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Abstract: Por every commutative semigroup (S,+) there
is constructed a collection {r(s)jseS3% of complete metric O-
dimensional spaces such that the following copditions hold:

(1) r(s + 8') is isometric to r(g)xr(s’)

(ii) r(s) is homeomorphic to r(s ) 1ff 8 = &
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Isomorphisms of products have been studied for varfous
algebraic, relational and topological structures One of
original problems was to find a topological space X which is
homeomorphic to 13 but not to 12. After solving this problem,
this question was investigated in special categories. A const-
ruction of an object X which is isomorphic to X2 but not to X2
is a special case of a representation of a commutative semi-
group by products in a category, investigated by V. Trnkovéd
and the participants of the Seminar on General Mathematical
Structures in Prague. A survey of this topic is given in [4].
Nevertheless, let us recall Trnkovd s result ([5]) that every
compact metric O-dimensional space X which is homeomorphic to

X3 is also homeomorphic to 12.
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The aim of this Paper is to prove the following:

Theorem, For any commutative semigroup (S,+) there exists
& collection {r(s);se 8% ot complete metriec O-dimensional spa-
ces such that the following conditions hold:

(1) r(s + 8°) 1s isometric to r(s)xr(s”)

(i1) r(s) is homeomorphic to r(s’) itf g = 8°

Remarks, 1, As a special case of Theorem we obtain a com-
Plete metric O-dimensional space X isometric to X3 but not ho-
meomorphic to 12.

2. The theorem stirengthens the Trnkovd ‘s result 3. from
[3]: the same theorem is proved in [3], except the fact that
the spaces r( 8) are O-dimensional, Nevertheless, the construc-
tion of O-dimensional spaces r(s) requires more subtle argumen-
tation,

I am indebted to V., Trnkovd for valuable suggestions and

reading the manuscript,

1. Conventions and notations. We shall use the symbol ~v
=————==0018 and notations

for a homeomorphism, =  for an isometry of spaces. Since the
construction needs also metrizability of infinite products, our
basic category C will be that of complete metric spaces with g
diameter <1 ang contractions (i.e, Lipschitz mappings with a
Lipschitz constant 41), This category has all products (deno-
ted by TT , or x for finite collections) and all coproducts
(denoted by 1L ), Actually, 1f I ig a get a.nd-{(xl_.gbb )i Le I}
is a collection of objects of C then LUI (xL. Sab) = (.,TJI xo’S")

where S”“xt)oeI’ (yL )‘_‘_I) = 8up 1 P.(x,,¥, ). Moreover, one can

see easily that the functor F:c —> TOP assigning to each metric
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space (X, @) a topological space with the topology induced by
5

;D » preserves finite products (and all coproducts).

2. Denote by N the additive semigroup of non-negative in-
tegers and by F% its ec-th power, i,e. the semigroup of all the
functions on o¢ with values in N, where the operation + is defi-
ned point-wise. exp N is the semigroup of its subsets with + de-
fined by

A+A " ={a+a"jaeh, a’cAr’}.

Denote by N* the set of all the positive integers.

By [4], any commutative semigroup S is isomorphic to a sub-

Jﬁ'o,card S

semigroup of exp N « Hence, for a representation of any
commutative semigroup by products of complete metric O-dimensio-
nal spaces, it is sufficient to construct for any subset A of
Js'o,ce.rd S
N a complete metric O-dimensional space X(A) such that
the following two conditions hold:

(1) X(A + A7) = X(A)=< X(A")

(i1) X(A)~ X(A") 122 A = A

Since the distributivity of finite products of objects of C
is fulfilled, it suffices - due to Trnkovéd s result ([4]) - to

.card S
construct for any function fe N e a complete metric O-di-
mensional space X(f) with a diameter £ 1 such that for every f,
£y card S . $°-0ard S
geN and A,A &N the following conditions hold:
(1) X(f + g) E X(£)=X(g)

R T T X(h)) is O-dimensional

LR
20
= ng.LE}st (akly X)) ~ 1,07‘—Lms (Jk'léLA’x(k))
iff A=4"

where lal‘, Z denotes the coproduct of 2% copies of Z,
2
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(Having constructed X(£) s satisfying (1)-(3) one can put

X(A) = ZM-::L IS(;J;LA Z(f)). Clearly, conditions (i) and (1i)
are satisfied.)
Trnkovd ‘s general method for constructing such X(f) s is

the following: find a collection -{Ia;ae ¥_.card S% of objects
o
Ko card S

of a given category such that for every A, A'C X the
following condition holds:
h(a)
(* ) 130. S (EIEIA O.G.J;-I-mﬂds xa ) ~
, T x€8)) yrp 4w a”,
N dands (gkly @efcards Ta )
Then one can define X(£) =  TT x2(8) and eastily

a € ¥, card S
check (1) and (3), Since arbitrary coproducts of O-dimensional
spaces in C are O-dimensional, but products of O-dimensional
spaces need not have this property, it will be necessary to pro-
ve O-dimensionality of spaces X( f), too.

3. Construction. Let Cn be the class of cardinal numbers.,

Denote by 2 the first ordinal with card = $°-card S. For e-
very a € * choose a set Ba = {‘(5& n;n€N+}QC_n such that the
’
following conditions hold:
¥ . ¥
2" = ﬂ’o,l‘ Pa,n <ﬂ‘a,m»l’ /35'1>(sup {Bysb<al)

where 3, = sup {ﬂb'n;nen"'E.

Denote 3™
9 & -1 2ag
B = SpBar Let C=T0,10N\ U, .0 ] 7oA

be the Cantor set (with the usual real-line metric),

Gy = £2.37, 3™*1Tnc, D = $2.3ne ¥*7 L { 0% (agein with

the usual metric,
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For every a € o define a metric space xa by glueing f3
a,n

coples of Gn to the point 2,32 o2 D (as shown in the picture).

ﬂa. 1
ﬁ, r——ﬁfa‘ﬁ—ﬂ 1 1l eeel
a,n 1 1 1 e e °
3 5 oee 3 .. Y ;
3-n+1 3-1.1-!-]: 3-n+1 ° ° ° . : i
° . 3 . . o '- Y 5
. e . v : " * : '.
. € . 2 P ’
. - 2 :
-n 2 2
0 ses 2.3. seee E] 3

More precisely, X = (—X-;, §°a) where

X, =, (0N 12.377) < B, )uD,

Pa(Xpy) = | x - y| whenever x,yecD,
Ix - yl if x,ycCy and < = (3

/Ix - 2,372 4 12,3™ - 2.3 &
\

+1ly - 2.3™
if xeC,, yeCy and n¥m orL# (3,

@allxyct)s(yy 3)) =

§>a((x,oo),y) =lx - 2.3 41y - 2,372 12 x€C, and ye D.

Denote || I :X,—>C by x|l = x whenever xeD, My, )l =¥

whenever (y,c)e X\ D.
One can check easily that every Ia is a complete metric

O-dimensional space with diam Xa = 1, It remains to prove (x )

and O-dimensionality of X(2) = T x(8) for every ten?.

- 719 -



4., Recall the definition of a dispersive character (cf.

[2]1): Let y be a point of a topological space; then a dispersi-
ve character A(y) = min {card Vs V 18 an open neighbourhood of
yi.

Using dispersive characters we can introduce the following:

5. Definition. Let x be a point of a topological space,
Then a dispersive type 7 (x) = M 114(y)syc Ut U an open neigh-

bourhood of x%.

6. Observation, If X, Y are topological spaces, xcX, ye ¥,

then A((x,y)) (in X xY) is equal to the product of A(x) (in X)
and A(y) (in Y),

Te For any f£: y —> N denote by L(f) the set {(a,1); a €y,
1€4l,...,2(a)i} . By the asgsociativity of products there is

= f(a) =
X(f) q‘”l;l'r X, (o.,i,)-gL({) X e For any (a,1) €L(f) denote

by o o, 4 the corresponding projection of X(f) onto xa.
’

8, Lemma. Let xe X(f) be given such that there exist > 0

with the following property: | llara 1(x)ll - 2.3 > 5 for any
’
(a,i)e L(f), ne N*,
£ card A
Then A(x) = (2 ©) where A, = {a;f(a)+0}3,
Proof, Any non-empty open set in Xa has cardinality at
£o &, card Af
least 2 °, Hence, A (x)>(2 °) . On the other hand,
— H,
card {ye X Qg 4(x),¥)<d}t = 2° for any ac A and
28" e, L ¥ card A
1eil,...,2(a)} and card {ye X(); @(x,y)<d? = (2°°) =

Q.E.D,

9. Lemma. Let ae 9 and geNa’ be given such that
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g(a’) = O for any a’z a. If xc X(g) then A(x) & B,.

Proof. By the conmstruction, card X, = f3b forany be 3.
Hence, card X(g) éb'.ga. Bp< [3&'1, A(x) < /5&'1, and therefore

A(x)¢ By, Q.E.D.

10. Lemma, Let a € y and heN? be given such that
h(a’) = 0 for any a’< a, x€X(h). Then A(x)4B,.

Proof. Let V be an open neighbourhood of x, b>a, i€ il,...
eessyh(b)}. Consider two cases:

(1) er,i(v)nD = g, -

Then card ry 4(V) = 2 L

(11) :"b,i(v)n D#@.

Then :rb'i(V) contains a neighbourhood W of a point 2.37%¢
€ X.b for a suitable n. PII:(I;SQ' card arb'i(v)z card W= ﬁ’b,n’ pa.
Obviously card V= TT ,T__T1

%, card Ay ey v
= (2 < ﬂa 1 OT card V>[3&. Therefore, either card V>
’

card Ty 1(V) and either card V =
]

> (ba for any open neighbourhood V of y and A (x) > {3&, or

card Vo = 27 for some neighbourhood Vo and A(x) < [Sa 1° In
’

both these cases A(x)¢Ba. Q.E.D,

11, Lerma. Let fe A, acy , neN', xeX(f). Then Ba,n€
€ T(x)&= 3 je {1,...,2(a)} such that o, s(x) = 2,377,

Proof, A. Suppose that =, d(x) = 2,3, Let V be an ar-
’
bitrary open neighbourhood of x; choose a positive integer p such
that {2; e(z,x)é3'p£§V. Define ve X(£f) by the following formu-
las: 'Jra'J(v) 2 2,32 and for (v,1) 4= (a,Jj) there is: er,i(v) =
= -P. — -
Tp,i(X) 1f @p(ury, 4(x),D)Z 375 ary 4(v) = (3775,0) if

oty g (N £ 375 oy ((v) = (x + 37P00) 12 Dlowy ()N > 37P
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and °<Sob( ﬂb’i(x)yn)‘< 3-p where er'i(x) - (“ J?’b'i(x)ﬂ QOC)’
o= max (DN Lo,y y(013)5 oy (v) = (r + 37P,0) 11
:n‘b’i(x) = reD, r>37P,

Obviously, Sab( Ty, 1(v) D)> 3-p-1 for any (b,i)+(a,j) and
E(Vsx)£ 3 “P (hence, ve V). Denote Ap = Ap if f(a)>1, A7 =

% card A

= AN\{al 1f f(a) = 1. By 6 and 8, A(v)-(2°) f°f3&n=
’

= ﬁa,n' Hence, [sa'nefc(x).

B. Suppose that ar_ ,(x)#2.3™ for eny 1€11,...,1(a)}.

Denote M” = {1; T, 1(x)e D\ {03}, M" = {1; :t'ra 4(x) = 0%,
M= {1,...,2(a)}\ (M'UM"), €= min ({5 5, 4(xX)siem’Fu
ui@al g ,1(X)sD); 1e MIUL3™), U = {25 e(xyz)<ed . Let ye
€U be an arbitrary point; denote yp = (:rr'b :'_(y))b<a ,1£142(b)
= (g 13 )ygeysr ¥4 = (g, 10N )geun » ¥4 = Corg,1(3)) gy
= (X, 1 50, 1290000

By Lemmas 9 and 10, A(yl)#:[&a n* A(y5)=t={3 ne Obvious-
1y, Alyy) = (20)cerd M & 3o -

If 1€ M then either Mg i(y) = I, i(x) = 2.3 (where
m:}:;) and Aar, 4(y)) = Ram® °F g 4(y)¢ D and alarg 4(3))=
= 2 ~, Observation 6 implies that A(y,) = max -{A(m‘ j_(y); ie
eM’y Rea

For ie M" one must consider three cases:

(1) o, 4y =0

(11) oy 4(3) = 2.3

(111) o, ;(3)¢D

In the case (1) there is A( :rra,i(y)) = [5&#—/33'11; in the
case (ii) there is A(Jra'i(y)) = ﬁa,m*ﬂa,n (since e (x,y) <

< 3™ ang T, i(x) 0, there is m>n); in the case (111) there

‘r,ll

is A( :n’a 1(¥)) = 2 9, Consequently, one obtains by Observation
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6 that A(y3) *pa,n' According to 6, A(y) = A(yl) . Alyy) .
- O35 8(3,) A(y5) F B g o Hence, By ¢ w(x).  Q.E.D.

12, Denote f(f) ={xeX(A); T(x)nB = @i,

Now, we can prove the following:

~
13, Lemma, If f€ A, x€X(f) then xeX(A) 1ff for every
a €y and every 16{1,...,!(5)}:3ry'i(x) is not in D\{ 0%,

Proof follows from Lemma 1ll,

14, For every open U@ define F(U): 3y —> N by F(U)(a) =
= sup {card (@ (y)nB,)syeUf.

Then for every xeﬁ define F(x): 3 —> N by F(x)(a) =
= min §F(U)(a); U an open neighbourhood of xf.

15, Lemma. PF(x)(a) = card {1301, 4(x) = 0% for every xc
—~ .
€ X(A).

Proof. Denote J = {i; :"a,i(x) = 0}, card J = k.

a) Let U be an open neighbourhood of X, ye U such that for
any je J there is Jr’a,J(y)el)\-[O} with 43 = :wa’d(y) +
+3r,,3.(y) and ara'J(y)¢n for any j4J. By Lemma 11,
card (t(y)(\Ba) = k and F(U)(a)= k. Therefore, F(x)(a)= k.

b) On the other hand, denote € = min 1p gl “a.j(x)'n)‘
Jefl,.e.,2(a)t\J % Let U be an open neighbourhood of x such
that Uciz; @ (2,x) < €%, yeU, Clearly, ara'j(y)¢D for every
jefl,ees,2(a)3INJ. By Lemma 11, card (= (y)n Ba) £
£ card (-[J"l’a’i(y); 1= 1,e00,£(a)3N(D\N103)) £k, Hence,
F(U)(a) £k for arbitrary sufficiently small U and F(x)(a) <k,

too.

16, Lemma., If xex(f)r\m) guch that, for every a € 3
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and every 141 <f(a): :1!"a i(x) is equal to O, then F(x) = f,
’

Proof follows firectly from Lemme 15.

17, Define X(A)max ={xeX(A); 3U an opem neighbourhood
of x such that for every ye X(A)Nn (U\{ x?%) there exists a e ¥
such that F(y)(a)< F(x)(a)}.

18, Lemma. X(A) .. ={xe€ iT/A); :n"a.i(x) = 0 for every
(a,1)%.

Proof. a) If :Ira'i(x) = 0 for every (a,1) then for U =
={z; ©(x,2)<1% and ye U\{x3 there exists a couple (a,i) such
that xa’i(x)ap:o. By Lemma 15, F(y)(a)< F(x)(a). Hence,
xex(A)max.

b) Suppose that there exists a couple (a,i) such that
ara'i(x):#o. Since xe¢ iT/A), according to Lemma 13 ’ra,i(x)¢D
and :tra'i(x) = (u,ec) with ueC\ D, Since C has no isolated
point, for any open neighbourhood U of x there exists yeUNix3
such that :ra’i(y)én and for eny (a’,1")#(a,1) there is
o Y (y) = Jra.’,i’(x)'

One can see easily that ye X(A) and F(y) = F(x). Herce,
¢ X(A) e Q.E.D.

19. Proposition. A = {F(x);xeX(A) .

Proof follows from Lemmas 16 and 18,

20, Corollary, If A%A’ then F(A)-vF(A").

Proof follows directly from Proposi tion 19,

21, Before proving O-dimensionality of X(A) recall the
following:

Lemma, For any point c€ C such that 3"ceN the set
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fdec; 1d - cl£3™01} 15 equal to fdeC; Jd - cl< 2,371,

Proof. The construction of the Cantor set C implies that
MeeN=Tc + 3‘“’1, ¢ + 2,3 ~c =g,
Je - 2,32 ¢ - 3?1~ ¢ = @, Hence, deC; ld - ci <
<2.371y 2 fdec; la - el 2313, Q.E.D.

22, Proposition., X(A) is & O-dimensional spdce,

Proof. It suffices to prove that there exlsts a & -local-
ly tinite clopen basis. For every neN put P = {xeX(A);
P hag y(Ole ¥ for any (a,)}, B, ={{yiErm£3™; xe
€P %

If x, z ere distinct points of P, then Sb(x,z)zfz1 >
» 2,371, Hence, B 1is a discrete system. Lemma 21 implies
that any element of .'Bn is clopen.

Let U be open in X(f)cX(A), zeU, neN such that
{y: go(y,z)< 3™™}cU, For any a e y , 1£1i< f(a)define %1€ P,

-n-1 n
such that Qa(xa.,i’ :Ira'i(z))é 3 (3 ||xa.il\ is the closest
integer to 3% X, 1(z) | o Denote by x the point of X(f) with
’

dr'a’i(x) =X, 4 forenyaey , 1£1i<1(a), V, ={ys @(y,x) £
< 3-n-1§ el ne Obviously, {z'}gvzg{y; gu(y,z)< 3™ < U and
wen's = U

Therefore, 'm,L'e)N:Bn is a & -discrete clopen baslis and
X(A) is O-dimensional. Q.E.D,

23. Corollary 20 end Proposition 22 finish the proof of

Theorem,

24, Remark, In [1], sum-productive representations of or-
dered commutative semigroups are investigated. The sbove const-

ruction and results of [1] give immediately the following result:
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ists

For every ordered commitative semigroup (S,4, £) there ex-

a collection {r(s)js¢ St ot complete metric O-dimensional

spaces such that the following conditions hold:

(1) r(s +8°) is isometric to r(s) r(s’);
(i1) r(s) is homeomorphic to r(s’) iff s = s’;
(1i1) r(s) is homeomorphic to a clopen subset of r(s’) 1¢

r(s) is isometric to a clopen subset of r(s”), and this 1s ful-
filled 1ff s<3s”,

(11

[2)

[3)]

[4]

L5]
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