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Abstract: By (PC) we denote the problem of finding the
solutlon of the differential equation x'= f(t,x) satisfying

the initial condition x(0) = o where t belongs to a compact

real interval and f is a function with values in a Banach spa-
ce E, In this note we are interested in the study of the pro-
blem (PC) with applying the method of Euler polygons. Using this
method we obtain some Kneser-Szufla tyve results for (PC) (the
set of all solutions of the problem(PC is a nonempty continuum
in the space C(J,E)) when the function f satisfying regularity
Ambrosettli type condition with respect to the "meesure of non-
compactness o ",

Key words: Differential equations with values in Banach
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Classification: 34G20

1. Introduction and notations. Throughout this paper we
assume that I = [0,a], E 18 a Banach space with the norm || . ",
B={xeE:lx - xoll < r}, £ is a uniformly continuous function
from Ix B into E, and M = sup {} £(t,x) |l :(t,x) € Ix Bi<on.More-
over, let J = [0,h] where h = min(a,M'lr).

By (PC) we shall denote the problem of finding the soluti-

on of the differential equation
x" = £(t,x)
satisfying the initial condition x(0) = X5

In this note we are interested in the study of the problem
(PC) with applying the method of Euler polygons., More precisely,
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using this method we obtain some Kneser-Szufla ({9]) type re-
sults for (PC) (the set of all solutions of the problem (PC)
is a nonempty continuum in the space C(J,E)) when the function
f satisfying regularity Ambrosetti type condition (see [11,[3])
with respect to the "measure of noncompactness of ", The idea

of our work is closed in [10]. See also L5) - [8].

2, Definitians. Denote by C(J,E) the space of all continu-
ous functions from J to E, with the usual supremum norm il » lil «

Definition 1. A function x:J —> E is said to be a solution
of the problem (PC) on the intervel J, if it is a differentiable
on J such that x(0) = X x(t)€B for t in J, and x°(t) = £(t,x(t))
on J., Moreover, denote by S5 the set of all solutions of (PC) on J,

Definition 2. Let O <e < h, 04£p<h and let v:J—> B be
a function such that v(0) = x, and | v(p) - xoﬂ/_-' Mp. We will
call an ( g ,p,v)-polygon Euler line for (PC) on J any function
y(+3 €,v) of the form:

v(t) for 0<£t<p;
y(t; €,p,v) = | v(p) for p£t<p + €;
y(tise,p,v) +
+ (= )20t 55(t,5 €,0,v))
for £ t< Y10

here (without loss of generality) we assume that T, = p/e and
r° = h/e are positive integers, r°>1 and ti = ie for i =
=T, + 1, T, + 2,...,r° -1,

Definition 3. By en € -polygon Euler line of the problem
(PC) we shall call any (€ ,p,v)-polygon Euler line of (PC) with

P=20and v(t)= x,on J,

Definition 4. Let n be a positive integer. By Sn we can
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denote the set of all -}-1- -approximate solutions of the problem
(PC) on the interval J. Here, a function u:J—> E is said to
be % -approximate solution of (PC) on J, 1f it satisfies the
following conditions:

(1) u(0) = x_ and Hu(t") - u(t )< M |t" - 370 for
t°, t" in J; .

(11) N u(") = u(t’) - j;' (s,u(s))as l<n™t | ¢ - 7|
for all 04t < t"£h;

t
(1ii) :\;}5 fu(t) - x, - j‘; f(s,u(s))ds | <1/n.

Definition 5. We say that the function f satisfies the
condition (s) if eny set fu m = 1,2,...3 with uy in 5, ( = the
closure of Sn in C(J,E)) is a conditionally compact subset of
C(J,E).

Let SO be the set of all solutions of (PC) which are a li-
mit of uniformly convergent sequence of Euler polygonal lines
which are approximate solutions of this problem on J. It can be
demonstrated (c¢f. [5)) that under suitable assumptions S° is a
nonempty continuum in the space C(J,E). Note that S=5_.

Indeed, let £(t,x) = VX for +20 and xZ 0, Let us put
(%) = 0 for t20, and
-0 for 04t £ €,

(t -§)2/4 for t > §
where §‘ >0, It is easy to prove that Po ad gag (g > 0) are

q'g(t) =

solutions of (PC) with x, = 0. Moreover, @, €& So and ?f ¢ So
for each g o

Q —
3. Some properties. First we prove that S = () S . Ob-

0
viously S ch1 Spe Let Nuy - u Il — 0 with u; €8, for all i.

Since £ is uniformly continuous and
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t
Rut®) = x, - [ #(a,u(e))a8 | £ Mu, - ull +1/n +

+ j;t llr(s.ui(s)) - f(s,u(s))ds,
80 letting 1 —> @ , we obtain
() = x, = [* #(s,u(s))as |l £ 1/n
for t in J. This implies ”f;\d's;cs and we are done.
Let y(- ;3 €,p,v) be an (e »PyV)=polygon Euler line for (pC)
on J and let tiététiﬂ (here ty=1e fori=1r + 1, r +

[ o
4+ 25000,7° = 1). We have

(1) y(t3e,p,v) = v(p) +
-1

+ ng4 (tr°m+1 - trom)f(trom’y(trom' €,p,V)) +

+ (%= )2(t,,5(t55 €,p,v))
and

t
(2) Ny(tie,pv) - x, - J, 2s,5(85 €,p,v))a8 Il £

£l v(p) - x, - “Chf(s,v(s))da I+

tn4

d
+ ff. W 2(s,5(8; €,p,v)) || a8 + I, <
t
ézueijlv(t) -x, - f; 2(s,v(s))as || + Mg + I,
where

4-n-1 t’%{-mi-"

I, - j;"aw nf(tro-un'y(trom‘ €,p,v)) -

- 2(8,y(83 €,p,v)) | d=s +

+ .[;_ .f(tivy(ti‘ €sPyV)) - f(‘o’(’ieopov))" ds.

Hence, for tyet'< ty,y and tkét"étku with j<k,

L t
(3) Uy(t"5e,p,%) = 3(t°; g,p,v) = j;, 2(s,y(85 €,p,v))ds || =

=10ty - t')f(ta.y(tJi €sPpV)) +
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m=1 Yyeme1 - t:]#m)f(tj-om'y(tj.,,mi 8,DP,V)) +
(" = £ )20t,5(t 3 €,0,7)) -

+

o
[¥2(s,5(s5 £p,v))a8 -
1’

R-5-1 ft“”"
m=1 t

4
. £(s,y(83 €,p,v))ds =
Frm
= J;:‘ 2(s,y(s; €,DyV))ds Il <«
t, 1
[T N8035 £0ma) - Kauy(ase,pv)) las +

. b,g -1 fﬁj.+m»+4

m=1 ‘éj.h'm/
- 2(s,y(83 €,p,¥)) |l a8 +

I\ £¢ tj.,m.y( tj-ﬂn' SyPyV))-

+ j;:. 2t ,3(t s €,p,7)) - 2(8,5(8; €,p,v)) |l ds.
Moreover, it can be easily seen that
(4) Wyt 58,p7) - y(t"56,p, V)N 2 M £ - t]
12 I v(t") = v(t") N £ M|t = t"| for t°, t" in J.

Let ug be an ¢ -polygon Euler line for (PC) on J, Evi-
dently, llue(t') - ue(t")lléllt' - t"| for t,t" in J.

Choose 7 > 0 and 0 <d'< 1/n with 7M + Sh<1/n, By uni-
form continuity of f there exists a positive soé 7, such that
Ne(t,uc(ty)) - f(s,u (s))li<d” for e < min( E osh) and
ty€s<ty ) (1 =1,2,...,r°). Hence, by (2),

t t
\\us(t) -x, - j; f(s,u (s))ds Il éj;1 Il 2(s,u,(8)) 1l ds +

4-1 tm+1
CE0 L U uty) - fs,ug(e)) ] as +

+ L et ug(t)) - fs,ug(e)) a8 < M + o

for st é‘ti-l»l‘ This implies
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t
tseug ﬂug(t) -x, - j(; f(s,ue(s))ds Il < LM+ Sh<1/n,
Further, by (3), for tJét'é t54, and tkét"é-tk+1 (here j<k)

. tn
NugCtm) - u (t7) - ft (s,u.(s))ds ll <

IN

t,
ft,z”” f(tj.ue(tj)) - £(s,u.(s))| ds +

k=3 -1 ?+m,+1
faza by My ) -

F+

= f(s,uc(s)) il ds +

"

t
j;k, l 2t () - T(s,u (s) il s <

+

<INt = trlen g L gny,

So we have proved the following:

Fix an index n, There exists €,> 0 such that the Euler ‘s
€ -polygonals line uc € S for any g < min(e ,h). We claim that
for each weS there exists a positive s eo such that
(€ ,p,%w)=polygon Euler line y(+ 3 e,p,w)e S, for any g < E/o
and 0<p4h,

In fact, let us assume that n< ao and J < 1/n are such
that

sup, lw(t) = x, -J;t t(s,w(s))ds |l + MM+ I h<i/n,
By (4) we obtain [y(t"; EyPsW) = y(t"; €,p,w) |l = M|t" - tn |
on J. Now, similarly as above, there is a positive s <7
with “f(ti,y(ti; €:PyW)) - £(8,y(8; €,p,w)) Il < & tor c< ¢ o
O4p4h and tjé 844, ., where ty=1€ ,1=r +1,...,°% 1,
Furthermore, let us put

t
8 = Ny(tse0pm) = x - Jo s,5(85 €,p,m)) as i
for t in J. We have:
1) 12 04 t4p, then I(t) = | w(t) - x f t(s,w(s))as |l ;
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2) if p£t<4 , then

ro+1
I(t) £l w(p) - x, - _f;fv f(s,w(s)) |l +

+ ,[,f 2(s,w(p)las | <

< sup, l|w(t) - x, - J;t 2(s,w(s))dsll + € N;

teld
3) if tiététi+l, then

I(t)étmelg Nw(t) - x, - f: #(e,w(s))ds I+ M + I,<

t
< pup ] W(?:) -x, - j; f(s,w(s))asll+ eM +
L-fg~1

+ g mz=4 (tro-l-m+1 - tro‘"") + d(t - t;) £

z sup, Hw(t) - x, - _];t f(s,w(s))ds )l + €M + d'h,
From this we deduce that
t
45uB I(t)/‘-f‘ép; fw(ty - x, - J; f(s,w(s))ds Il +
+ €M 4+ Jh<1/n,
Moreover (see (3)), for tjét" ti41s and t £t" £ty .,

"
Il y(t"; e,0,w) - y(t"; €,p,%) - ff £(s,y(s; €,p,w))ds ll <

-
<8y, -t { * 2, ltjm+1 = tjml +
+ 18"~ 4 |) = ALY N

Consequently
"

Iy(t"; e,pw) - y(t 5€,p,W) - ft £(s,y(s; & ,p,w))ds <
< oYt - 7
for t ,t"€ J, which ends the proof,
Now, modifying the proof from [10], we prove that
€ > ug, p—>y(+; £,p,w) (here € < e'o) are continuous map-

pings of (O, elo) and respectively Lo,h] into C(J,E).

For a convenience of the reader we give a short proof of
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the first in these results: Assume €(j)—>€ a8 j— 0.
Let 0<e’, e < &', and let tjltlty h, b LtL ty,1» Where
ty = je’ , ¥y =1€e for j = 1,2,...,h/e’ and i = 1525 ose
eeeyh/e , Then
ﬂue.(t) =u ()l el ue,(tj) =u(t) i+
+ “(t = tj)t(td'uel(tj)) - (t - ti)f(tinue(ti))“é
£ - - -
-llue,(tj) w(t )+ (e td)f(tj’“e'(td))
= (t = ti)f(tdsnel(td))" +
+ 1t - Ll f(t:’,us,(td)) = 2ty u () £
£ “s'(td) = u (t)ll + IlM:;j -t o+
-t t(td,u'e,(td)) = 2(tg,u ().
This with the uniform continuity of ¢ implies
;imm llue(J)(t) = u(t)ll = 0 for each ¢ in J, which proves that
Illue(J) ~ull— 0as j — .
Finally, we set
1 <e’}
U= us;o < € eo ’
Vw =13 ;e,p,w) 104 pén},
where e < e'o and wesn. Note that the sets u, V' are connec-
ted in C(J,E), Furthermore, y(.; €,0,w) = u(-)eun Vgr W) =
= y(e3€,h,w)e V', and Ve S, and V< S,+ The set Uu V' is con-
nected, and therefore the set LS -U{quwxve Sn§ is connect-

ed in C(J,E), Since Snc Wn, 80 sn = In. Consequently we make
the result (cf, [10]):

The set Sn (n = 1,2,...) is nonenpty and connected in
C(J,E),

4. Main result, We begin with the following two lemmas
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that are of a general nature,

Lemme 1. Suppose that u € -S; (n=1,2,,..) and (uk(-n))
is a convergent subsequence of (un) with limit uge Then uoc S.

Proof. We have
(5) Nug(e) = x, = J #(a,u,(a))d8 | £ 1/m

(n = 1,2,,..) for t in J. Since f is uniformly continuous and

1] Yeen) - Yo il — 0as n—>0c0 1t follows that

f(t,uk(n)(t))-—Pf(t,uo(t)) uniformly on J as n —» ¢c© , Repla-

cing n by k(n) in (5) and letting n —> ¢0 , we obtain uo(t) =
t

=x + _[; f(s,uo(a))ds for t€J, It is clear from this that u,

is a solution of x” = £(t,x) on J such that u,(0) = x , which

completes the proof.

Lemma 2. Let {Xu: n=1,2,...5 be a family of nonempty
closed and connected subsets of C(J,E) such that each sequence
(xn) with X, € xn contains a convergent subsequence with 1limit

0 0
in nf__\,,xn. Then the set () X, is conneoted.

m=1
The proof follows directly from the definitions and assump-

tions,

We now state the main result.

Theorem. Let the function f satisfy the condition (s).
Then the set S of all solutions of (PC) on J is nonempty, com-
pact and connected in C(J,E).

Proof. By the facts above, S "»»?;\1 5, and S, (n = 1,2,...)
are nonempty connected subsets of C(J,E). Since SC S, 80 S is
a compact. Let u 6 i and let (“k(n)) be a convergent subsequen-
ce of (un) with 1limit u . We have by Lemma 1 that u,€ S. Now it
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0 —_—
follows immediately from Lemma 2 that w/_\4 Sn is nonempty and

connected, and the proof is finished,

5. Application. The measure of noncompactness o< (X) of a
nonempty bounded subset X of E, introduced by K. Ruratowski, is
defined as the infimum of all € > 0 such that there exigts a
finite covering of X by sets of diameter « £ (For convenien-

ce, we ghall be using below the Bame symbol o« to denote the
measure of noncompactness in E a8 well as in other Banach spa-
ces like C(J,E),)

Let us 1ist some known properties of o¢ (see e.g, [2] or
[4]) which we shall use in our discussion:

Let x€ E and let A -{pn: n=1,2,,.0}, B = {qnx n=1,
2,44} be bounded subsets of E, and let X be a countable bound-
ed equicontinuous family of C(J,E). Then

1° o ({x3) = 0;

2% 12 oCOA) = O then A is compact;

3° oL ({tx:xe AY) = |t o (A) for each real t;

4° < ({x}UA) = ()5

5° o« (A) = oL (B) < oc(-(pn - q:n=1,2,,..3);

6° 1f sup {lx|| 1x€ A} £b, then o(A)<2 2b;

7° ElépJoc({y(t)zye X = x(x).

From the Theorem we obtain the following result:

Let L:Ix=<[0,00) —> Lo,0) be a continuous function such
that L(0,0) = 0 and u(t) = 0 is the unique continuous solution
of the inequality u(t) éj;t L(s,u(s))ds for which t}»i‘B+ u(t)/t
exists and is equal to 0. Suppose that o (£(t,x) xeX3) =
L(t,c¢ (X)) for any subset X of B and all t in J. Then our func-
tion f satisfies the condition (s) and consequently the gset S
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1s nonempty, compact and connected in C(J,E),

Proof. Let u €S for nZ1. Put p(t) = (uy($)m=z13)
for each t in J.

Let teJ and t "> 0. By 5° and 6°

P(t + t7) = p(t) £ ccup(t + t7) - u (t) m213)e 2mMt”,
Therefore p is continuous and thus t+—> L(t,p(t)) is integrable

on J. Now we prove that

t
(6) p(t) ¢ [, L(s,p(s))ds
for all t in J.

For proving (6), let t€ J, Since f is uniformly continuous,
for any given & > O there exists d” > 0 such that |s - 8'|<d,
lx - x"ll<d” implies ll £(s,x) - £(s",x") |l < € /4. For a posi-
tive integer k> & ~L. t-max(1,M), let hy = t/k and 8 < 8)< .us
vee< By = t where 8, = 0 and By =8y 1 + ho with 1 = 1,2,...,k.
Then W £(s,u,(s)) - £(s ,u (8;)) < £/4 (n=1,2,...) for
By 1% s’—-ai and therefore

" un(si) - un(si—l) - hof(si'un(si)) " <

bv
< w,(sy) - w sy ) - L: t(s,u (8))ds Il +

/01‘, 412
+ 1 Li_"f(s,un(s))ds = J/;«Ld £(s;,u,(8,))ds I &

én'llsi - Bi—l' + L:_1 Il 2(syu,(s)) -
- f(83,u,(5;)) N ds<(1/n + € /4)h £1n g/2

for all nZn_. Now, by 3° - €°,
e
;= (p(83) = p(sy_3) = hyoc (£2(sy,u,(8;))nZ13)) £

R,
.2 ob(duy(sy)) = wy(s; 1) - hf(sy,u (s,))mz1}) =
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<2

&
2, ot (fup(sy) - Un(8y.1)) - B f(s;,u, (8y)) nz n,3)«
&

£ =

Zy 2h e/2 = Ekh = gt

and

&

-‘0;1 (P(Bi) G p(si-l) = ho‘”({f(si'un(si))mzn))z - et

Hence
&, 3
23 BL(sy,008,)) 2,3, hy o (11(s;,u,(8,)) mz13) =
= &k
=32y (p(sy) - (e 1)) =32 (p(sg) - play 1) -
- hom({f(si,un(si)):nZH))z (p(t,) -
= P(%)) - €t = p(t) - p(0) - et = p(t) - et.
Consequently
t &
- >
}; L(s,p(s))ds -hhi% a§4 hoL(si.p(si))_p(t) - €t,
Since € > 0 ig arbitrary, we have J;t L(s,p(8))ds > p(t) for t
in J,
It is easy to verify that li% p(t)/t = 0. By (6) and the
t> 04
continuity of p from this it follows that p(t)= 0 on J, Final-
1y oc({un:nZI ) = Bup <({u,(t):n=1¢) = 0, since -iuh:n21§
is a bounded equicontinuous family, Hence-{un:n.zli is condi-

tionally compact, and we are done.
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