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THE RANGES OF NONLINEAR OPERATORS
OF THE POLYNOMIAL TYPE
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Abstract: In this paper we prove the existence results
for the equation Au + Su = f, where A is a polynomial operator
on a reflexive Banach space, S is a strongly continuous nonli-
nearity.

Key words: Polynomial operators, perturbations, strong
subasymptote.

Classification: 4TH15

1. Introduction., J. Frehse investigated a class of non-
linear functional equations and nonlinear operators of polyno-
mial type (see e.g. [1]). The ranges of these operators are
closed linear subspaces with a finite codimension and the equ-
ation
(1.1) Au = f
has at least one solution if f satisfies the Fredholm conditi-
on., Further, J. Frehse deals with the solvability of the equae-
tion
(1.2) Au + Su = f,
where S is the Landesman-Lazer type nonlinearity (see e.g.[2]).

This paper continues, in some sense, the works [1],[2] and
deals with the solvability of the equation (1l.2) in section 2,
where S is "subpolynomial-type" nonlinearity. In section 3 the

abstract theorems are applied to the examples of polynomial
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operators, for example, to the problem
(A=2) [(Au = 2Au) + (Au - 2uw)3] +
+|ul°‘~signu =fin 0O,
u=0on 95 .
There are also presented results concerning the 80lvability
of (1.2) in section 4, where the operator S has a vanishing
strong subasymptote, For example, there is considered the pro-
blem
A 5 u
4 (A-2) [(Au - Au)® + (Au - A w3, Tt

u =0 onof).
The proof which is published in [5], is enalogous to that con-
tained in the papers [31,[4] where equations with linear non-

invertible operators in the main part are considered,

2. Abstract theorems. Ve shall investigate continuous

maps A:B~—>B* where B is a real reflexive Banach space with g
norm I+l , B* i itg dual space. We consider following condi
tions:
(2.1) There exists aZ 0 such that it holds
(1) 1f 1im sup t7%|< A(u+tv),v /< + co
t>+o0
then {A(u+tv)v) = <Au,v) whenever te R, u,ve B,
(ii) 1f 1im sup +~2| <ACtw), v < + oo
t>+oo
then <A(tw),v) = <A(0),v)> whenever teR, v,weB,
(2.2) 1¢f u,veB, P(t) = <CA(u+tv),u+tv) and
(1) 1m inf t71g(t) 20,
t>+ o0 ]
bl t7 @
(i) ti_r,nfitoxf P(t)<+ o0,
then lim ¢~ t) = o,
ta>+oo @( )

Any continuous operator A satisfying conditions (2.1) and

(2.2) will be said a-polynomial,

- 672 -



An operator A satisfying

(2.3) 1im inf lu-v |l '1<Au—Av,u-v>; 0 for each veB
el 00

will be called the asymptotically monotone operator,
(2.,4) There exist constants K,c>0, p>1 and a finite dimen-
sional subspace VC B with & bounded linear projection Q:B —> V
such that

<Au,u>Z cllull P - KllQull ® - X whenever ue B,

2.5, Definition. A continuous operator A:B —> B* is said regu-
lar if the variational inequality

{Au-f,u-v>£ 0, veK,
has a solution uée K for any bounded closed convex set KC B and

for every t e B*,
The main result of Frehse’s work [1] is as follows.

2.6, Theorem. Let A:B—> B* be a regular operator satisfying
conditions (2.1)(i) with a = 0, (2.2)-(2.4) and let A(O) = O,
Then the equation Au = f has at least one solution if and only
if 2L (RGADT .

Moreover, dim R(A)‘L £ dim V< + cO.

We shall use the next lemma in proofs of the following

theorems.

2.7. Lemma. Let A:B—> B* be an asymptotically monotone a-po-
lynomial operator, A(0) = O, Suppose that for some ve B there
exist constants J, C, KZ 0 such that the ineguality

(2.8) <Aw,vY£C + Kl wl®

holds for every we B. If a Z o  then v.1R(A).

Proof. The inequality (2.8) implies {A(w+tv),v> £ C +

J
+ XK w+tvll® and from the asymptotical monotonicity of the
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operator A (i.e. l'iét'n_)iéxof |t|'1<A(w+tv) - Aw,tv)> Z 0) we ob-
tain (A(w+tv),v)> 2 < Aw,v> - € for every tZ ¢  with some t,> 0,
€ > 0. Together with the supposition (2.8) and the condition
(2.1) we have

(2.9) CA(w+tv),v) = {Aw,v) for every t& R,

Using the inequelity lim int 171 CA(waty) = A(2w),-witv) Z O
we get that ].Iiléx:z_)ailg lt|'1<A(w+tv) yW) £ K(w) with some constant
K(w). It yields together with (2.9') 1':5:‘1:2‘1,)0 H:l"lqa(t)<+ 0 3
where @ (t) = {A(w+tv),w+tv) . From conditions (2.2),(2.3),
A(O) = 0 it follows that

(2.10) um t71g(t) = o,
It1>+c0

Let sc R be fixed. It is obvious that
Um inf (4171 CA(waty) = ACew),(1 - s)wetv) Z 0
It +00

and this together with (2.9) yields

lim inf [£)71[(1-8) @ () + 8 CAw, v = <Asw), (1-8)w+tv>] 2 0.
Itl=>+c0

According to this fact and with respect to the condition (2,10)
we have 8 (Aw,v) - {A(8W),v> 2 0, -8 <Aw,v) + {A(sw),v>Z 0 and
(2.11) 8 (Aw,v> = <{A(ew),v> , BER.

If a<1 then 04 d'< 1 and as s <Aw,v> 4C + Klsl® |\ w )
we get {Aw,v> = O, taking the limits 8 — * 0 . This completes
the proof for a<1.,

Let aZ1. There exists 4% > 0 such that [Auli£1 + | AC0)| =
= 1 for every ueB, lull £ . The inequality

{Aw,v) = L_;l(A(ﬁ%r-ﬁ YoVD 2 - '—[;l hvll, w#o,

is an immediate consequence of (2.11). Therefore, there exists
the constant L> 0 such that {Aw,v>Z -L lwl, weB. Using the
inequality (2.8) and the fact that aZ1 we obtain
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1im sup t™2| <A(tw),v>|< + o0 .
t>+00
From (2.1) we get {Aw,v> = {A(0),v> = O, It means that v.R(A)
and the proof of the lemma is complete.
Let S:B —> B¥ be an operator satisfying conditions
(2.12)  hsull g+ lul’, «, B,02 0,

(2.13) there exist constants G,H>O such that the inequality

lim inf liu, Il "1 <¢su, - Swyu, - w)>Z -G - H lwﬁ‘;
Kaw, W5+ 00 i i i

is fulfilled for every we B,

2,14, Definition. Let V be a closed linear subspace of B,

V.=4ueV, lull4 rf{. A mapping ¥:V;—> R will be said a
strong subasymptote of the operator S with respect to V if

(2.15)  ¥(2)£1im int < Su,, lu, ) “Lu,-w)> , we B,
2>+ J J J

holds for any sequence {uj}t'jo;’l such that "“;j l— +c0 and
|lujll '1ud——\ z (i.e. weakly) for j — + 0 , where z+40, z€V.
2,16, Theorem. Let A,S:B —>B* be continuous operators with
the following properties
(1) A is an asymptotically monotone a~polynomial opera-
tor, A(O0) = O and A satisfies (2.4),
(1i) S satisfies (2.12),(2.13) and p>1 +d°, aZ J,
(11i1) A + S is a regular operator,
It ’Y:(R(A)L )1--> R is a strong subasymptote of the operator
S with respect to R(A)L and if
(2.17) <f,z><V¥(2) for every ze(R(A)‘L )1, z#0,

then the equation (1.2) has at least one solution.

Proof. Let us suppose that the equation is not solvable

and let u, be the solution of the variational inequality
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(2.18) {Au + Su-f,u-w)< 0, we B,

Observe that u.e aBr and therefore || ur[] = r. Choose a sequen-

ce {r. 1'% 80 that lu, 11y g weakly in B, According to
1’121 I'i !'i

(2.18) with w = 0 and in view of the growth of S (gee (2.12))
we get the inequality (Aur My, £ L llur ) 1+ for 12 1, with
i h i

some positive constant L., Since P>1 +J° we obtain from (2.4)
that 1im inf lqQu |\ P u_ | ‘Pg§>o. The fact that dim R(Q)<
1 >+o0 Ty Ty 1
< +00 implies Q(uri Ilur N™)— Qz in B for 1> + oo and
i
ez Il >0, therefore z340,
We claim z L R(A), Observe that

-1 -
1im int Iluriu <Auri - Aw,uri -w>Zo,

i>+c0
lim inf lu, | ~1qg - ay -5u_ ,u, -w>Zo
i>+e0 Ty Ty Ty’ Ty
and therefore
(2.19) Mo infllu, 1 70¢e 2 su - awmu. - w> Zo.
i2>+c0 Ty Ty Ty

From (2.13) we have
Un anfllu, 171<2 - aw - Swyu, - wd>Z g - g jwS
i>+o00 Ty Ty

and this gives the estimate

Um infCotwpu fu, 1732 g - 5wy - (cc+pBlwn?dy -
i>4+0 Ty Ty
-I<f,z>l .
Consequently, {Aw,z>% G + {2,201 + ¢ + (B+H) lwl¥ ana the
Lemma 2,7 implies z1R(A),
Observe that the inequality (2,19) yields

- - -1 - z
(2,27 - {Aw, 2 1ﬁ1n°§<3uri, "“ri" (uri w)) Z o,

As ¥ is the strong subasymptote of the operator S we get
{£,27 = ¥(z)2 0, which is the contradiction with (2.17) and

the proof is complete,
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2,20, Proposition. The condition (2,17) is necessary for the
solvability of (1.2), if<Su,z?> < ¥ (z) for every uc B, 240,
z € (R(A)L),.

Proof. If Au + Su = £ then {f,zY>=<Su,z” < ¥(z) for
ze (R()L),.

In the case d < 1, the strong subasymptote of the opera-

tor S can be replaced by more verifiable conditions:

-1
(2.21) 1im inf lu, li ™ <Su, -~ Sw,,u, - w,> 2 -G
nuq'll-,-'—oo i i 1074 i
+ 00

for every bounded sequence {w.§, ..
1" 1i=1

(2.22) For every ze R(J\)'L s 2+0, there exist t e R, v,€ B such
that (S(tzz + vz),z> > G, where G is the constant from (2.,21).

(2.23) 1lim :I.nf(S(tz1 +V),-2,> £ <S(tz + V),-2?
19+ o0
holds for any te R, ve B and any sequence {zi§+iq=olc B, zZy —12

weakly for 1i— +c0 , zeR(A)‘L » 2§0,

A strongly continuous operator S satisfies the condition (2.23).

2.24, Theorem., Let A,S:B—> B* be continuous operators with
the following properties

(1) A is an asymptotically monotone a-polynomial operator
satisfying (2.4), A(O) = O,

(i1) S satisfies (2.12),(2.,21)-(2.23) and p>1 +d , aZd,
d'<1,

(iii) A + S is a regular operator.

Then the equation Au + Su = O has at least one solution.

Proof. The condition (2.21) implies (2.13). Let us suppo-
se that the equation Au + Su = 0 is not solvable. Analogously

as in the proof of Theorem 2.16 there exists a sequence
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fu 1%, lu l— +oo ,llu. -1, —~ z weakly in B for
Ty i=1 Ty T b )

i1— +o00, zc R(A)4 y Z2%0, a.nd(Aur + Su, Uy, = wDZ0 for
: 1 i
every we Br o As the operator S satisfies (2.,21) and (2.22) we
i

have
-GS Um dnt il | "Ies(su flu gL, - Su
T iove Ty <8( zry " Ury z) T’

tu, (lu I|'1+v-u ) =
L z Ty

= lm inf <S(tu llu | =1, 4 -Su, ,eu_ fu_ I =1
i>%veo ( z'ry Ty z) ri’ uri Ty >
because o < 1, The operator A + S 1s regular and therefore we

get {Au_ + Su_ ,-u >Z 0 and
Ty L
lim inf {(S(t u_ |l l"1+v) +Au, ,-u flu, | "1y -G,
ivvw ETy Uy z S
Further, A is asymptotically monotone, e.g,

Um inf<-Au_ ,ou_ flu_ =13z,
iv+@ %i' Ty r:l_' 4
and

im inf (S(tu_ flu. =1 4 “u, lu || -1y2 g,
15V St vy A )

From (2.23) we obtain (S(tzz + vz),z>é G, which is the contra-
diction with (2.,22),

3. Examples., Let P R°*_5 R, ja 142ye.4,8, be polynomi-
als satisfying the following conditions (with C,K,c>0)

(3:1)  I2i(§ IS0 + 161 Py tor gvery §  B®,

(3.2) g PJ(g)SJ;c|?|p~K for every ¢ e R®,

* Qﬁi\p

(3.3) 321 (By(g) - By )) (g4 - M3)Z0 for all ¢, 5 eR®,
Let Qc RN be a bounded domain with a smooth boundary and let
V= WEP(0 ) Wo'P(Q), p>1. We define

- 678 -



(
byt = B (F1 ¥l (0)0%), 3 = 1,...,8,
for every ue V where agg)c c®(N) (rl,lqlém, j = 1,...

o.o's)o Let

2m
Inl] gnzm('l)m “f—fl)(" ?r+q‘-?°"§' v 3 = 1yeee,ys,

hold with some o« > O for every Se RN. Let us define the
operator A:V —> v* by

S
{Au,v) = ’}._:21 ‘/L:J. Pj(Llu""'I‘su) Ljv, vevV.

Using the Theorem 2.6, we see that the equation Au = £
is solveble if (£ - A(0))1 (R(A) =~ A(()))‘L « Let us remark that
for s = 1 it is possible to show: if we consider the operator

A:V/Ker[L1] — (V/Ker[LlJ )* then this result follows from the
theory of monotone operators and (R(A) - AC0))E = Ker[L]_J -

Let the function 9 be continuous, odd, increasing,
m @(t) = +o eand l@(t)|£ & +B1t19, teR, with some
t_)*m(? ) @ ) F ’ ]
Z.E. d > 0, Let 2np>N, We define the operator S:V—> v* by

{Su,v> = fn @ (u) v, vev.
We note that the inequality (2.12) holds with some constants

&Ly A o Let us assume the conditions

-1
. 1im ot t = + 00
(3.4) dn sup g(ot) Lg(t)) 7 ()<
for every « Z 1, where y 1is a continuous function with

i, Ue) - 1

(3.5) measfl > 2 meas {x & Q ;z(x) = 0}%
for every ze (R(A) - A(O))‘L , 840,

3.6, Proposition. The mapping ¥:((R(A) = A(O))J‘ )1—-—>{K3,

where K is a real number, is a strong subasymptote of the
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operator S defined above with respect to (R(A) - A(O))—L

Proof. We assume that A(0) = 0 and that for a sequence
{fu }+ =1C€V 1t 1s llu s o © , (u -w) llunll —> z weak-
ly for n— + o 9 zeR(A)'L y 2%0, weV, It suffices to show
that

u, -w
1im inf j"lso(un) .ﬁi_r -

m—+ 0o
As Wzm’p(ﬂ) is compactly imbadded into C(1L) we have
llull —> z and (u =wllu il = -—>zinL (). If we de-
note.Q n{xeﬂ.,z(x) ed, ﬂ"a{xeﬁ-z(x)é-eg =
= .Q_E (9] Qs then according to (3. 4) and (3.5) there exist e >
>0, an integer k°>1 such that the inequality

k +1 k +1
(3.6) meas_()_e =17 (F_I) meas(_ﬂ.\_ﬂ_g):-o
holds for every k2 ko. There exists & natural number n, such

that
€ un(x) - w(x)

-2 ¢ & 6. in 0
z(x) FO_W]% E + 2(x) a.e. in QO ,
[ Lun(x)L QO
z(x) - K £ n"=r + z(x) a.e, in

for every né’no. So we get

iy

u. - w
hot)

f k+1

u, - w -u, +w
fn}’ 9@ (un) "ITi—ﬂ' + .[;1_6 T(-un) w

_u\nee T- go(t‘—-k-—llu ) =
-1 k -1 k, +1
Z fn € —°k~ (g(e—ok——llu -,fl\nr ﬁ‘Lq(E}—llu Iz

- k—l
>£TQ(ET—“u||)meaS.Q =
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k +1 k +1 k-1
= Oko ely (kz-l ) + P Imeas(Q N0 g (e —go—llunll )y

where ﬁn —> 0 for n — + 00 ., Observe that

u - w ko" 1 ko-

1
90w Fay 5 ¢ B 9 £ hugll ) [mens O -

k°+ 1

ko+ 1 5
" E S (OL(EO—_-I) + D) meas(Q\ D )],
Denote the expression in the square brackets by Cpe It follows
from (3.6) that 1im c_> O and therefore
m5+00 1
k-1

lim g =2 e 22w 1)
E u c = 4+ 00
">+ 00 k, F & k, n n

The proof is finished.

If the operator A satisfies the condition (3.5) then the
Theorem 2.16 can be applied. If d < 1 then the operator S - f
satisfies the conditions (2.21)-(2.23) and the Theore 2.24 can
be used, In these cases, if p>1 +d , a ZJd > O then the equa-
tion Au + Su = f has at least one solution.

For example, the problem

(A=2)[(Au -2u)? + (Au -Au)3] + (ul® signu=£in 0,
u = 0 on 31
has at least one weak solution uewi’s(ﬂ_ )/\WZ’G(D.) for
0<d=<3,

4, Problems with a bounded nonlinearity. Let B be a line-
ar closed subspace of Wk’p(_Q.), kp>N, p>1, A(O0) = O,

(4.1) {Su,v> = f‘; @ (u) v, for u,veB,
where the function ¢ is continuous, odd, lim q;(t) = 0, Then
|tl>+c0

Il sull go £ @ for every u€B with some coms tent @ . Further,
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we shall assume the following conditions be satisfied
(4.2) for all weR(A)L, teR, veB 1t 1s A(v + tw) = Av,

(4.3) there exists a bounded linear projection Q:B — R(A)l
and <Au,u>ZClHull P - K yQuil P - L for every ue B, where
p>1, C,X,L>0.

4.4. Proposition. Let the function t+>< A(u + tv),w>
be a polynomial for any fixed u,vywe B, If A is regular and
satisfies (2.3),(2.4), A(O) = 0, then the condition (4.2) is
fulfilled,

The proof can be found in Frehse's papers or in [ 51,

Let ¥ :(0,+00)—> (0,+) be the increasing function sa-
tisfying
<
waR(Ak j;zscw)"‘ £ ¥(e),
Ml gy 1
where .fle(w) ={x e j0<lw(x)|< €} and such that

1im sup [¥(e )1~! ¥ (wE )<+ for every w € (0,+00).
€E—> Oy

4.5, Theorem., Let a regular asymptotically monotone O=po=-
lynomial operator A satisfy the conditions (4.2),(4.3), A(0) =
= 0 and let S be given by (4.1), If

Ly-1 -
(4.6) ?ii:nw [Y(S)J 'cnéia,,g)?(f) + o

for some a> 0 then the equation Au + Su = f has at least one

solution for an arbitrary f£.1 R(A)l q

Sketch of the proof. Let us consider the function
~ @ (§ ) for I§1 £ v,
$=§"—’ p(b) for ¢ >,
P(~b) for f <-b,
- 682 -



and the corresponding equation Au + gu = f, From the Theorem

2,16 this equation has a solution u because

0 = sup |{f,w>l< | & (b)l inf lwl.
e RoAYE 7 ¥ are R(AY J;L
|W"C(S—1)=4 "'w’“c(ﬁ_)=4
Using the condition (4.2) we can obtain a priori estimate
| o° _&cq =c (N2l oe)e
Il c@m™ 2 1 B
Further, methods from [3],[4] give a priori estimate

hQull oy ey = e5a,@,1),
where a> 0,

a+cl

“f‘l(c2(1§11;ac}(g) +mp 18 yNhH

ey =

¢y = cp(8,P ,f) = inf " (1€§¢§(§-)&le).

If there exist numbers a,be R, O<a<b, such that b> cl(ﬁ,f)+
+ cB(a,§ ,f) then the solution u of the equation Au + Su = f

is also the solution of the equation Au + Su = f because Su =
= Su, The condition (4.6) guarantees the existence of such num-
bers a, b.

For example, the problem

{(A-?L)[(Au -Aw? 4 (Au-2w?) 4 —— = £ 1 0,
+u

u = 0 on 30,
has at least-one weak solution ue W%'6(_Q,)n Wz’s(ﬂ) if
£1Ker[ A -2Xidl,

It is also possible to apply the abstract results to the

existence of solution of the Neuman problem
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N

= +
1=1 axi axi 1 +|‘JE

1 JOu u

3 [(°;+,Vu|2)§- ] =f in O

du_ .
e 0 on 34,

where ¢>0, p>1, k22, It feL(Q), [ f(x)dx = 0, this
problem has at least one weak solution ue Wl’p(Il).
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