

Werk

Label: Article **Jahr:** 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log59

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23.4 (1982)

EULER POLYGONS AND KNESER'S THEOREM FOR SOLUTIONS OF DIFFERENTIAL EQUATIONS IN BANACH SPACES Bogdon RZEPECKI

Abstract: By (PC) we denote the problem of finding the solution of the differential equation $\mathbf{x} = \mathbf{f}(\mathbf{t},\mathbf{x})$ satisfying the initial condition $\mathbf{x}(0) = \mathbf{x}_0$, where t belongs to a compact real interval and f is a function with values in a Banach space E. In this note we are interested in the study of the problem (PC) with applying the method of Euler polygons. Using this method we obtain some Kneser-Szufla type results for (PC) (the set of all solutions of the problem(PC) is a nonempty continuum in the space C(J,E)) when the function f satisfying regularity Ambrosetti type condition with respect to the "measure of noncompactness ∞ ".

 $\underline{\text{Key words}}$: Differential equations with values in Banach space, Euler polygons, structure of the set solutions, measure of noncompactness.

Classification: 34G20

1. <u>Introduction and notations</u>. Throughout this paper we assume that I = [0,a], E is a Banach space with the norm $\|\cdot\|$, $B = \{x \in E: \|x - x_0\| \le r\}$, f is a uniformly continuous function from $I \times B$ into E, and $M = \sup \{\|f(t,x)\| : (t,x) \in I \times B\} < \infty$. Moreover, let J = [0,h] where $h = \min(a,M^{-1}r)$.

By (PC) we shall denote the problem of finding the solution of the differential equation

$$x' = f(t,x)$$

satisfying the initial condition $x(0) = x_0$.

In this note we are interested in the study of the problem (PC) with applying the method of Euler polygons. More precisely,

using this method we obtain some Kneser-Szufla ([9]) type results for (PC) (the set of all solutions of the problem (PC) is a nonempty continuum in the space C(J,E)) when the function f satisfying regularity Ambrosetti type condition (see [1],[3]) with respect to the "measure of noncompactness \ll ". The idea of our work is closed in [10]. See also [5] - [8].

2. <u>Definitions</u>. Denote by C(J,E) the space of all continuous functions from J to E, with the usual supremum norm $\|\cdot\|$.

<u>Definition 1</u>. A function $x:J \to E$ is said to be a solution of the problem (PC) on the interval J, if it is a differentiable on J such that $x(0) = x_0$, $x(t) \in B$ for t in J, and x'(t) = f(t,x(t)) on J. Moreover, denote by S the set of all solutions of (PC) on J.

<u>Definition 2</u>. Let $0 < \epsilon \le h$, $0 \le p \le h$ and let $v:J \longrightarrow B$ be a function such that $v(0) = x_0$ and $||v(p) - x_0|| \le Mp$. We will call an (ϵ, p, v) -polygon Euler line for (PC) on J any function $y(\cdot, \epsilon, v)$ of the form:

$$y(t;\varepsilon,p,v) = \begin{cases} v(t) \text{ for } 0 \leq t \leq p; \\ v(p) \text{ for } p \leq t \leq p + \varepsilon; \\ y(t_i;\varepsilon,p,v) + \\ + (t - t_i)f(t_i;y(t_i;\varepsilon,p,v)) \\ \text{ for } t_i \leq t \leq t_{i+1}, \end{cases}$$

here (without loss of generality) we assume that $r_0 = p/\epsilon$ and $r^0 = h/\epsilon$ are positive integers, $r^0 > 1$ and $t_1 = i\epsilon$ for $i = r_0 + 1$, $r_0 + 2$,..., $r^0 - 1$.

<u>Definition 3.</u> By an ε -polygon Euler line of the problem (PC) we shall call any (ε, p, v) -polygon Euler line of (PC) with p = 0 and $v(t) \equiv x_0$, on J.

 $\underline{\text{Definition 4}}.$ Let n be a positive integer. By \mathbf{S}_n we can

denote the set of all $\frac{1}{n}$ -approximate solutions of the problem (PC) on the interval J. Here, a function $u:J\longrightarrow E$ is said to be $\frac{1}{n}$ -approximate solution of (PC) on J, if it satisfies the following conditions:

- (i) $u(0) = x_0$ and $||u(t^n) u(t')|| \le M |t^n v'|$ for t', t^n in J;
- (ii) $\| u(t^n) u(t') \int_{t'}^{t''} f(s, u(s)) ds \| \le n^{-1} | t^n t' |$ for all $0 \le t' \le t^n \le h$;

(iii)
$$\sup_{t \in J} \| u(t) - x_0 - \int_0^t f(s, u(s)) ds \| < 1/n.$$

<u>Definition 5.</u> We say that the function f satisfies the condition (s) if any set $\{u_n: n=1,2,\ldots\}$ with u_n in $\overline{S_n}$ (= the closure of S_n in C(J,E)) is a conditionally compact subset of C(J,E).

Let S_o be the set of all solutions of (PC) which are a limit of uniformly convergent sequence of Euler polygonal lines which are approximate solutions of this problem on J. It can be demonstrated (cf. [5]) that under suitable assumptions S_o is a nonempty continuum in the space C(J,E). Note that $S \neq S_o$.

Indeed, let $f(t,x) = \sqrt{x}$ for $t \ge 0$ and $x \ge 0$. Let us put $\varphi_0(t) = 0$ for $t \ge 0$, and

$$\varphi_{\xi}(t) =
\begin{cases}
0 & \text{for } 0 \le t \le \xi, \\
(t - \xi)^2/4 & \text{for } t > \xi
\end{cases}$$

where $\xi > 0$. It is easy to prove that φ_0 and φ_{ξ} ($\xi > 0$) are solutions of (PC) with $x_0 = 0$. Moreover, $\varphi_0 \in S_0$ and $\varphi_{\xi} \notin S_0$ for each ξ .

3. Some properties. First we prove that $S = \bigcap_{n=1}^{\infty} \overline{S_n}$. Obviously $S \subset \bigcap_{n=1}^{\infty} S_n$. Let $\||u_i - u||| \longrightarrow 0$ with $u_i \in S_n$ for all i. Since f is uniformly continuous and

$$\begin{split} \|u(t) - x_0 - \int_0^t f(s, u(s)) ds \| &\leq |\|u_1 - u\|\| + 1/n + \\ &+ \int_0^t \|f(s, u_1(s)) - f(s, u(s)) ds, \\ \text{so letting } i \longrightarrow \infty \text{ , we obtain} \end{split}$$

$$\| u(t) - x_0 - \int_0^t f(s, u(s)) ds \| \le 1/n$$

 $\|u(t)-x_0-\int_0^tf(s,u(s))ds\|\leq 1/n$ for t in J. This implies $\sum_{n=1}^\infty\overline{S_n}\subset S$ and we are done.

Let $y(\cdot; \varepsilon, p, v)$ be an (ε, p, v) -polygon Euler line for (PC) on J and let $t_i \le t \le t_{i+1}$ (here $t_i = i \in for i = r_0 + 1, r_0 + 1$) + 2,...,r° - 1). We have

(1)
$$y(t_i \varepsilon, p, v) = v(p) + \frac{i - v_o - 1}{t_o + m + 1} - t_{r_o + m} f(t_{r_o + m}, y(t_{r_o + m}, \varepsilon, p, v)) + (t - t_i) f(t_i, y(t_i, \varepsilon, p, v))$$

(2)
$$\| y(t; \varepsilon, p, v) - x_0 - \int_0^t f(s, y(s; \varepsilon, p, v)) ds \| \le$$

$$\leq \| v(p) - x_0 - \int_0^{t^p} f(s, v(s)) ds \| +$$

$$+ \int_{t^p}^{t_{N+1}} \| f(s, y(s; \varepsilon, p, v)) \| ds + I_0 \le$$

$$\leq \sup_{t \in J} \| v(t) - x_0 - \int_0^t f(s, v(s)) ds \| + M\varepsilon + I_0,$$

$$I_{0} = \sum_{m=1}^{t_{-n}} \int_{t_{n}+m}^{t_{n}+m+1} \| f(t_{r_{0}+m}, y(t_{r_{0}+m}; \varepsilon, p, v)) - f(s, y(s; \varepsilon, p, v)) \| ds + ct$$

+
$$\int_{t_1}^{t} \| f(t_1, y(t_1; \epsilon, p, v)) - f(s, y(s; \epsilon, p, v)) \| ds$$
.

Hence, for $t_j \le t' \le t_{j+1}$ and $t_k \le t'' \le t_{k+1}$ with $j \le k$,

(3)
$$\|y(t^n; \varepsilon, p, v) - y(t'; \varepsilon, p, v) - \int_{t'}^{t''} f(s, y(s; \varepsilon, p, v)) ds \| = \|(t_{j+1} - t')f(t_j, y(t_j; \varepsilon, p, v)) + \|(t_{j+1} - t')f(t_j, y(t_j; \varepsilon, p, v))\|$$

$$+ \sum_{m=1}^{k-j-1} (t_{j+m+1} - t_{j+m}) f(t_{j+m}, y(t_{j+m}; \varepsilon, p, v)) + \\ + (t'' - t_k) f(t_k, y(t_k; \varepsilon, p, v)) - \\ - \int_{t'}^{t+1} f(s, y(s; \varepsilon, p, v)) ds - \\ - \sum_{m=1}^{k-j-1} \int_{t_{j+m}}^{t+m+1} f(s, y(s; \varepsilon, p, v)) ds - \\ - \int_{t_k}^{t''} f(s, y(s; \varepsilon, p, v)) ds \| \leq \\ \leq \int_{t'}^{t+1} \| f(t_j, y(t_j; \varepsilon, p, v)) - f(s, y(s; \varepsilon, p, v)) \| ds + \\ + \sum_{m=1}^{t-j-1} \int_{t_{j+m}}^{t_{j+m+1}} \| f(t_{j+m}, y(t_{j+m}; s, p, v)) - \\ - f(s, y(s; \varepsilon, p, v)) \| ds + \\ + \int_{t_{j+m}}^{t'''} \| f(t_k, y(t_k; \varepsilon, p, v)) - f(s, y(s; \varepsilon, p, v)) \| ds.$$

Moreover, it can be easily seen that

(4)
$$\|y(t';s,p,v) - y(t'';s,p,v)\| \leq M |t' - t''|$$

if
$$\|v(t') - v(t'')\| \le M|t' - t''|$$
 for t', t' in J.

Let u_{ε} be an ε -polygon Euler line for (PC) on J. Evidently, $\|u_{\varepsilon}(t') - u_{\varepsilon}(t'')\| \leq M|t' - t''|$ for t', t'' in J.

Choose $\eta > 0$ and $0 < \delta' \le 1/n$ with $\eta M + \delta' h < 1/n$. By uniform continuity of f there exists a positive $\varepsilon_0 \le \eta$ such that $\|f(t_1, u_{\varepsilon}(t_1)) - f(s, u_{\varepsilon}(s))\| < \delta'$ for $\varepsilon < \min(\varepsilon_0, h)$ and $t_1 \le s \le t_{1+1}$ (1 = 1,2,..., r^0). Hence, by (2),

$$\begin{split} \|u_{\varepsilon}(t) - x_{0} - \int_{0}^{t} f(s, u_{\varepsilon}(s)) ds \| & \leq \int_{0}^{t_{1}} \| f(s, u_{\varepsilon}(s)) \| ds + \\ & + \sum_{m=1}^{t_{-1}} \int_{t_{mn}}^{t_{m+1}} \| f(t_{m}, u_{\varepsilon}(t_{m})) - f(s, u_{\varepsilon}(s)) \| ds + \\ & + \int_{t_{1}}^{t} \| f(t_{1}, u_{\varepsilon}(t_{1})) - f(s, u_{\varepsilon}(s)) \| ds < \eta M + \sigma' h \end{split}$$

for $t_i \le t \le t_{i+1}$. This implies

 $\sup_{t\in\mathcal{J}}\|u_{\varepsilon}(t)-x_{0}-\int_{0}^{t}f(s,u_{\varepsilon}(s))\mathrm{d}s\|\leq\eta\,M+\sigma'h<1/n.$ Further, by (3), for $t_{j}\leq t'\leq t_{j+1}$ and $t_{k}\leq t''\leq t_{k+1}$ (here $j\leq k$)

$$\| u_{\varepsilon}(t^{*}) - u_{\varepsilon}(t') - \int_{t'}^{t''} f(s, u_{\varepsilon}(s)) ds \| \leq$$

$$\leq \int_{t'}^{t_{j+1}} \| f(t_{j}, u_{\varepsilon}(t_{j})) - f(s, u_{\varepsilon}(s)) \| ds +$$

$$+ \sum_{m=1}^{k-j-1} \int_{t_{j+m}}^{t_{j+m+1}} \| f(t_{j+m}, u_{\varepsilon}(t_{j+m})) -$$

$$- f(s, u_{\varepsilon}(s)) \| ds +$$

$$+ \int_{t_{k}}^{t''} \| f(t_{k}, u_{\varepsilon}(t_{k})) - f(s, u_{\varepsilon}(s)) \| ds <$$

$$< \delta' \| t' - t^{m} \| \leq n^{-1} \| t' - t^{m} \|.$$

So we have proved the following:

Fix an index n. There exists $\varepsilon_0>0$ such that the Euler's ε -polygonals line $u_{\varepsilon}\in S_n$ for any $\varepsilon<\min(\varepsilon_0,h)$. We claim that for each $w\in S_n$ there exists a positive $\varepsilon_0' \leq \varepsilon_0$ such that (ε,p,w) -polygon Euler line $y(\cdot,\varepsilon,p,w)\in S_n$ for any $\varepsilon<\varepsilon_0'$ and $0\leq p\leq h$.

In fact, let us assume that $~\eta < \, \epsilon_{\, 0}$ and $\, \mathcal{O} \leq \, 1/n$ are such that

 $\sup_{\mathbf{t} \in J} \| \mathbf{w}(\mathbf{t}) - \mathbf{x}_0 - \int_0^{\mathbf{t}} f(\mathbf{s}, \mathbf{w}(\mathbf{s})) d\mathbf{s} \| + \eta \, \mathbf{M} + \sigma' \mathbf{h} < 1/n.$ By (4) we obtain $\| \mathbf{y}(\mathbf{t}'; \varepsilon, \mathbf{p}, \mathbf{w}) - \mathbf{y}(\mathbf{t}^n; \varepsilon, \mathbf{p}, \mathbf{w}) \| \leq \mathbf{M} |\mathbf{t}' - \mathbf{t}^n|$ on J. Now, similarly as above, there is a positive $\varepsilon'_0 \leq \eta$ with $\| f(\mathbf{t}_1, \mathbf{y}(\mathbf{t}_1; \varepsilon, \mathbf{p}, \mathbf{w})) - f(\mathbf{s}, \mathbf{y}(\mathbf{s}; \varepsilon, \mathbf{p}, \mathbf{w})) \| < \sigma'$ for $\varepsilon < \varepsilon'_0$, $0 \leq \mathbf{p} \leq \mathbf{h}$ and $\mathbf{t}_1 \leq \mathbf{s} \leq \mathbf{t}_{1+1}$, where $\mathbf{t}_1 = \mathbf{i} \varepsilon$, $\mathbf{i} = \mathbf{r}_0 + 1, \dots, \mathbf{r}^0 - 1$. Furthermore, let us put

 $I(t) = \| y(t; \varepsilon, p, w) - x_0 - \int_0^t f(s, y(s; \varepsilon, p, w)) ds \|$ for t in J. We have:

1) if
$$0 \le t \le p$$
, then $I(t) = \| w(t) - x_0 - \int_0^t f(s, w(s)) ds \|$;

2) if
$$p \le t \le t_{r_0+1}$$
, then
$$I(t) \le ||w(p) - x_0 - \int_0^{t} f(s, w(s))|| + \frac{1}{2} \int_0^{t} f(s, w(s)) || + \frac{1}{2} \int_0^{t}$$

$$+ \|\int_{\tau}^{t} f(s, w(p)) ds \| \leq \sup_{t \in J} \|w(t) - x_{0} - \int_{0}^{t} f(s, w(s)) ds \| + \varepsilon M;$$

3) if $t_i \in t \in t_{i+1}$, then

$$\begin{split} & \text{I(t)} \not \in \sup_{t \in J} \ \| \, \text{w(t)} - \, \text{x}_{\text{o}} - \, \int_{0}^{t} \, f(s, \text{w(s)}) \, \text{d}s \, \| + \, \varepsilon \, \text{M} + \, \text{I}_{\text{o}} < \\ & < \sup_{t \in J} \ \| \, \text{w(t)} - \, \text{x}_{\text{o}} - \, \int_{0}^{t} \, f(s, \text{w(s)}) \, \text{d}s \, \| + \, \varepsilon \, \text{M} + \\ & + \, \text{o'} \, \sum_{m=1}^{t-h_{\text{o}}-1} \, (t_{r_{\text{o}}+m+1} - t_{r_{\text{o}}+m}) + \, \text{o'} \, (t-t_{1}) \not = \\ & \le \sup_{t \in J} \ \| \, \text{w(t)} - \, \text{x}_{\text{o}} - \, \int_{0}^{t} \, f(s, \text{w(s)}) \, \text{d}s \, \| + \, \varepsilon \, \text{M} + \, \text{o'} \, \text{h.} \end{split}$$

From this we deduce that

$$\sup_{t \in J} I(t) \leq \sup_{t \in J} \| w(t) - x_0 - \int_0^t f(s, w(s)) ds \| + \varepsilon M + \sigma' h < 1/n.$$

Moreover (see (3)), for
$$t_j \in t' = t_{j+1}$$
, and $t_k = t'' = t_{k+1}$,
$$\| y(t''; \varepsilon, p, w) - y(t'; \varepsilon, p, w) - \int_{t'}^{t''} f(s, y(s; \varepsilon, p, w)) ds \| < \delta (|t_{j+1} - t'| + \sum_{m=1}^{k-j-1} |t_{j+m+1} - t_{j+m}| + |t'' - t_k|) = n^{-1} |t' - t''|.$$

Consequently

$$\|y(t"; \varepsilon, p, w) - y(t'; \varepsilon, p, w) - \int_{t'}^{t''} f(s, y(s; \varepsilon, p, w)) ds \| <$$
 $< n^{-1} | t" - t' |$

for t', t" \in J, which ends the proof.

Now, modifying the proof from [10], we prove that $\epsilon \longmapsto u_{\epsilon}, \ p \longmapsto y(\cdot\,;\,\epsilon\,,p,w) \ (\text{here } \epsilon < \epsilon_{0}') \ \text{are continuous mappings of } (0,\,\epsilon_{0}') \ \text{and respectively [0,h] into C(J,E).}$

For a convenience of the reader we give a short proof of

the first in these results: Assume $\varepsilon(j) \to \varepsilon$ as $j \to \infty$. Let $0 < \varepsilon'$, $\varepsilon < \varepsilon'_0$ and let $t_j \le t \le t_{j+1}$, $t_i \le t \le t_{j+1}$, where $t_j = j\varepsilon'$, $t_i = i\varepsilon$ for $j = 1, 2, \ldots, h/\varepsilon'$ and $i = 1, 2, \ldots$..., h/ε . Then

$$\begin{split} \|u_{\varepsilon'}(t) - u_{\varepsilon}(t)\| & \leq \|u_{\varepsilon'}(t_{j}) - u_{\varepsilon}(t_{1})\| + \\ & + \|(t - t_{j})f(t_{j}, u_{\varepsilon'}(t_{j})) - (t - t_{1})f(t_{1}, u_{\varepsilon}(t_{1}))\| \leq \\ & \leq \|u_{\varepsilon'}(t_{j}) - u_{\varepsilon}(t_{1})\| + \|(t - t_{j})f(t_{j}, u_{\varepsilon'}(t_{j})) - \\ & - (t - t_{1})f(t_{j}, u_{\varepsilon'}(t_{j}))\| + \\ & + \|t - t_{1}\| \|f(t_{j}, u_{\varepsilon'}(t_{j})) - f(t_{1}, u_{\varepsilon}(t_{1}))\| \leq \\ & \leq \|u_{\varepsilon'}(t_{j}) - u_{\varepsilon}(t_{1})\| + \||t_{j} - t_{1}\| + \\ & + \|t - t_{1}\| \|f(t_{j}, u_{\varepsilon'}(t_{j})) - f(t_{1}, u_{\varepsilon}(t_{1}))\|. \end{split}$$

This with the uniform continuity of f implies

 $\lim_{\substack{j\to\infty\\\|\mathbb{U}_{\mathcal{E}}(j)}}\|\mathbf{u}_{\mathcal{E}}(j)(t)-\mathbf{u}_{\mathcal{E}}(t)\|=0 \text{ for each t in } J, \text{ which proves that }$

Finally, we set

$$U = \{u_{\varepsilon}: 0 < \varepsilon < \varepsilon'_{0}\},$$

 $V_{\mathbf{w}} = \{ \mathbf{y}(\cdot; \varepsilon, \mathbf{p}, \mathbf{w}) : 0 \le \mathbf{p} \le \mathbf{h} \},$

where $\varepsilon < \varepsilon'_{0}$ and $w \in S_{n}$. Note that the sets U, V_{w} are connected in C(J,E). Furthermore, $y(\cdot;\varepsilon,0,w) = u_{\varepsilon}(\cdot) \in U \cap V_{w}$, $w(\cdot) = y(\cdot;\varepsilon,h,w) \in V_{w}$, and $V \subset S_{n}$ and $V_{w} \subset S_{n}$. The set $U \cup V_{w}$ is connected, and therefore the set $W_{n} = \bigcup \{U \cup V_{w} : w \in S_{n}\}$ is connected in C(J,E). Since $S_{n} \subset W_{n}$, so $S_{n} = W_{n}$. Consequently we make the result (cf. [10]):

The set S_n (n = 1,2,...) is nonenpty and connected in C(J,E).

4. Main result. We begin with the following two lemmas

that are of a general nature.

<u>Lemma 1</u>. Suppose that $u_n \in \overline{S_n}$ (n = 1, 2, ...) and $(u_{k(n)})$ is a convergent subsequence of (u_n) with limit u_0 . Then $u_0 \in S$.

<u>Proof.</u> We have

(5)
$$\|u_n(t) - x_0 - \int_0^t f(s, u_n(s)) ds \| \leq 1/n$$

(n = 1,2,...) for t in J. Since f is uniformly continuous and $\|\|u_{k(n)}-u_o\|\| \longrightarrow 0 \text{ as } n \longrightarrow \infty \text{ it follows that}$ $f(t,u_{k(n)}(t)) \longrightarrow f(t,u_o(t)) \text{ uniformly on J as } n \longrightarrow \infty \text{ . Replacing n by } k(n) \text{ in (5) and letting } n \longrightarrow \infty \text{ , we obtain } u_o(t) = x_o + \int_0^t f(s,u_o(s)) \mathrm{d}s \text{ for } t \in J. \text{ It is clear from this that } u_o(s) = x_o + \int_0^t f(t,x) \text{ on J such that } u_o(s) = x_o + \int_0^t f(t$

Lemma 2. Let $\{X_n: n=1,2,\ldots\}$ be a family of nonempty closed and connected subsets of C(J,E) such that each sequence (x_n) with $x_n \in X_n$ contains a convergent subsequence with limit in $\sum_{n=1}^{\infty} X_n$. Then the set $\sum_{n=1}^{\infty} X_n$ is connected.

The proof follows directly from the definitions and assumptions.

We now state the main result.

<u>Theorem</u>. Let the function f satisfy the condition (s). Then the set S of all solutions of (PC) on J is nonempty, compact and connected in C(J,E).

<u>Proof.</u> By the facts above, $S = \bigcap_{n=1}^{\infty} \overline{S_n}$ and S_n (n = 1, 2, ...) are nonempty connected subsets of C(J, E). Since $S \subset S_n$, so S is a compact. Let $u_n \in \overline{S_n}$ and let $(u_{k(n)})$ be a convergent subsequence of (u_n) with limit u_n . We have by Lemma 1 that $u_n \in S$. Now it

follows immediately from Lemma 2 that $\sum_{n=1}^{\infty} \overline{S}_n$ is nonempty and connected, and the proof is finished.

5. Application. The measure of noncompactness $\infty(X)$ of a nonempty bounded subset X of E, introduced by K. Kuratowski, is defined as the infimum of all $\varepsilon > 0$ such that there exists a finite covering of X by sets of diameter $\varepsilon \in \mathbb{C}$. (For convenience, we shall be using below the same symbol ∞ to denote the measure of noncompactness in E as well as in other Banach spaces like C(J,E).)

Let us list some known properties of ∞ (see e.g. [2] or [4]) which we shall use in our discussion:

Let $x \in E$ and let $A = \{p_n : n = 1, 2, ...\}$, $B = \{q_n : n = 1, 2, ...\}$ be bounded subsets of E, and let \mathcal{X} be a countable bounded equicontinuous family of C(J,E). Then

$$1^{\circ} \propto (\{x\}) = 0;$$

2° if $\infty(A) = 0$ then \overline{A} is compact;

 $3^{\circ} \propto (\{tx:x \in A_{\xi}^{\circ}\}) = |t| \propto (A) \text{ for each } r \text{ each } t;$

 $4^{\circ} \propto (\{x\} \cup A) = \propto (A);$

 5° $\propto (A) - \propto (B) \leq \propto (\{p_n - q_n : n = 1, 2, ...\});$

6° if $\sup \{ \|x\| : x \in A \} \leq b$, then $\alpha(A) \leq 2b$;

7° $\sup_{t \in \mathbb{J}} \propto (\{y(t): y \in \mathcal{X}\}) = \alpha(\mathcal{X}).$

From the Theorem we obtain the following result:

Let $L:J\times[0,\infty)\to[0,\infty)$ be a continuous function such that L(0,0)=0 and u(t)=0 is the unique continuous solution of the inequality $u(t) \neq \int_0^t L(s,u(s)) ds$ for which $\lim_{t\to 0_+} u(t)/t$ exists and is equal to 0. Suppose that $\alpha(ff(t,x):x\in X_s^2) \neq L(t,\alpha(X))$ for any subset X of B and all t in J. Then our function f satisfies the condition (s) and consequently the set S

is nonempty, compact and connected in C(J,E).

<u>Proof.</u> Let $u_n \in \overline{S_n}$ for $n \ge 1$. Put $p(t) = \infty (\{u_n(t) : n \ge 1\})$ for each t in J.

Let $t \in J$ and t' > 0. By 5° and 6°

 $p(t + t') - p(t) \le \infty (\{u_n(t + t') - u_n(t) : n \ge 1\}) \le 2Mt'.$

Therefore p is continuous and thus $t \mapsto L(t,p(t))$ is integrable on J. Now we prove that

(6)
$$p(t) \leq \int_0^t L(s, p(s)) ds$$

for all t in J.

For proving (6), let $t \in J$. Since f is uniformly continuous, for any given $\varepsilon > 0$ there exists $\sigma' > 0$ such that $|s-s'| < \sigma'$, $||x-x'|| < \sigma'$ implies $||f(s,x)-f(s',x')|| < \varepsilon/4$. For a positive integer $k > \delta'^{-1}$, $t \cdot \max(1,M)$, let $h_0 = t/k$ and $s_0 < s_1 < \cdots < s_k = t$ where $s_0 = 0$ and $s_1 = s_{i-1} + h_0$ with $i = 1,2,\ldots,k$. Then $||f(s,u_n(s)) - f(s_i,u_n(s_i))|| < \varepsilon/4$ $(n = 1,2,\ldots)$ for $s_{i-1} \le s \le s_i$ and therefore

$$\begin{split} \| \, \mathbf{u_n}(s_i) \, - \, \mathbf{u_n}(s_{i-1}) \, - \, \mathbf{h_0} \mathbf{f}(s_i, \mathbf{u_n}(s_i)) \, \| \, \leq \\ & \, \leq \| \, \mathbf{u_n}(s_i) \, - \, \mathbf{u_n}(s_{i-1}) \, - \, \int_{s_{i-1}}^{s_i} \, \mathbf{f}(s, \mathbf{u_n}(s)) \mathrm{d}s \, \| \, + \\ & \, + \, \| \, \int_{s_{i-1}}^{s_i} \mathbf{f}(s, \mathbf{u_n}(s)) \mathrm{d}s \, - \, \int_{s_{i-1}}^{s_i} \, \mathbf{f}(s_i, \mathbf{u_n}(s_i)) \mathrm{d}s \, \| \, \leq \\ & \, \leq n^{-1} \| \, s_i \, - \, s_{i-1} \| \, + \, \int_{s_{i-1}}^{s_i} \, \| \, \mathbf{f}(s, \mathbf{u_n}(s)) \, - \\ & \, - \, \mathbf{f}(s_i, \mathbf{u_n}(s_i)) \, \| \, \mathrm{d}s \, < \, (1/n \, + \, \epsilon \, /4) \, \mathbf{h_0} \, \leq \, h_0 \, \, \epsilon \, /2 \end{split}$$

for all $n \ge n_0$. Now, by $3^{\circ} - 6^{\circ}$,

$$\sum_{i=1}^{k} (p(s_i) - p(s_{i-1}) - h_o \alpha (\{f(s_i, u_n(s_i)) : n \ge 1\})) \le$$

$$\le \sum_{i=1}^{k} \alpha (\{u_n(s_i)\} - u_n(s_{i-1}) - h_o f(s_i, u_n(s_i)) : n \ge 1\}) =$$

$$= \sum_{i=1}^{k} \alpha(\{u_n(s_i) - u_n(s_{i-1})\} - h_0f(s_i, u_n(s_i)) : n \ge n_0\}) \le$$

$$\leq \sum_{i=1}^{k} 2h_0 \epsilon/2 = \epsilon kh_0 = \epsilon t$$

and

 $-\sum_{i=1}^{k} (p(s_i) - p(s_{i-1}) - h_o \infty (\{f(s_i, u_n(s_i)) : n \ge 1\})) \ge -\varepsilon t.$

$$\begin{split} & \overset{\&}{\iota^{\sum_{1}}} \ h_{o}L(s_{1},p(s_{1})) \geq \overset{\&}{\iota^{\sum_{1}}} \ h_{o} \propto (\{f(s_{1},u_{n}(s_{1})): n \geq 1\}) = \\ & = \overset{\&}{\iota^{\sum_{1}}} \ (p(s_{1}) - p(s_{1-1})) - \overset{\&}{\iota^{\sum_{1}}} \ (p(s_{1}) - p(s_{1-1}) - \\ & - h_{o} \propto (\{f(s_{1},u_{n}(s_{1})): n \geq 1\})) \geq (p(t_{k}) - \\ & - p(t_{o})) - \varepsilon t = p(t) - p(0) - \varepsilon t = p(t) - \varepsilon t. \end{split}$$

Consequently

 $\int_0^t L(s,p(s))ds = \lim_{k \to \infty} \sum_{i=1}^k h_o L(s_i,p(s_i)) \ge p(t) - \varepsilon t.$ Since $\varepsilon > 0$ is arbitrary, we have $\int_0^t L(s,p(s))ds \ge p(t) \text{ for } t$ in J.

It is easy to verify that $\lim_{t \to 0_+} p(t)/t = 0$. By (6) and the continuity of p from this it follows that p(t) = 0 on J. Finally $\propto (\{u_n: n \ge 1\}) = \sup_{t \in \mathcal{J}} \propto (\{u_n(t): n \ge 1\}) = 0$, since $\{u_n: n \ge 1\}$ is a bounded equicontinuous family. Hence $\{u_n: n \ge 1\}$ is conditionally compact, and we are done.

References

- [1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39(1967), 349-360.
- [2] K. DEIMLING: Ordinary differential equations in Banach spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977.
- [3] K. GOEBEL and E. RZYMOWSKI: An existence theorem for the equation $\mathbf{x}' = \mathbf{f}(\mathbf{t}, \mathbf{x})$ in Banach space, Bull.

Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 28(1970). 367-370.

- [4] R.H. MARTIN Jr.: Nonlinear operators and differential equations in Banach spaces, John Wiley and Sons, New York 1976.
- [5] B. RZEPECKI: On the method of Euler polygons for the differential equation in a locally convex space, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23(1975), 411-414.
- [6] B. RZEPECKI: Differential equations in linear spaces, PhD Thesis, University of Poznań, 1976.
- [7] B. RZEPECKI: A functional differential equation in a Banach space, Ann. Polon. Math. 36(1979), 95-100.
- [8] B. RZEPECKI: On measure of noncompactness in topological spaces, Comment. Math. Univ. Carolinae 23(1982), 105-116.
- [9] S. SZUFLA: Structure of the solutions set of ordinary differential equations in Banach space, Bull. Acad. Polon.Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 141-144.
- [10] S. SZUFLA: Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26(1978), 407-413.

Institute of Mathematics A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

(Oblatum 16.4. 1982)