ i=1}} \prod_{\substack{i=1 \\ i=1}} \text{card } \pi_{b,i}(V)$ and either card $V = (2^o)^{-n} < \beta_{a,1}$, or card $V > \beta_a$. Therefore, either card $V > \beta_a$ for any open neighbourhood V of V = V and V = V and V = V for some neighbourhood V = V and V = V and V = V for some neighbourhood V = V and V = V for some neighbourhood V = V and V = V for some neighbourhood V = V and V = V for some neighbourhood V = V and V = V for some neighbourhood V = V and V = V for some neighbourhood V = V and V = V for some neighbourhood V = V and V = V for some neighbourhood V = V and V = V for some neighbourhood V = V and V = V for some neighbourhood V = V and V = V for some neighbourhood V

11. Lemma. Let $f \in A$, $a \in \gamma$, $n \in N^+$, $x \in X(f)$. Then $\beta_{a,n} \in \mathcal{T}(x) \iff \exists j \in \{1, \dots, f(a)\}$ such that $\pi_{a,j}(x) = 2.3^{-n}$.

<u>Proof.</u> A. Suppose that $\pi_{a,j}(x) = 2.3^{-n}$. Let V be an arbitrary open neighbourhood of x; choose a positive integer p such that $iz_i \circ (z,x) \leq 3^{-p} \le V$. Define $v \in X(f)$ by the following formulas: $\pi_{a,j}(v) = 2.3^{-n}$ and for $(b,i) \neq (a,j)$ there is: $\pi_{b,i}(v) = \pi_{b,i}(x)$ if $(x) \circ p(\pi_{b,i}(x), x) \ge 3^{-p}$; $\pi_{b,i}(v) = (3^{-p}, 0)$ if

 $\parallel \pi_{b,1}(x) \parallel \leq 3^{-p}, \ \pi_{b,1}(v) = (r + 3^{-p}, \infty) \text{ if } \parallel \pi_{b,1}(x) \parallel > 3^{-p}$

and $0 < \phi_b(\pi_{b,1}(x),D) < 3^{-p}$ where $\pi_{b,1}(x) = (\|\pi_{b,1}(x)\|, \infty)$, $r = \max(D \cap [0, \|\pi_{b,1}(x)\|])$; $\pi_{b,1}(v) = (r + 3^{-p},0)$ if $\pi_{b,1}(x) = r \in D$, $r > 3^{-p}$.

Obviously, $\mathcal{G}_b(\mathcal{F}_{b,1}(v), \mathbb{D}) \geq 3^{-p-1}$ for any $(b,i) \neq (a,j)$ and $\mathcal{G}^{(v,x)} \leq 3^{-p}$ (hence, $v \in V$). Denote $A_f = A_f$ if f(a) > 1, $A_f = A_f \setminus \{a\}$ if f(a) = 1. By 6 and 8, $\triangle(v) = (2^{s_0})^{card} A_f \cap \beta_{a,n} = \beta_{a,n}$. Hence, $\beta_{a,n} \in \mathcal{T}(x)$.

B. Suppose that $\pi_{a,i}(x) \neq 2.3^{-n}$ for any $i \in \{1, ..., f(a)\}$. Denote M' = $\{i; \pi_{a,i}(x) \in D \setminus \{0\}\}$, M" = $\{i; \pi_{a,i}(x) = 0\}$, M = $\{1, ..., f(a)\} \setminus (M' \cup M'')$, $\varepsilon = \min (\{\frac{1}{2} \pi_{a,i}(x), i \in M'\} \cup \cup \{\phi_a(\pi_{a,i}(x), D); i \in M\} \cup \{3^{-n}\}\}$, U = $\{z; \phi(x, z) < \varepsilon\}$. Let $y \in U$ be an arbitrary point; denote $y_1 = (\pi_{b,i}(y))_{b < a, 1 \le i \le f(b)}$, $y_2 = (\pi_{a,i}(y))_{i \in M'}$, $y_3 = (\pi_{a,i}(y))_{i \in M'}$, $y_4 = (\pi_{a,i}(y))_{i \in M'}$, $y_5 = (\pi_{b,i}(y))_{b > a, 1 \le i \le f(b)}$.

By Lemmas 9 and 10, $\triangle(y_1) \neq \beta_{a,n}$, $\triangle(y_5) \neq \beta_{a,n}$. Obviously, $\triangle(y_4) = (2^{*0})^{\text{card M}} \neq \beta_{2,n}$.

If $i \in M'$ then either $\pi_{a,i}(y) = \pi_{a,i}(x) = 2 \cdot 3^{-m}$ (where m + n) and $\triangle(\pi_{a,i}(y)) = \beta_{a,m}$, or $\pi_{a,i}(y) \notin D$ and $\triangle(\pi_{a,i}(y)) = 2^{\infty}$. Observation 6 implies that $\triangle(y_2) = \max \{\triangle(\pi_{a,i}(y)); i \in M'\} + \beta_{a,n}$.

For $i \in M^n$ one must consider three cases:

- (i) $\pi_{a,i}(y) = 0$
- (ii) $\pi_{a,i}(y) = 2.3^{-m}$
- (iii) $\pi_{a,i}(y) \notin D$

In the case (i) there is $\triangle(\pi_{a,i}(y)) = \beta_a + \beta_{a,n}$; in the case (ii) there is $\triangle(\pi_{a,i}(y)) = \beta_{a,m} + \beta_{a,n}$ (since $\varphi(x,y) < 3^{-n}$ and $\pi_{a,i}(x) = 0$, there is m > n); in the case (iii) there is $\triangle(\pi_{a,i}(y)) = 2^{\infty}$. Consequently, one obtains by Observation

6 that $\triangle(y_3) + \beta_{a,n}$. According to 6, $\triangle(y) = \triangle(y_1) \cdot \triangle(y_2)$. $-\triangle(y_3) \cdot \triangle(y_4) \cdot \triangle(y_5) + \beta_{a,n}$. Hence, $\beta_{a,n} \notin \mathcal{C}(x)$. Q.E.D.

12. Denote $\widetilde{X(A)} = \{x \in X(A); \tau(x) \cap B = \emptyset\}$. Now, we can prove the following:

13. Lemma. If $f \in A$, $x \in X(f)$ then $x \in \widetilde{X(A)}$ iff for every $a \in \gamma$ and every $i \in \{1, ..., f(a)\}: \pi_{v,i}(x)$ is not in $D \setminus \{0\}$.

Proof follows from Lemma 11.

14. For every open $U \neq \emptyset$ define $F(U): \gamma \longrightarrow N$ by $F(U)(a) = \sup \{ \operatorname{card} (\gamma(y) \cap B_a) \} y \in U \}$.

Then for every $x \in X(A)$ define $F(x): \gamma \to N$ by $F(x)(a) = \min \{F(U)(a); U \text{ an open neighbourhood of } x\}$.

15. Lemma. $F(x)(a) = \operatorname{card} \{i; \pi_{a,i}(x) = 0\}$ for every $x \in \widetilde{X(A)}$,

Proof. Denote $J = \{i; \pi_{a,i}(x) = 0\}$, card J = k.

- a) Let U be an open neighbourhood of x, y \in U such that for any $j \in J$ there is $\pi_{a,j}(y) \in D \setminus \{0\}$ with $j \neq j' \Longrightarrow \pi_{a,j}(y) \neq \emptyset$ $+ \pi_{a,j}(y)$ and $\pi_{a,j}(y) \notin D$ for any $j \notin J$. By Lemma 11, card $(\tau(y) \cap B_a) = k$ and $F(U)(a) \geq k$. Therefore, $F(x)(a) \geq k$.
- b) On the other hand, denote $\varepsilon = \min \{ \wp_a(\pi_{a,j}(x), D) \}$ $j \in \{1, ..., f(a)\} \setminus J \}$. Let U be an open neighbourhood of x such that $U \subseteq \{z, \wp(z, x) < \varepsilon \}$, $y \in U$. Clearly, $\pi_{a,j}(y) \notin D$ for every $j \in \{1, ..., f(a)\} \setminus J$. By Lemma 11, card $(\pi(y) \cap B_a) \in C$ card $(\{\pi_{a,j}(y), i = 1, ..., f(a)\} \cap (D \setminus \{0\})) \in K$. Hence, $F(U)(a) \in K$ for arbitrary sufficiently small U and $F(x)(a) \in K$, too.

16. Lemma. If $x \in X(f) \cap \widetilde{X(A)}$ such that, for every $a \in \gamma$

and every $1 \le i \le f(a)$: $\pi_{a,i}(x)$ is equal to 0, then F(x) = f.

Proof follows firectly from Lemma 15.

17. Define $X(A)_{max} = \{x \in \widetilde{X(A)}; \exists U \text{ an open neighbourhood of } x \text{ such that for every } y \in \widetilde{X(A)} \cap (U \setminus \{x\}) \text{ there exists } a \in \gamma$ such that $F(y)(a) < F(x)(a)\}$.

18. Lemma. $X(A)_{max} = \{x \in \widetilde{X(A)}; \ \pi_{a,i}(x) = 0 \text{ for every } (a,i)\}.$

<u>Proof.</u> a) If $\pi_{a,1}(x) = 0$ for every (a,i) then for $U = \{z; (0,x) < 1\}$ and $y \in U \setminus \{x\}$ there exists a couple (a,i) such that $\pi_{a,1}(x) \neq 0$. By Lemma 15, F(y)(a) < F(x)(a). Hence, $x \in X(A)_{max}$.

b) Suppose that there exists a couple (a,i) such that $\pi_{a,i}(x) \neq 0$. Since $x \in \widetilde{X(A)}$, according to Lemma 13 $\pi_{a,i}(x) \neq 0$ and $\pi_{a,i}(x) = (u, \infty)$ with $u \in C \setminus D$. Since C has no isolated point, for any open neighbourhood U of x there exists $y \in U \setminus \{x\}$ such that $\pi_{a,i}(y) \neq D$ and for any $(a',i') \neq (a,i)$ there is $\pi_{a',i'}(y) = \pi_{a',i'}(x)$. One can see easily that $y \in \widetilde{X(A)}$ and F(y) = F(x). Here, $x \notin X(A)_{max}$.

19. Proposition. $A = \{F(x); x \in X(A)_{max}\}$.

Proof follows from Lemmas 16 and 18.

20. Corollary. If A = A then F(A) - F(A').

Proof follows directly from Proposition 19.

21. Before proving O-dimensionality of X(A) recall the following:

<u>Lemma</u>. For any point $c \in C$ such that $3^n c \in \mathbb{N}$ the set

 $\{d \in C; |d - c| \le 3^{-n-1}\}$ is equal to $\{d \in C; |d - c| < 2.3^{-n-1}\}.$

<u>Proof.</u> The construction of the Cantor set C implies that $3^n c \in \mathbb{N} \implies \mathbb{D} c + 3^{-n-1}$, $c + 2 \cdot 3^{-n-1} \mathbb{E} \cap C = \emptyset$, $\mathbb{D} c - 2 \cdot 3^{-n-1}$, $c - 3^{-n-1} \mathbb{E} \cap C = \emptyset$. Hence, $\{d \in C; |d - c| < 2 \cdot 3^{-n-1}\} = \{d \in C; |d - c| \le 3^{-n-1}\}$. Q.E.D.

22. Proposition. X(A) is a 0-dimensional space.

<u>Proof.</u> It suffices to prove that there exists a ε -locally finite clopen basis. For every $n \in \mathbb{N}$ put $P_n = \{x \in \mathbb{X}(A); 3^n \mid x_{a,i}(x) \mid \in \mathbb{N} \text{ for any } (a,i)\}, \ \mathfrak{B}_n = \{\{y, (x, x) \neq 3^{-n-1}\}; \ x \in \mathbb{R}\}.$

If x, z are distinct points of P_n then $g(x,z) \ge 3^{-n} > 2.3^{-n-1}$. Hence, \mathcal{B}_n is a discrete system. Lemma 21 implies that any element of \mathcal{B}_n is clopen.

Let U be open in $X(f) \subseteq X(A)$, $z \in U$, $n \in N$ such that $\{y: \varphi(y,z) < 3^{-n}\} \subseteq U$. For any $a \in \gamma$, $1 \le i \le f(a)$ define $x_{a,i} \in P_n$ such that $\varphi_a(x_{a,i}, \pi_{a,i}(z)) \le 3^{-n-1}$ ($3^n \| x_{a,i} \|$ is the closest integer to $3^n \| \pi_{a,i}(z) \|$). Denote by x the point of X(f) with $\pi'_{a,i}(x) = x_{a,i}$ for any $a \in \gamma$, $1 \le i \le f(a)$, $V_z = \{y; \varphi(y,x) \le i \le 3^{-n-1}\} \in \beta_n$. Obviously, $\{z\} \subseteq V_z \subseteq \{y; \varphi(y,z) < 3^{-n}\} \subseteq U$ and $x \in U$, $y \in U$.

Therefore, $\mathfrak{B} = \bigcup_{m \in \mathbb{N}} \mathfrak{B}_n$ is a 6-discrete clopen basis and $\mathbb{X}(A)$ is 0-dimensional. Q.E.D.

- 23. Corollary 20 and Proposition 22 finish the proof of Theorem.
- 24. Remark. In [1], sum-productive representations of ordered commutative semigroups are investigated. The above construction and results of [1] give immediately the following result:

For every ordered commutative semigroup $(S,+, \leq)$ there exists a collection $\{r(s), s \in S\}$ of complete metric 0-dimensional spaces such that the following conditions hold:

- (i) r(s + s') is isometric to r(s) r(s');
- (ii) r(s) is homeomorphic to r(s') iff s = s';
- (iii) r(s) is homeomorphic to a clopen subset of r(s') iff r(s) is isometric to a clopen subset of r(s'), and this is fulfilled iff $s \leq s'$.

References

- [1] J. ADÁMEK, V. KOUBEK: On representations of ordered commutive semigroups, Colloquia Math. Soc. J. Bolyai 20 (1976), 15-31.
- [2] B.A. EFIMOV: Ob odnož zadače de Groota i topologičeskož teoreme ramseevskogo tipa, Sibirsk. Mat. Ž. 11(1970), 1280-1290.
- [3] V. TRNKOVÁ: Productive representations of semigroups by pairs of structures, Comment. Math. Univ. Carolinae 18(1977), 383-391.
- [4] V. TRNKOVÁ: Isomorphism of products and representation of commutative semigroups, Colloquia Math. Soc. J. Bolyai 20(1976), North Holland 1979, 657-683.
- [5] V. TRNKOVÁ: Isomorphisms of sums of countable Boolean algebras, Proc. Amer. Math. Soc. 80(1980), 389-392.

Matematický ústav, Univerzita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia

(Oblatum 7.6. 1982)