

## Werk

Label: Article Jahr: 1982

**PURL:** https://resolver.sub.uni-goettingen.de/purl?316342866\_0023|log60

### **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

## COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23.4 (1982)

# THE RANGES OF NONLINEAR OPERATORS OF THE POLYNOMIAL TYPE Josef VOLDRICH

Abstract: In this paper we prove the existence results for the equation Au + Su = f, where A is a polynomial operator on a reflexive Banach space, S is a strongly continuous nonlinearity.

Key words: Polynomial operators, perturbations, strong subasymptote.

1. <u>Introduction</u>. J. Frehse investigated a class of nonlinear functional equations and nonlinear operators of polynomial type (see e.g. [1]). The ranges of these operators are closed linear subspaces with a finite codimension and the equ-

ation
(1.1) Au = f

Classification: 47H15

has at least one solution if f satisfies the Fredholm condition. Further, J. Frense deals with the solvability of the equation

where S is the Landesman-Lazer type nonlinearity (see e.g.[2]).

This paper continues, in some sense, the works [1],[2] and deals with the solvability of the equation (1.2) in section 2, where S is "subpolynomial-type" nonlinearity. In section 3 the abstract theorems are applied to the examples of polynomial

operators, for example, to the problem

$$\begin{cases} (\Delta - \lambda) \left[ (\Delta u - \lambda u)^5 + (\Delta u - \lambda u)^3 \right] + \\ + |u|^{o''} \text{ sign } u = f \text{ in } \Omega, \\ u = 0 \text{ on } \partial\Omega. \end{cases}$$

There are also presented results concerning the solvability of (1.2) in section 4, where the operator S has a vanishing strong subasymptote. For example, there is considered the problem

$$\begin{cases} (\Delta - \lambda) \left[ (\Delta u - \lambda u)^5 + (\Delta u - \lambda u)^3 \right] + \frac{u}{1 + u^2} = f \text{ in } \Omega, \\ u = 0 \text{ on } \partial\Omega. \end{cases}$$

The proof which is published in [5], is analogous to that contained in the papers [3],[4] where equations with linear noninvertible operators in the main part are considered.

- 2. Abstract theorems. We shall investigate continuous maps  $A:B \longrightarrow B^*$  where B is a real reflexive Banach space with a norm  $\|\cdot\|$  ,  $B^*$  is its dual space. We consider following condi tions:
- (2.1) There exists  $a \ge 0$  such that it holds
  - (i) if  $\limsup_{t\to+\infty} t^{-a} |\langle A(u+tv), v \rangle| < +\infty$ then  $\langle A(u+tv)v \rangle = \langle Au,v \rangle$  whenever  $t \in \mathbb{R}$ ,  $u,v \in \mathbb{B}$ ,
  - (ii) if  $\limsup_{t\to +\infty} t^{-a} |\langle A(tw), v \rangle| < +\infty$ then  $\langle A(tw), v \rangle = \langle A(0), v \rangle$  whenever  $t \in \mathbb{R}$ ,  $v, w \in \mathbb{B}$ .
- (2.2) If  $u,v \in B$ ,  $\varphi(t) = \langle A(u+tv), u+tv \rangle$  and

  - (i)  $\lim_{t \to +\infty} \inf t^{-1} \varphi(t) \ge 0$ , (ii)  $\lim_{t \to +\infty} \sup t^{-1} \varphi(t) < +\infty$ , then  $\lim_{t \to +\infty} t^{-1} \varphi(t) = 0$ .

Any continuous operator A satisfying conditions (2.1) and (2.2) will be said a-polynomial.

An operator A satisfying

- (2.3)  $\lim_{\|u\|\to\infty} \inf \|u-v\|^{-1} < Au-Av, u-v \ge 0$  for each  $v \in B$  will be called the asymptotically monotone operator.
- (2.4) There exist constants K,c>0, p>1 and a finite dimensional subspace  $V \subset B$  with a bounded linear projection  $Q:B \longrightarrow V$  such that

 $\langle Au,u\rangle \ge c \|u\|^p - K \|Qu\|^p - K \text{ whenever } u \in B.$ 

2.5. <u>Definition</u>. A continuous operator  $A:B \to B^*$  is said regular if the variational inequality

$$\langle Au-f,u-v \rangle \leq 0, v \in K$$

has a solution  $u \in K$  for any bounded closed convex set  $K \subset B$  and for every  $f \in B^*$ .

The main result of Frehse's work [1] is as follows.

2.6. Theorem. Let  $A:B \longrightarrow B^*$  be a regular operator satisfying conditions (2.1)(i) with a=0, (2.2)-(2.4) and let A(0)=0. Then the equation Au=f has at least one solution if and only if  $f \perp (R(A))^{\perp}$ .

Moreover, dim  $R(A)^{\perp} \leq \dim V < +\infty$ .

We shall use the next lemma in proofs of the following theorems.

2.7. Lemma. Let  $A:B \longrightarrow B^*$  be an asymptotically monotone a-polynomial operator, A(0) = 0. Suppose that for some  $v \in B$  there exist constants  $\mathcal{O}$ , C,  $K \ge 0$  such that the inequality

$$\langle Aw, v \rangle \leq C + K \| w \|^{\sigma^{\alpha}}$$

holds for every  $w \in B$ . If  $a \not\subseteq S$  then  $v \perp R(A)$ .

<u>Proof.</u> The inequality (2.8) implies  $\langle A(w+tv), v \rangle \leq C + K \| w+tv \|^{\sigma}$  and from the asymptotical monotonicity of the

operator A (i.e.  $\lim_{|t|\to\infty} \inf |t|^{-1} \langle A(w+tv) - Aw, tv \rangle \geq 0$ ) we obtain  $\langle A(w+tv), v \rangle \geq \langle Aw, v \rangle - \varepsilon$  for every  $t \geq t_0$  with some  $t_0 > 0$ ,  $\varepsilon > 0$ . Together with the supposition (2.8) and the condition (2.1) we have

(2.9)  $\langle A(w+tv), v \rangle = \langle Aw, v \rangle$  for every  $t \in \mathbb{R}$ .

Using the inequality  $\lim_{|t|\to +\infty} \inf |t|^{-1} \langle A(w+tv) - A(2w), -w+tv \rangle \ge 0$  we get that  $\lim_{|t|\to +\infty} \sup |t|^{-1} \langle A(w+tv), w \rangle \le K(w)$  with some constant K(w). It yields together with (2.9)  $\lim_{|t|\to +\infty} \sup |t|^{-1} \varphi(t) < +\infty$ , where  $\varphi(t) = \langle A(w+tv), w+tv \rangle$ . From conditions (2.2),(2.3), A(0) = 0 it follows that

(2.10) 
$$\lim_{|t| \to +\infty} t^{-1} \varphi(t) = 0.$$

Let s∈R be fixed. It is obvious that

 $\lim_{|t|\to +\infty}\inf |t|^{-1} \langle A(w+tv) - A(sw), (1-s)w+tv \rangle \ge 0$  and this together with (2.9) yields

 $\lim_{|t|\to +\infty} \inf |t|^{-1} [(1-s)\varphi(t) + s \langle Aw, tv \rangle - \langle A(sw), (1-s)w + tv \rangle] \ge 0.$  According to this fact and with respect to the condition (2.10)

we have  $s \langle Aw, v \rangle - \langle A(sw), v \rangle \ge 0$ ,  $-s \langle Aw, v \rangle + \langle A(sw), v \rangle \ge 0$  and (2.11)  $s \langle Aw, v \rangle = \langle A(sw), v \rangle$ ,  $s \in \mathbb{R}$ .

If a<1 then  $0 \le \sigma < 1$  and as  $s < Aw, v > \le C + K|s|^{\sigma'} ||w||^{\sigma'}$  we get < Aw, v > = 0, taking the limits  $s \longrightarrow \pm \infty$ . This completes the proof for a<1.

Let a  $\geq$  1. There exists  $\vartheta > 0$  such that  $\|Au\| \leq 1 + \|A(0)\| = 1$  for every  $u \in B$ ,  $\|u\| \leq \vartheta$ . The inequality

$$\langle Aw,v\rangle = \frac{||w||}{2} \langle A(\frac{w}{||w||} + 2^{\bullet}),v\rangle \ge -\frac{||w||}{2^{\bullet}} \|v\|, w + 0,$$

is an immediate consequence of (2.11). Therefore, there exists the constant L>0 such that  $\langle Aw,v\rangle \ge -L \|w\|$ ,  $w \in B$ . Using the inequality (2.8) and the fact that  $a \ge 1$  we obtain

 $\lim_{t \to +\infty} \sup_{\bullet} |\langle A(tw), v \rangle| < + \infty.$ 

From (2.1) we get  $\langle Aw, v \rangle = \langle A(0), v \rangle = 0$ . It means that  $v \perp R(A)$  and the proof of the lemma is complete.

Let  $S:B \longrightarrow B^*$  be an operator satisfying conditions

- (2.12)  $\| \operatorname{Su} \|_{\mathbf{R}^*} \leq \infty + \beta \| \operatorname{u} \|^{\sigma}, \propto, \beta, \sigma \geq 0,$
- (2.13) there exist constants G,H>0 such that the inequality  $\lim_{\|\mathcal{U}_{i_1}\|\to+\infty}\inf\|u_i\|^{-1} < Su_i Sw,u_i w > 2 G H \|w\|^{\sigma}$  is fulfilled for every  $w\in B$ .
- 2.14. <u>Definition</u>. Let V be a closed linear subspace of B,  $V_r = \{u \in V, \|u\| \le r\}$ . A mapping  $Y:V_1 \longrightarrow R$  will be said a strong subasymptote of the operator S with respect to V if
- (2.15)  $\Psi(z) \leq \lim_{j \to +\infty} \inf \left\{ \sup_{j} \|u_{j}\|^{-1}(u_{j}-w) \right\}, w \in B,$  holds for any sequence  $\{u_{j}\}_{j=1}^{+\infty}$  such that  $\|u_{j}\| \to +\infty$  and  $\|u_{j}\|^{-1}u_{j} \to z$  (i.e. weakly) for  $j \to +\infty$ , where  $z \neq 0$ ,  $z \in V$ .

  2.16. Theorem. Let  $A,S:B \to B^*$  be continuous operators with the following properties
- (i) A is an asymptotically monotone a-polynomial operator, A(0) = 0 and A satisfies (2.4),
  - (ii) S satisfies (2.12),(2.13) and  $p>1+\sigma'$ ,  $a \ge \sigma'$ ,
- (iii) A + S is a regular operator. If  $\Psi:(R(A)^{\perp})_1 \to R$  is a strong subasymptote of the operator S with respect to  $R(A)^{\perp}$  and if
- (2.17)  $\langle f,z \rangle < \Psi(z)$  for every  $z \in (R(A)^{\perp})_1$ ,  $z \neq 0$ , then the equation (1.2) has at least one solution.

<u>Proof.</u> Let us suppose that the equation is not solvable and let  $\mathbf{u_r}$  be the solution of the variational inequality

(2.18) 
$$\langle Au + Su-f, u-w \rangle \leq 0, w \in B_{n}$$

Observe that  $u_r \in \partial B_r$  and therefore  $\|u_r\| = r$ . Choose a sequence  $\{r_i\}_{i=1}^{+\infty}$  so that  $\|u_{r_i}\|^{-1} u_{r_i} \longrightarrow z$  weakly in B. According to (2.18) with w = 0 and in view of the growth of S (see (2.12)) we get the inequality  $\langle \text{Au}_{\mathbf{r}_i}, \text{u}_{\mathbf{r}_i} \rangle \leq L \| \text{u}_{\mathbf{r}_i} \|^{1+\delta}$  for  $i \geq i_0$  with some positive constant L. Since  $p>1+\sigma'$  we obtain from (2.4) that  $\liminf_{i \to +\infty} \|Qu_{r_i}\|^p \|u_{r_i}\|^{-p} \ge \frac{c}{K} > 0$ . The fact that  $\dim R(Q) < +\infty$  implies  $Q(u_{r_i}\|u_{r_i}\|^{-1}) \longrightarrow Qz$  in B for  $i \to +\infty$  and  $\|Qz\| > 0$ , therefore  $z \neq 0$ .

We claim z LR(A). Observe that

$$\lim_{i \to +\infty} \inf \|\mathbf{u}_{\mathbf{r}_{\underline{i}}}\|^{-1} \langle \mathbf{A}\mathbf{u}_{\mathbf{r}_{\underline{i}}} - \mathbf{A}\mathbf{w}, \mathbf{u}_{\mathbf{r}_{\underline{i}}} - \mathbf{w} \rangle \not \leq 0,$$

$$\lim_{i \to +\infty} \inf \|\mathbf{u}_{\mathbf{r}_{\underline{i}}}\|^{-1} \langle \mathbf{f} - \mathbf{A}\mathbf{u}_{\mathbf{r}_{\underline{i}}} - \mathbf{S}\mathbf{u}_{\mathbf{r}_{\underline{i}}}, \mathbf{u}_{\mathbf{r}_{\underline{i}}} - \mathbf{w} \rangle \ge 0$$

and therefore

(2.19) 
$$\lim_{i \to +\infty} \inf \|\mathbf{u}_{\mathbf{r}_{i}}\|^{-1} \langle \mathbf{f} - \mathbf{S}\mathbf{u}_{\mathbf{r}_{i}} - \mathbf{A}\mathbf{w}, \mathbf{u}_{\mathbf{r}_{i}} - \mathbf{w} \rangle \ge 0.$$
From (2.13)

From (2.13) we have

 $\lim_{i \to +\infty} \inf \| \mathbf{u}_{\mathbf{r}_{i}} \|^{-1} \langle \mathbf{f} - \mathbf{A} \mathbf{w} - \mathbf{S} \mathbf{w}, \mathbf{u}_{\mathbf{r}_{i}} - \mathbf{w} \rangle \ge -\mathbf{G} - \mathbf{H} \| \mathbf{w} \|^{\sigma}$ and this gives the estimate

$$\lim_{i \to +\infty} \inf \langle -Aw, u_{r_i} \| u_{r_i} \|^{-1} \rangle \ge -G - H \| w \|^{\sigma} - (\alpha + \beta \| w \|^{\sigma}) - (\alpha + \beta \| w \|^{\sigma}) - (\beta + \beta \| w \|^{\sigma}$$

Consequently,  $\langle Aw, z \rangle \leq G + |\langle f, z \rangle| + \infty + (\beta + H) ||w||^{\sigma}$  and the Lemma 2.7 implies z \( R(A).

Observe that the inequality (2.19) yields

$$\langle f, z \rangle - \langle Aw, z \rangle - \lim_{i \to +\infty} \inf \langle Su_{r_i}, \|u_{r_i}\|^{-1} (u_{r_i} - w) \rangle \ge 0.$$

As  $\Upsilon$  is the strong subasymptote of the operator S we get  $\langle f,z \rangle - \Psi(z) \ge 0$ , which is the contradiction with (2.17) and the proof is complete.

2.20. Proposition. The condition (2.17) is necessary for the solvability of (1.2), if  $\langle Su, z \rangle < \Psi(z)$  for every  $u \in B$ ,  $z \neq 0$ ,  $z \in (R(A)^{\perp})_{1}$ 

Proof. If Au + Su = f then  $\langle f, z \rangle = \langle Su, z \rangle < \Psi(z)$  for  $z \in (R(A)^{\perp})_1$ .

In the case  $\delta < 1$ , the strong subasymptote of the operator S can be replaced by more verifiable conditions:

- (2.21)  $\lim_{\|\omega_i\| \to +\infty} \inf \|u_i\|^{-1} \langle su_i sw_i, u_i w_i \rangle \ge -G$ for every bounded sequence { w<sub>i</sub>? + co
- (2.22) For every  $z \in R(A)^{\perp}$ ,  $z \neq 0$ , there exist  $t_z \in R$ ,  $v_z \in B$  such that  $\langle S(t_z z + v_z), z \rangle > G$ , where G is the constant from (2.21).
- (2.23)  $\lim_{t\to+\infty} \inf \langle S(tz_1 + v), -z_1 \rangle \leq \langle S(tz + v), -z \rangle$ holds for any teR, veB and any sequence  $\{z_i\}_{i=1}^{+\infty} \subset B$ ,  $z_i \longrightarrow z$ weakly for  $i \rightarrow +\infty$ ,  $z \in R(A)^{\perp}$ ,  $z \neq 0$ .

A strongly continuous operator S satisfies the condition (2.23).

- 2.24. Theorem. Let A,S:B -> B\* be continuous operators with the following properties
- (i) A is an asymptotically monotone a-polynomial operator satisfying (2.4), A(0) = 0.
- (ii) S satisfies (2.12),(2.21)-(2.23) and  $p>1+\delta$ ,  $a \ge \delta$ , o < 1,
- (iii) A + S is a regular operator.

Then the equation Au + Su = 0 has at least one solution.

Proof. The condition (2.21) implies (2.13). Let us suppose that the equation Au + Su = 0 is not solvable. Analogously as in the proof of Theorem 2.16 there exists a sequence

 $\begin{array}{l} \{u_{r_{1}}^{2+\infty}, \|u_{r_{1}}\| \rightarrow +\infty , \|u_{r_{1}}\|^{-1} u_{r_{1}} \rightarrow z \text{ weakly in B for } \\ i \rightarrow +\infty , z \in R(A)^{\perp}, z \neq 0, \text{ and } \langle Au_{r_{1}}^{2} + Su_{r_{1}}^{2}, u_{r_{1}}^{2} - w \rangle \leq 0 \text{ for } \end{array}$ every we  $B_{\mathbf{r_i}}$  . As the operator S satisfies (2.21) and (2.22) we

 $- \overset{\mathsf{G}}{=} \underset{i \rightarrow +\infty}{\lim \inf} \|\mathbf{u}_{\mathbf{r_{1}}}\|^{-1} \langle \mathbf{S}(\mathbf{t_{z}u_{r_{1}}} \|\mathbf{u}_{\mathbf{r_{1}}}\|^{-1} + \mathbf{v_{z}}) - \mathbf{Su_{r_{1}}},$  $t_z u_{r_i} \| u_{r_i} \|^{-1} + v_z - u_{r_i} \rangle =$ 

=  $\lim_{i \to +\infty} \inf \langle S(t_z u_{r_i} \| u_{r_i} \|^{-1} + v_z) - Su_{r_i}, -u_{r_i} \| u_{r_i} \|^{-1} \rangle$ because of < 1. The operator A + S is regular and therefore we  $\mathtt{get} \, \langle \, \mathtt{Au}_{\mathbf{r_i}} \, + \, \mathtt{Su}_{\mathbf{r_i}}, -\mathtt{u}_{\mathbf{r_i}} \, \rangle \, \geqq \, \, \mathtt{0} \, \, \, \mathtt{and} \, \,$ 

 $\lim_{i \to +\infty} \inf \langle \mathbf{S}(\mathbf{t_z} \mathbf{u_{r_i}} \parallel \mathbf{u_{r_i}} \parallel^{-1} + \mathbf{v_z}) + \mathbf{A} \mathbf{u_{r_i}}, -\mathbf{u_{r_i}} \parallel \mathbf{u_{r_i}} \parallel^{-1} \rangle \geq -\mathbf{G}.$ 

Further, A is asymptotically monotone, e.g.

$$\lim_{i \to +\infty} \inf \langle -Au_{r_i}, -u_{r_i} \| u_{r_i} \|^{-1} \rangle \ge 0$$

 $\lim_{i \to +\infty} \inf \langle S(t_z u_{r_i} \| u_{r_i} \|^{-1} + v_z), -u_{r_i} \| u_{r_i} \|^{-1} \rangle \ge -G.$ 

From (2.23) we obtain  $\langle S(t_zz + v_z), z \rangle \leq G$ , which is the contradiction with (2.22).

3. Examples. Let  $P_j: \mathbb{R}^s \longrightarrow \mathbb{R}$ , j = 1, 2, ..., s, be polynomials satisfying the following conditions (with C,K,c>0)

(3.1) 
$$|P_{j}(\xi)| \le C(1 + |\xi|^{p-1})$$
 for every  $\xi \in \mathbb{R}^{8}$ ,

(3.2) 
$$\sum_{j=1}^{8} P_{j}(\zeta) \zeta_{j} \ge c |\zeta|^{p} - K \text{ for every } \zeta \in \mathbb{R}^{8},$$

(3.3) 
$$\sum_{j=1}^{\infty} (P_{j}(\zeta) - P_{j}(\eta)) (\zeta_{j} - \eta_{j}) \ge 0 \text{ for all } \zeta, \eta \in \mathbb{R}^{8}.$$
Let  $\Omega \subset \mathbb{R}^{N}$  be a bounded domain with a smooth boundary.

Let  $\Omega \subset \mathbb{R}^{\mathbb{N}}$  be a bounded domain with a smooth boundary and let  $V = W^{2m,p}(\Omega) \cap W_0^{m,p}(\Omega), p>1.$  We define

$$\begin{split} \mathbf{L}_{\mathbf{j}}\mathbf{u} &= \sum_{|\mathbf{n}|,|\mathcal{G}| \leq m} (-1)^{\mathbf{r}} \ \mathbf{D}^{\mathbf{r}}(\mathbf{a}_{\mathbf{r}\mathbf{q}}^{(\mathbf{j})}(\mathbf{x}) \mathbf{D}^{\mathbf{q}}\mathbf{u}), \ \mathbf{j} = 1, \ldots, s, \\ \text{for every } \mathbf{u} \in \mathbf{V} \text{ where } \mathbf{a}_{\mathbf{r}\mathbf{q}}^{(\mathbf{j})} \in \mathbf{C}^{\infty}(\overline{\Omega}) \ (|\mathbf{r}|,|\mathbf{q}| \leq m, \ \mathbf{j} = 1, \ldots, s). \ \text{Let} \end{split}$$

 $\sum_{|\kappa|,|q|=m} (-1)^m \ a_{\mathbf{rq}}^{(j)}(\mathbf{x}) \ \zeta^{\mathbf{r+q}} \geq \alpha |\zeta|^{2m}, \ j=1,\ldots,s,$  hold with some  $\alpha>0$  for every  $\zeta\in\mathbb{R}^N$ . Let us define the operator  $A:V\to V^*$  by

$$\langle Au, v \rangle = \sum_{j=1}^{5} \int_{\Omega} P_{j}(L_{1}u, ..., L_{s}u) L_{j}v, v \in V.$$

Using the Theorem 2.6, we see that the equation Au = f is solvable if  $(f - A(0)) \perp (R(A) - A(0))^{\perp}$ . Let us remark that for s = 1 it is possible to show: if we consider the operator  $A: V/_{\ker[L_1]} \longrightarrow (V/_{\ker[L_1]})^*$  then this result follows from the theory of monotone operators and  $(R(A) - A(0))^{\perp} = \ker[L_1]$ .

Let the function  $\varphi$  be continuous, odd, increasing,  $\lim_{t\to +\infty} \varphi(t) = +\infty \text{ and } |\varphi(t)| \leq \overline{\omega} + \overline{\beta} |t|^{\sigma}, t \in \mathbb{R}, \text{ with some } \overline{\omega}, \overline{\beta}, \sigma > 0. \text{ Let } 2mp > \mathbb{N}. \text{ We define the operator } S: \mathbb{V} \longrightarrow \mathbb{V}^* \text{ by}$ 

$$\langle Su, v \rangle = \int_{\Omega} \varphi(u) v, v \in V.$$

We note that the inequality (2.12) holds with some constants  $\alpha$ ,  $\beta$ . Let us assume the conditions

(3.4)  $\limsup_{t\to +\infty} \varphi(\omega t) [\varphi(t)]^{-1} = \chi(\omega) < +\infty$  for every  $\omega \ge 1$ , where  $\chi$  is a continuous function with  $\lim_{\omega\to 1+} \chi(\omega) = 1$ ,

(3.5) meas  $\Omega > 2$  meas  $\{x \in \Omega ; z(x) = 0\}$ for every  $z \in (R(A) - A(0))^{\perp}$ ,  $s \neq 0$ .

3.6. <u>Proposition</u>. The mapping  $\Psi:((R(A) - A(0))^{\perp})_1 \longrightarrow iK^3$ , where K is a real number, is a strong subasymptote of the

operator S defined above with respect to  $(R(A) - A(O))^{\perp}$ .

<u>Proof.</u> We assume that A(0) = 0 and that for a sequence  $\{u_n\}_{n=1}^{+\infty} \subset V \text{ it is } \|u_n\|^{-1} \longrightarrow +\infty$ ,  $(u_n-w)\|u_n\|^{-1} \longrightarrow z \text{ weakly for } n \longrightarrow +\infty$ ,  $z \in R(A)^{\perp}$ ,  $z \neq 0$ ,  $w \in V$ . It suffices to show that

$$\lim_{m\to+\infty}\inf_{\infty}\int_{\Omega}\varphi\left(u_{n}\right)\frac{u_{n}-w}{\|u_{n}\|}-\mathtt{K}\geqq0.$$

As  $W^{2m,p}(\Omega)$  is compactly imbedded into  $C(\overline{\Omega})$  we have  $u_n \| u_n \|^{-1} \longrightarrow z$  and  $(u_n - w) \| u_n \|^{-1} \longrightarrow z$  in  $L_{\infty}(\Omega)$ . If we denote  $\Omega_{\mathcal{E}}^+ = \{ x \in \Omega \; ; z(x) \geq \varepsilon \}$ ,  $\Omega_{\mathcal{E}}^- = \{ x \in \Omega \; ; z(x) \leq -\varepsilon \}$ ,  $\Omega_{\mathcal{E}}^- = \{ x \in \Omega \; ; z(x) \leq -\varepsilon \}$ ,  $\Omega_{\mathcal{E}}^- = \{ x \in \Omega \; ; z(x) \leq -\varepsilon \}$ , and (3.5) there exist  $\varepsilon > 0$ , an integer  $k_0 > 1$  such that the inequality

(3.6) 
$$\operatorname{meas} \Omega_{\varepsilon} - \frac{k+1}{k-1} \chi \left( \frac{k+1}{k-1} \right) \operatorname{meas} (\Omega \setminus \Omega_{\varepsilon}) > 0$$

holds for every  $k \ge k_0$ . There exists a natural number  $n_0$  such that

$$z(x) - \frac{\varepsilon}{k_0} \leq \frac{u_n(x) - w(x)}{\|u_n\|} \leq \frac{\varepsilon}{k_0} + z(x) \quad \text{a.e. in } \Omega ,$$

$$\mathbf{z}(\mathbf{x}) - \frac{\mathbf{g}}{\mathbf{k}_0} \leq \frac{\mathbf{u}_{\mathbf{n}}(\mathbf{x})}{\|\mathbf{u}_{\mathbf{n}}\|} \leq \frac{\mathbf{g}}{\mathbf{k}_0} + \mathbf{z}(\mathbf{x}) \quad \text{a.e. in } \Omega$$

for every  $n \ge n_0$ . So we get

$$\begin{split} &\int_{\Omega} \varphi(\mathbf{u}_{\mathbf{n}}) \, \frac{\mathbf{u}_{\mathbf{n}} - \mathbf{w}}{\|\mathbf{u}_{\mathbf{n}}\|} \, \geq \, \int_{\Omega_{\varepsilon}^{+}} \varphi(\mathbf{u}_{\mathbf{n}}) \, \frac{\mathbf{u}_{\mathbf{n}} - \mathbf{w}}{\|\mathbf{u}_{\mathbf{n}}\|} \, + \, \int_{\Omega_{\varepsilon}^{-}} \varphi(-\mathbf{u}_{\mathbf{n}}) \, \frac{-\mathbf{u}_{\mathbf{n}} + \mathbf{w}}{\|\mathbf{u}_{\mathbf{n}}\|} \, - \\ &- \, \int_{\Omega \setminus \Omega_{\varepsilon}} \varepsilon \, \frac{\mathbf{k}_{\mathbf{o}} + 1}{\mathbf{k}_{\mathbf{o}}} \, \varphi(\varepsilon \, \frac{\mathbf{k}_{\mathbf{o}} + 1}{\mathbf{k}_{\mathbf{o}}} \, \|\mathbf{u}_{\mathbf{n}}\| \, ) \, \geq \\ &\geq \, \int_{\Omega_{\varepsilon}} \varepsilon \, \frac{\mathbf{k}_{\mathbf{o}} - 1}{\mathbf{k}_{\mathbf{o}}} \, \varphi(\varepsilon \, \frac{\mathbf{k}_{\mathbf{o}} - 1}{\mathbf{k}_{\mathbf{o}}} \, \|\mathbf{u}_{\mathbf{n}}\| \, ) \, - \, \int_{\Omega \setminus \Omega_{\varepsilon}} \varepsilon \, \frac{\mathbf{k}_{\mathbf{o}} + 1}{\mathbf{k}_{\mathbf{o}}} \, \varphi(\varepsilon \, \frac{\mathbf{k}_{\mathbf{o}} + 1}{\mathbf{k}_{\mathbf{o}}} \|\mathbf{u}_{\mathbf{n}}\| ) \geq \\ &\geq \varepsilon \, \frac{\mathbf{k}_{\mathbf{o}} - 1}{\mathbf{k}_{\mathbf{o}}} \, \varphi(\varepsilon \, \frac{\mathbf{k}_{\mathbf{o}} - 1}{\mathbf{k}_{\mathbf{o}}} \| \, \mathbf{u}_{\mathbf{n}}\| \, ) \, \text{meas} \, \Omega_{\varepsilon} \, - \end{split}$$

$$-\frac{k_{o}+1}{k_{o}} \, \epsilon \, [\, \chi \, (\frac{k_{o}+1}{k_{o}-1}) \, + \, \vartheta_{n}] \, \, \text{meas} (\, \Omega \, \backslash \, \Omega_{\epsilon} \, ) \, \varphi \, (\epsilon \, \, \frac{k_{o}-1}{k_{o}} \, \| \, u_{n} \, \| \, ),$$

where  $\vartheta_n \to 0$  for  $n \to +\infty$  . Observe that

$$\int_{\Omega} \varphi(u_n) \frac{u_n - w}{\|u_n\|} \le \varepsilon \frac{k_0 - 1}{k_0} \varphi(\varepsilon \frac{k_0 - 1}{k_0} \|u_n\|) [\max \Omega_{\varepsilon} - w]$$

$$-\frac{k_0+1}{k_0-1}\left(\chi\left(\frac{k_0+1}{k_0-1}\right)+\vartheta_n\right)\;\mathrm{meas}(\Omega \setminus \Omega_{\varepsilon})\right].$$

Denote the expression in the square brackets by  $c_n$ . It follows from (3.6) that  $\lim_{n\to +\infty} c_n > 0$  and therefore

$$\lim_{n \to +\infty} \varepsilon \frac{k_0 - 1}{k_0} \varphi \left( \varepsilon \frac{k_0 - 1}{k_0} \| \mathbf{u}_n \| \right) c_n = +\infty.$$

The proof is finished.

If the operator A satisfies the condition (3.5) then the Theorem 2.16 can be applied. If o' < 1 then the operator S - f satisfies the conditions (2.21)-(2.23) and the Theore 2.24 can be used. In these cases, if p>1+o',  $a \ge o' > 0$  then the equation Au + Su = f has at least one solution.

For example, the problem

$$(\Delta - \lambda)[(\Delta u - \lambda u)^5 + (\Delta u - \lambda u)^3] + |u|^{o'} \text{ sign } u = f \text{ in } \Omega,$$

has at least one weak solution  $u \in W_0^{1,6}(\Omega) \cap W^{2,6}(\Omega)$  for  $0 < \delta < 3$ .

4. Problems with a bounded nonlinearity. Let B be a linear closed subspace of  $W^{k,p}(\Omega)$ , kp>N, p>1, A(0)=0,

(4.1) 
$$\langle Su, v \rangle = \int_{\Omega} \varphi(u) v$$
, for  $u, v \in B$ ,

where the function  $\varphi$  is continuous, odd,  $\lim_{|t| \to +\infty} \varphi(t) = 0$ . Then  $\| \operatorname{Su} \|_{B^*} \leq \varphi$  for every  $u \in B$  with some constant  $\varphi$ . Further,

we shall assume the following conditions be satisfied (4.2) for all  $w \in R(A)^{\perp}$ ,  $t \in R$ ,  $v \in B$  it is A(v + tw) = Av, (4.3) there exists a bounded linear projection  $Q:B \longrightarrow R(A)^{\perp}$  and  $\langle Au, u \rangle \geq C \|u\|^p - K \|Qu\|^p - L$  for every  $u \in B$ , where p > 1, C,K,L > 0.

4.4. Proposition. Let the function  $t \mapsto \langle A(u + tv), w \rangle$  be a polynomial for any fixed  $u, v, w \in B$ . If A is regular and satisfies (2.3),(2.4), A(0) = 0, then the condition (4.2) is fulfilled.

The proof can be found in Frense's papers or in [5].

Let  $\Psi:(0,+\infty)\longrightarrow (0,+\infty)$  be the increasing function satisfying

$$\sup_{\substack{w \in R(A)^{\perp} \\ \|w\|_{C(\overline{\Omega})} = 1}} \int_{\underline{\mu}(w)} |w| \leq \Psi(\varepsilon),$$

where  $\Omega_{\varepsilon}(w) = \{x \in \Omega ; 0 < |w(x)| < \varepsilon \}$  and such that

$$\lim_{\varepsilon \to 0_+} \sup \left[ \Psi(\varepsilon) \right]^{-1} \ \Psi(\omega \varepsilon) < +\infty \ \text{for every } \omega \in (0, +\infty).$$

4.5. Theorem. Let a regular asymptotically monotone 0-polynomial operator A satisfy the conditions (4.2),(4.3), A(0) = 0 and let S be given by (4.1). If

(4.6) 
$$\lim_{\xi \to +\infty} \left[ \mathcal{Y} \left( \frac{1}{\xi} \right) \right]^{-1} \min_{\tau \in \langle \alpha, \xi \rangle} \varphi(\tau) = +\infty$$

for some a>0 then the equation Au + Su = f has at least one solution for an arbitrary  $f \perp R(A)^{\perp}$ .

Sketch of the proof. Let us consider the function

$$\widetilde{\varphi}: \xi \longmapsto \begin{cases} \varphi(\xi) \text{ for } |\xi| \leq b, \\ \varphi(b) \text{ for } \xi > b, \\ \varphi(-b) \text{ for } \xi < -b, \end{cases}$$

and the corresponding equation  $Au + \tilde{S}u = f$ . From the Theorem 2.16 this equation has a solution u because

$$0 = \sup_{\substack{w \in R(A)^{\perp} \\ \|w\|_{C(\overline{\Omega})} = 1}} |\langle f, w \rangle| < |\widetilde{g}(b)| \inf_{\substack{w \in R(A)^{\perp} \\ \|w\|_{C(\overline{\Omega})} = 1}} \int_{\Omega} |w|.$$

Using the condition (4.2) we can obtain a priori estimate

$$\|Q^{c}u\|_{C(\overline{\Omega})} \le c_{1} = c_{1}(\|f\|_{B^{*}}).$$

Further, methods from [3],[4] give a priori estimate

$$\| Qu \|_{C(\overline{\Omega})} \le c_3 = c_3(a, \widetilde{\varphi}, f),$$

where a > 0,

$$c_{3} = \frac{\mathbf{a} + c_{1}}{\Psi^{-1}(c_{2}(\inf_{\xi \geq a} \widetilde{\varphi}(\xi) + \sup_{\xi \in \mathbb{R}} | \widetilde{\varphi}(\xi)|)^{-1})},$$

$$c_{2} = c_{2}(\mathbf{a}, \widetilde{\varphi}, \mathbf{f}) = \inf_{\substack{w \in \mathbb{R}(\mathbb{A})^{\perp} \\ ||w||_{C(\widetilde{\Omega})} = 1}} (\inf_{\xi \geq a} \widetilde{\varphi}(\xi) \int_{\Omega} |w|).$$

If there exist numbers  $a,b \in \mathbb{R}$ , 0 < a < b, such that  $b > c_1(\widetilde{\varphi},f) + c_3(a,\widetilde{\varphi},f)$  then the solution u of the equation  $Au + \widetilde{S}u = f$  is also the solution of the equation Au + Su = f because  $\widetilde{S}u = Su$ . The condition (4.6) guarantees the existence of such numbers a,b.

For example, the problem

$$\begin{cases} (\Delta - \lambda) \left[ (\Delta u - \lambda u)^5 + (\Delta u - \lambda u)^3 \right] + \frac{u}{1 + u^2} = f \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega. \end{cases}$$

has at least one weak solution  $u \in W_0^{1,6}(\Omega) \cap W^{2,6}(\Omega)$  if  $f \perp \text{Ker } [\Delta - \lambda \text{ id}].$ 

It is also possible to apply the abstract results to the existence of solution of the Neuman problem

$$\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} \left[ (\alpha + |\nabla u|^{2})^{\frac{D}{2} - 1} \frac{\partial u}{\partial x_{i}} \right] + \frac{u}{1 + |u|^{k}} = f \text{ in } \Omega$$

$$\frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega,$$

where c>0, p>1,  $k\geq 2$ . If  $f\in L_1(\Omega)$ ,  $\int_{\Omega} f(x)dx=0$ , this problem has at least one weak solution  $u\in W^{1,p}(\Omega)$ .

#### References

- [1] J. FREHSE: Solvability and alternative theorems for a class of nonlinear functional equations in Benach spaces, Ark . Math. 17(1979), no. 1, 93-105.
- [2] J. FREHSE: Landesman-Lazer alternative theorems for a class of nonlinear functional equations, Math. Ann. 238(1978), no.1, 59-65.
- [3] S. FUČÍK: Solvability of nonlinear equations and boundary value problems, Society of Czechoslovak mathematicians and physicists, Prague, 1980.
- [4] S. FUČÍK, M. KRBEC: Boundary value problems with bounded nonlinearity and general null-space of the linear part, Math. Z. 155(1977), 129-138.
- [5] J. VOLDRICH: Nonlinear noncoercive operator equations (in Czech), Graduate theses, Charles University, Prague, 1980.

Katedra matematiky VŠSE, Nejedlého sady 14, 30614 Plzeň, Czechoslovakia

(Oblatum 9.4. 1982)