

Werk

Label: Article Jahr: 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log61

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23,4 (1982)

THE INTERIOR REGULARITY AND THE LIOUVILLE PROPERTY FOR THE QUASILINEAR PARABOLIC SYSTEMS O. JOHN

Abstract: It is proved that the Liouville property of parabolic quasilinear system - i.e. the fact that each bounded weak solution in Rⁿ⁺¹ is constant - implies the C^{0.4}-regularity of all bounded weak solutions in arbitrary domain. Similar results for quasilinear elliptic systems were established in [3] - [5].

Key words: Quasilinear parabolic system, interior regularity, parabolic Liouville property.

Classification: 35K55

Denote $z = (t,x) = (t,x_1,...,x_n) \in \mathbb{R}^{n+1}$ and let $u = (u^1,u^2,...,u^m)$ be a vector function. We consider the system

(1)
$$\frac{\partial \mathbf{u}^{\mathbf{i}}}{\partial \mathbf{t}} - \frac{\partial}{\partial \mathbf{x}_{i}} \left(\mathbf{a}_{\mathbf{i}\mathbf{j}}^{\alpha\beta}(\mathbf{u}) \frac{\partial \mathbf{u}^{\mathbf{j}}}{\partial \mathbf{x}_{\alpha}} \right) = 0, \ \mathbf{i} = 1, \dots, m,$$

which we shall write for the sake of brevity as

(2)
$$u_t - div_x(A(u)D_xu) = 0.$$

The coefficients $\mathbf{a}_{\mathbf{i}\mathbf{j}}^{\mathcal{L}\beta}$ are supposed to be continuous on $\mathbf{R}^{\mathbf{m}}$ and

(3)
$$(A(u)\eta, \eta) = a_{ij}^{\alpha\beta}(u)\eta_{\alpha}^{i}\eta_{\beta}^{j} > 0 \text{ for all } \eta \neq 0, u \in \mathbb{R}^{m}.$$

In what follows we shall write for the vector function $u = \{u^{\overset{1}{1}}\}_{i=1}^{m} \quad u \in L_{2}(\mathbb{Q}) \text{ instead of } u^{\overset{1}{1}} \in (L_{2}\mathbb{Q}), \text{ } i = 1, \ldots, m.$ Let $\mathbb{Q} \subset \mathbb{R}^{n+1}$ be a domain. not necessarily bounded. We

say that the function $u \in W_{2,loc}^{0,1}(Q)$ is a weak solution of the system (1) in the domain Q if for each $\varphi \in \mathcal{D}$ (Q) we have

(4)
$$\int_{Q} \left[u \varphi_{t} - A(u) D_{x} D_{x} \varphi \right] dz = 0.$$

(The space $W_{2,loc}^{\circ,1}(Q)$ is the linear set of all functions u such that $u^{\hat{1}}$ and $D_{x}u^{\hat{1}}$ are in $L_{2,loc}(Q)$ for all $i=1,\ldots,m$. On each $Q'\subset Q$, Q' bounded, the seminorm

$$\|u\|_{0,1,Q'} = \|u\|_{L_2(Q')} + \|D_x u\|_{L_2(Q')}$$

can be introduced for all $u \in W_{2,loc}^{0,1}(Q)$.

The system (1) is said to be <u>regular in a domain</u> Q if each weak solution u of (1) in Q which is bounded belongs to $C^{0,\alpha/2,\alpha}(Q)$.

The space $C^{0,\infty/2,\infty}(Q)$ is the linear set of all functions continuous on Q for which on each compact $Q'\subset C$ Q the expression $\sup\left\{\frac{|u(t,x)-u(t',x')|}{|t-t'|^{\gamma/2}+|x-x'|^{\alpha}};\;(t,x)\in Q',\;(t',x')\in Q',\;(t,x)\mp(t',x')\right\}$ is finite.

Finally, we say that the system (1) has parabolic Liouville $\frac{1}{2}$ property if for each weak solution u of (1) in the whole \mathbb{R}^{n+1} holds the implication

(5) $\|u\|_{L_{\infty}(\mathbb{R}^{n+1})} < \infty \implies u$ is a constant vector function.

Theorem 1. Let the system (1) have parabolic Liouville property. Then it is regular in each domain $Q \subset \mathbb{R}^{n+1}$.

Proof. Denote for R > 0, $z_0 \in R^{n+1}$

(6)
$$Q(z_0,R) = (t_0 - R^2, t_0 + R^2) \times B(x_0,R),$$

where $B(x_0,R)$ is n-dimensional ball in R^n with the radius R and

the center \mathbf{x}_0 . Denote further by $\mathbf{u}_{\mathbf{z}_0,R}$ the integral mean value

(6')
$$u_{z_0,R} = mes^{-1} Q(z_0,R) \int_{Q(z_0,R)} u(z)dz$$
.

As it was proved in [1], if for the weak solution u of (1) holds in some point $\mathbf{z}_0 \in Q$ that

(7)
$$\lim_{R \to O_{+}} \inf \left[R^{-n-2} \int_{Q(Z_{o},R)} |u(z) - u_{Z_{o},R}|^{2} dz \right] = 0,$$

then there exists $Q(z_0, \emptyset)$ such that $u \in C^{0,\alpha/2,\infty}Q(z_0,\emptyset)$. (The points for which (7) holds are called the regular points of the weak solution.)

So we want to prove that for each bounded weak solution u of (1) the condition (7) is satisfied in all points $\mathbf{z_0} \in Q_\bullet$

Let Q, u and z_0 be fixed, $Q(z_0,R) \subset Q$. Substitute

(8)
$$\tau = \frac{t - t_o}{R^2}$$
, $\xi = \frac{x - x_o}{R}$, $u_R(\tau, \xi) = u(t_o + R^2\tau, x_o + R\xi)$.

For an arbitrary constant vector ϕ , we can transform

(9)
$$R^{-n-2} \int_{Q(z_o, R)} |u(z) - u_{z_o, R}|^2 dz \le$$

$$\le R^{-n-2} \int_{Q(z_o, R)} |u(z) - \phi|^2 dz =$$

$$= \int_{Q(z_o, R)} |u(z) - \phi|^2 dz d\xi .$$

(In the first inequality we used the fact that the functional $I(\varphi) = \inf_{Q(Z_Q,R)} |u(z) - \varphi|^2 dz$ attains its minimum in the point $\varphi = u_{Z_Q,R}$.)

It is easy to see from (9) and (7) that $\mathbf{z_o}$ is a regular point of u if one can find a subsequence $\{u_{R_n}\}$ $(R_n\to 0)$ of

{uR} such that

(10)
$$u_{R_n} \rightarrow p \text{ in } L_2(Q(0,1)),$$

(11) p is a constant vector function.

To prove (10) and (11) we return to the system (1). Substituting into (4) for t, x and u from (8), we obtain that $u_R(\tau, \xi)$ solves the following system:

(12)
$$\int_{(G)_R} [u_R \varphi_{\varepsilon} - A(u_R) D_{\varepsilon} u_R D_{\varepsilon} \varphi] d\varepsilon d\varepsilon = 0.$$

Here $(Q)_R$ is the image of Q in the transformation (8).

For $R \to 0+ (Q)_R$ expands to the whole R^{n+1} , so that if we choose some fixed K > 0, then $Q(0,K) \subset \subset (Q)_R$ for all R smaller than some R(K). So, choosing φ with the support lying in Q(0,K), we can see that each u_R solves the system

(13)
$$\int_{Q(O,K)} [u_R \varphi_{\tau} - A(u_R) D_{\xi} u_R D_{\xi} \varphi] d\tau d\xi = 0,$$
if only $R < R(K)$.

Writing now in (13)

$$A_R(\tau, \xi) = A(u_R(\tau, \xi)), R < R(K)$$

we can see immediately that we can interpret (13) as a class of the linear parabolic systems with the bounded and measurable coefficients. Because of both the estimate

$$\| \mathbf{u}_{\mathbf{R}} \|_{\mathbf{L}_{\infty}(\mathbb{Q}(0,K))} \stackrel{\leq}{=} \| \mathbf{u} \|_{\mathbf{L}_{\infty}(\mathbb{Q})}$$

and the continuity of A(u) we can deduce that the coefficients A_R are equi-bounded and that the corresponding systems have the same constant $\mathscr T$ of ellipticity:

(The constant γ as well as the upper bound of $|A_R|$ depend only on $\|u\|_{L_{\infty}(Q)^{\bullet}}$)

Using the lemmas 4 and 5 from [2] we obtain

(14)
$$\|\|\mathbf{u}_{\mathbf{R}}\|\|_{\mathbf{W}_{2}^{1/2},\mathbf{1}(\mathbb{Q}(0,\mathbb{K}/2))} \leq c \|\mathbf{u}_{\mathbf{R}}\|_{\mathbf{L}_{2}(\mathbb{Q}(0,\mathbb{K}))} \leq$$

$$\leq c^*(K, \|u\|_{L_{\infty}(Q(0,K))}),$$

where $W_2^{1/2,1}(Q(0,R))$ is a space of all measurable on Q(0,R) functions w for which the expression $\| \| \mathbf{w} \| \|_{2^{1/2,1}(Q(0,R))}$

$$= \|\mathbf{w}\|_{\mathbf{L}_{2}(\mathbb{Q}(0,\mathbb{R}))} + \|\mathbf{D}_{\mathbf{x}}^{\mathbf{w}}\|_{\mathbf{L}_{2}(\mathbb{Q}(0,\mathbb{R}))} + \\ + \int_{\mathbb{B}(0,\mathbb{R})} \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \frac{|\mathbf{u}(\mathbf{t},\mathbf{x}) - \mathbf{u}(\mathbf{x},\mathbf{s})|^{2}}{(\mathbf{t} - \mathbf{s})^{2}} dtdsdx$$

is finite.

Because of the compactness of the imbedding of $W_2^{1/2,1}$ into L_2 it follows from (14) that we can choose the subsequence $\{u_n\} = \{u_R\}$ for which

$$u_n \rightarrow p \text{ in } L_2(Q(0,K/2))$$
 $D_X u_n \rightarrow D_X p \text{ in } L_2(Q(0,K/2)),$

 $u_n \rightarrow p$ almost everywhere in Q(0,K/2).

Using the diagonal method (enlarging Q(0,K/2)) we reach the subsequence $\{u_n\} = \{u_n\}$ of $\{u_n\}$ with the following properties:

$$\begin{array}{lll} u_n &\longrightarrow & p \text{ almost everywhere on } R^{n+1}, \\ u_n &\longrightarrow & p \text{ in each } L_2(\Omega), \ \Omega \text{ is bounded in } R^{n+1}, \\ & \mathbb{D}_{\mathbf{x}} u_n &\longrightarrow & \mathbb{D}p \text{ in each } L_2(\Omega), \ \Omega \text{ is bounded in } R^{n+1}. \end{array}$$

From here it follows - after passing to the limit in (12) - that p is a weak solution of (1) in Rⁿ⁺¹, so that p is a constant vector function because of Liouville parabolic property.

From (9) we get, putting $\phi = p$ and $R = R_n$, that

$$\lim_{n\to\infty} R^{-n-2} \int_{\Omega(z_0,R_n)} |u(z) - u_{z_0,R_n}|^2 dz = 0.$$

From here it follows immediately (7), q.e.d.

References

- [1] M. GIAQUINTA, M. STRUWE: On the partial regularity of weak solutions of nonlinear parabolic systems, Universität Bonn, Preprint No. 455, 1981.
- [2] M. GIAQUINTA, E. GIUSTI: Partial regularity for the solutions to nonlinear parabolic systems, Annali di Matematica Pura ed Applicata 97(1973), 253-266.
- [3] M. GIAQUINTA, J. NEČAS: On the regularity of weak solutions to nonlinear elliptic systems via Liouville's type property, Comment. Math. Univ. Carolinae 20 (1979), 111-121.
- [4] M. GIAQUINTA, J. NEČAS: On the regularity of weak solutions to nonlinear elliptic systems of partial differential equations, J. reine angew. Math. 316(1980), 140-159.
- [5] M. GIAQUINTA, J. NEČAS, O. JOHN and J. STARÁ: On the regularity up to the boundary for second order non-linear elliptic systems, Pacific J. of Math. 99 (1982), 1-17.

Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia

(Ohlatum 21.6. 1982)