

Werk

Label: Article **Jahr:** 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log58

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23,4 (1982)

A LIOUVILLE THEOREM FOR NONLINEAR ELLIPTIC SYSTEMS WITH ISOTROPIC NONLINEARITIES P. L. LIONS, J. NEČAS and I. NETUKA

<u>Abstract</u>: We show that if $u = (u_1, \dots, u_m)$ is a solution with bounded gradient in \mathbb{R}^n of an elliptic system of the form:

$$-\frac{\partial}{\partial x_{i}}\left(a_{ij}(|\nabla u|^{2})\frac{\partial u_{\alpha}}{\partial x_{j}}\right)=0, \ 1\leq\alpha\leq m,$$

then each ug is an affine function on Rn.

Key words: elliptic systems, Liouville theorem, regularity, narnack inequality.

AMS: Primery 35J60, 35D10,

Secondary 35G20

I Introduction:

We consider here a nonlinear second-order elliptic system of the following form:

(1)
$$-\frac{\partial}{\partial x_i} \left(\mathbf{e_{ij}} (|\nabla \mathbf{u}|^2) \frac{\partial \mathbf{u}_{\infty}}{\partial x_j} \right) = 0 \text{ in } |\mathbb{R}^n, \mathbf{u} = (\mathbf{u_1}, \dots, \mathbf{u_m}),$$

$$1 \le \alpha \le m.$$

Throughout all the paper we will assume that $a_{i,j} \in C^1(\mathbb{R})$ (for $1 \le i,j \le n$) and that (1) is very strongly elliptic in the sense that for every γ and $\beta \ne 0$

(2)
$$a_{ij}(|\mathbf{y}|^2) \xi_i^{\alpha} \xi_j^{\alpha} + 2 a_{ik}(|\mathbf{y}|^2) \eta_i^{\alpha} \eta_j^{\beta} \xi_i^{\beta} > 0$$

We prove below that if \underline{u} has a bounded gradient on \mathbb{R}^n , then

each component u_{ε} of u is affine on \mathbb{R}^n .

This result is clearly a Liouville type theorem. Let us explain now how this result is related to various facts from nomlinear second-order elliptic systems theory. To this end, let us consider a general second order elliptic system:

(3)
$$-\frac{\partial}{\partial x_i} (a_i^{\alpha}(x,u,\nabla u)) + a^{\alpha}(x,u,\nabla u) = f^{\alpha}(x) \text{ in } \Omega$$

where $1 \le \alpha \le m$, $u = (u_1, \dots, u_m)$ and Ω is a bounded domain in \mathbb{R}^n . The very strong ellipticity of the system (3) is expressed by the following condition:

(4)
$$\frac{\partial \mathbf{e}_{\mathbf{j}}^{\alpha}}{\partial \gamma_{\mathbf{j}}^{\beta}}(\mathbf{x}, \mathbf{f}, \mathbf{\gamma}) \quad \mathbf{f}_{\mathbf{i}}^{\alpha} \, \mathbf{f}_{\mathbf{j}}^{\beta} > 0, \quad \mathbf{f} \neq 0.$$

Of course, when (3) reduces to (1), (4) is nothing else than (2). Assuming that u is a Lipschitz solution of (3), one may ask the following natural (and fundamental) question: is u of class c^1 or even $c^{1,\mu}$ (for some $(u \in (0,1))$?

As shown by M.Giaquinta and J.Nečas [2], this regularity question turns out to be, in some sense, equivalent to the following Liouville type condition: (3) is said to satisfy the Liouwille condition (in short $L(|\mathbb{R}^n|)$) provided the following implication holds: for all $x^0 \in \Omega$, $\xi \in \mathbb{R}^m$, if $\mathbf{v} = (|\mathbf{v}_1, \dots, \mathbf{v}_m|)$ is a solution with bounded gradient of

$$-\frac{\partial}{\partial x_i} (a_i^{\alpha}(x^0, \xi, \nabla v)) = 0 \quad \text{in } \mathbb{R}^n,$$

then each v is affine on (\mathbb{R}^n) . More precisely, in [2] it is proved that if the system (3) (where we assume (4) with \mathbf{a}_1^{st} , $\mathbf{a}^{st} \in \mathbb{C}^1(\bar{\Omega} \times \mathbb{R}^m \times \mathbb{R}^{mn})$ satisfies $L(\mathbb{R}^n)$ and p > n, then for every p > 0 and every compact set $K < \Omega$ there is $c(p, K) < \infty$ such that

(5)
$$\|u_{\alpha}\|_{C^{\frac{1}{2},\ell^{4}(\mathbb{K})}} \leq c(\nu,\mathbb{K}), \qquad 1 \leq \alpha \leq n,$$

with $\mu = 1 - (n/p)$, whenever $f^{\alpha} \in L^{p}(\Omega)$ and u is a Lipschitz solution of (3) such that

$$\|u\|_{\left[\mathbb{R}^{1,\infty}(\Omega)\right]^{m}} + \|f\|_{\left[L^{p}(\Omega)\right]^{m}} \leq \nu.$$

Conversely, in some sense, $L(\mathbb{R}^n)$ is a consequence of regularity results of the form (5) - see J.Nečas [6],[7] or M.Gisquints [1].

Therefore the Liouville result we prove in this paper immediately yields the $C^{1,\mu}$ regularity for special systems of form:

(6)
$$-\frac{\partial}{\partial x_i} (a_{i,j}(x,u,|\nabla u|^2) \frac{\partial u_i}{\partial x_j}) + a^{\infty}(x,u,\nabla u) = f^{\alpha}(x) \text{ in } \Omega.$$

(for 1 4 < 4 m). At this point, we want to point out that this regularity result (a consequence of our result and an equivalent when s_{ij} depend on $|\nabla u|^2$ only) was established by P.A.Ivert [4] in a generalization of deep results due to K.Uhlenbeck [8]. Thus, in some sense, the result we present here is not new and could be derived from Uhlenbeck - Ivert results. On the other hand, our method of proof is quite different from those of [4], [8] and, we believe, much simpler. Let us also mentiom that it is straightforward to edapt our method of proof to show directly the c^1 , regularity result (looking, roughly speaking, at little bells instead of large bells).

Let us conclude this introduction by a few words on our method of proof. In section II below, we present a general result on nonlinear elliptic systems which implies in particular that, if we denote by $\omega = \nabla u$, we have: there is $\mathfrak{E}_0 > 0$ such that if $\Phi_{\infty}(\mathbb{R}) < \mathfrak{E}_0$, then for every $\mathfrak{g} \in (0,\mathbb{R})$

(7)
$$\Phi_{\omega}(\mathbf{r}) \leq \mathbf{c}_{0} \Phi_{\omega}(\mathbf{r})$$

where C_0 depends only on $\|\omega\|_{L^\infty(B_R^n)}$ and where for a vector

velued function g we denote:

$$\Phi_{g}(\rho) = \frac{1}{\rho^{n}} \int_{B_{\rho}} |g(x) - (g)^{\rho}|^{2} dx,$$

$$(g)^{\rho} = (1/|B_{\rho}|) \int_{B_{\rho}} g(x) dx.$$

By an easy use of Poincaré inequality, we see that in order to conclude (using(7)) we just need to show that $\omega=\nabla u$ has the so-called Saint-Venant property:

(8)
$$\lim_{R\to\infty} R^{-n+2} \int_{B_R} |\nabla \omega(x)|^2 dx = 0.$$

The main idea used to prove (7) goes back to a fundamental lemma of E.Giusti - see e.g. [2].

Next, in section III, we state and prove a Liouwille type theorem. This is done by remarking - following [4],[8] - that $|\nabla u|^2 = w$ satisfies:

(9)
$$-\frac{\partial}{\partial x_{i}} \left(A_{ij} \frac{\partial w}{\partial x_{j}} \right) + \alpha \left| D^{2} u \right|^{2} \leq 0 \quad \text{in } \mathbb{R}^{n}$$

for some $\alpha > 0$, and for some uniformly elliptic coefficients A_{ij} . Using this inequality and a Harnack type inequality proved in D.Gilbarg and N.S.Trudinger [3] (for example), we show that (8) holds and thus ω is constant.

The authors wish to thank P.A. Ivert for useful discussions and for a careful reading of our manuscript.

II A general result on quasilinear elliptic systems:

In this section we consider a solution $\omega = (\omega_1, \dots, \omega_N)$ of

(10)
$$-\frac{\partial}{\partial x_i} \left[A_{ij}^{\alpha\beta}(\omega) \frac{\partial \omega_{\beta}}{\partial x_i} \right] = 0 \text{ in } \mathbb{R}^n, \ \alpha = 1, ..., N,$$

where $\mathbb{A}_{i,j}^{\sigma / \delta}$ are continuous on IR^m and where the ellipticity condition

(11)
$$A_{i,j}^{\alpha/3}(\xi) \xi_i^{\alpha} \xi_j^{\beta} > 0$$
 for $\xi \neq 0$

holds.

Theorem II. 1: Let R > 0, let ω be a bounded solution of (10) in $(\mathbb{H}^1(\mathbb{B}_R))^{\mathbb{N}}$ and let us assume that (11) holds. We denote $(\mathcal{L} = \| \omega \|_{L^\infty(\mathbb{B}_R)})$. Then there exist $\epsilon_0 > 0$, $C_0 > 0$ such that the

following statement holds:

if
$$\dot{\Phi}_{\omega}(\mathbf{R}) \leq \epsilon_{0}^{2}$$
,

then
$$\Phi_{\omega}(\varsigma) \leq c_o \Phi_{\omega}(\mathbf{R})$$

whenever $\xi \in (0,R)$. In addition ξ_0 , C_0 depend only on μ and on the ellipticity constants in (11).

Before giving the proof of Theorem II.1, let us mention the Corollary II.1: Let ω be a bounded solution of (10) in $(H^1_{loc}(\mathbb{R}^n))^N$ satisfying the Saint-Venant property

$$\lim_{R\to\infty} R^{-n+2} \int_{B_R} |\nabla \omega(x)|^2 dx = 0,$$

and let us assume that (11) holds. Then ω is a constant vector. Proof: Observe that we have by Poincaré inequality:

(12)
$$R^{-n} \int_{B_R} |\omega(x) - (\omega)^R|^2 dx \le c_1 R^{-n+2} \int_{B_R} |\nabla \omega(x)|^2 dx.$$

(Here and below c_1,c_2,\cdots denote various positive contants independent of R, ω , u.) Thus we see that (8) implies: $\lim_{R\to\infty} \Phi_{\omega}(R) = 0$. Therefore by Theorem II.1, $\Phi_{\underline{\omega}}(\rho) = 0$ for all $\rho > 0$ and the

proof is complete.

Proof of Theorem II.1: First of all, in view of (11), there exists y > 0 such that for every ξ and $|\xi| \le \mu$ we have

$$\left[\mathbf{A}_{\mathbf{i}\mathbf{j}}^{\alpha\beta}(\boldsymbol{\xi})\;\mathbf{A}_{\mathbf{i}\mathbf{j}}^{\alpha\beta}(\boldsymbol{\xi})\right]^{1/2} \triangleq \frac{1}{\nu}\;,\;\mathbf{A}_{\mathbf{i}\mathbf{j}}^{\alpha\beta}(\boldsymbol{\xi})\;\boldsymbol{\xi}_{\mathbf{i}}^{\alpha}\;\boldsymbol{\xi}_{\mathbf{j}}^{\beta} \triangleq \nu\;|\boldsymbol{\xi}|^{2}.$$

Let us also recall that it is known (see e.g.[2]) that there exists $c_2 = c_2(\mu, \nu)$ such that we have:

(13)
$$\Phi_{\omega}(\tau) \leq c_2 \tau^2$$
, $\Phi_{\omega}(1)$, $0 < \tau \leq 1$,

if ω is a solution of the system:

$$-\frac{\partial}{\partial y_i} \left(\mathbb{A}_{ij}^{\alpha,\beta}(\xi) \frac{\partial \omega_{\beta}}{\partial y_j} \right) = 0 \text{ in } \mathbb{B}_1$$

where 1914 a.

Next, let $\tilde{c} \in (0,1)$. We are first going to prove that there exist $\epsilon_0 = \epsilon_0(\mu, \tau, y) > 0$ such that

(14)
$$\Phi_{\omega}(\tilde{\tau}) \stackrel{?}{=} 2 c_2 \tilde{\tau}^2 \Phi_{\omega}$$
 (1)

where ω solves (10) and satisfies: $\|\omega\|_{L^{\infty}(B_{1})} \leq \mu$, $\phi_{\omega}(1) \leq \epsilon_{0}^{2}$.

Let us argue by contradiction and let us thus assume that there exists a sequence $(\omega^n)_{n\geq 1}$ of solutions of (10) satisfying:

(15)
$$\|\omega^{n}\|_{L^{\infty}(\mathbf{B}_{1})} \stackrel{\ell}{=} \mu, \{\Phi_{\omega^{n}}(1)\}^{1/2} = \epsilon_{n} \rightarrow 0,$$

$$\Phi_{\omega^{n}}(t) > 2c_{2}\tau^{2}\epsilon_{n}^{2}.$$

To simplify notations, we will use indifferently the notations $\Phi_{\omega}^{n}(\mathcal{T})$ or $\Phi(\omega^{n}, \mathcal{T})$. We then set: $\sigma^{n} = \frac{1}{\varepsilon_{n}} [\omega^{n} - (\omega^{n})^{1}]$. Obviously we have:

(16)
$$\int_{B_1} |\sigma^n(x)|^2 dx = 1; \ \bar{\phi}(\sigma^n, \tau) > 2c_2 \tau^2;$$

(17)
$$-\frac{\partial}{\partial \mathbf{x_i}} \left(\mathbf{A_{ij}^{\alpha\beta}} (\omega^n) \right) \frac{\partial \sigma_A^n}{\partial \mathbf{x_j}} = 0.$$

Without loss of generality we may assume that:

$$\delta^n \longrightarrow \delta \text{ weakly in } (L^2(B_1))^M, \quad \epsilon_n \sigma^n \longrightarrow 0 \quad \text{in}(L^2(B_1))^M$$

for some $\mathfrak{Se}(L^2(\mathbb{B}_1))^{\mathbb{N}}$. In addition, in wiew of (16): ϕ_6 (1)=1. Furthermore, recalling that we have:

$$\omega^n = \varepsilon_n \ \sigma^n + (\omega^n)^1, \ \|\omega^n\|_{L^\infty(\mathbb{B}_1)} \leq \mu,$$

we see that $|(\omega^n)^1| \neq_{\mu}$ and $\omega^n - (\omega^n)^1 \longrightarrow 0$ s.e. Since we may assume without loss of generality that $(\omega^n)^1 \longrightarrow \xi$ ($|\xi| \neq_{\mu}$), we finally deduce: $\omega^n \longrightarrow \xi$ s.e..

Next, we obtain from (16) and (17):

(18)
$$\int_{B_{L}} |\nabla e^{n}(y)|^{2} dy \leq C(k) \quad \text{for } k \in (0,1),$$

thus we may suppose that $\mathfrak{G}^n \longrightarrow \mathfrak{G}$ weakly in $(\mathfrak{R}^1(B_k))^N$ (for all k < 1). Thus, passing to the limit in (17), we get:

$$-\frac{\partial}{\partial x_{i}} \left(A_{ij}^{\alpha\beta}(\xi) \frac{\partial \sigma_{\beta}}{\partial x_{j}}\right) = 0 \text{ in } B_{1}.$$

In addition, since $\mathfrak{G}_n \longrightarrow \mathfrak{G}$ in $(L^2(\mathbb{B}_k))^{\mathbb{N}}$ (for all k < 1), we deduce from (16): $\Phi(\mathfrak{G}, \mathfrak{T}) \triangleq 2 c_2 \mathfrak{T}^2 \triangleq 2c_2 \mathfrak{T}^2 \Phi(\mathfrak{G}, 1)$. This contradicts (13) and the contradiction shows our claim.

Let us choose now $\tau \in (0,1)$ satisfying: $2c_2\tau^2 \le 1$. Given $\xi \in (0,1)$, let $k \ge 0$ be the integer such that: $\tau^{k+1} \le \xi < \tau^k$. Now, if ω solves (10) and satisfies: $\|\omega\|_{L^{\infty}(B_1)} \le \mu$, $\Phi_{\omega}(1) \le \xi_0^2$, we have in view of (14):

$$\tau^n e^{-n} \int_{B_{\xi}} |\omega - (\omega)^{\xi}|^2 dx \le (\xi / \tau^k)^n e^{-n} \int_{B_{\xi}} |\omega - (\omega)^{\xi}|^2 dx \le$$

$$\stackrel{\not =}{=} (\tau^{k})^{-n} \int_{B_{\rho}} |\omega - (\omega)^{\tau^{k}}|^{2} dx \stackrel{\not =}{=} (\tau^{k})^{-n} \int_{B_{\tau^{k}}} |\omega - (\omega)^{\tau^{k}}|^{2} dx \stackrel{\not =}{=}$$

that is, we proved: $\Phi_{\omega}(\varsigma) \leq \tau^{-n} \Phi_{\omega}(1)$.

The proof of Theorem II.1 is easily completed by considering the function $\widetilde{\omega}(x) = \omega(x/R)$.

Remark II.1: We now show how the preceding results are related to the system (1): indeed, if $u \in (H^2_{loc}(\mathbb{R}^n))^m$ is a solution of (1) then, for $1 \le k \le n$, $\frac{\partial u_{oc}}{\partial x_k}$ satisfies:

$$-\frac{\partial}{\partial x_i}\left[\mathbb{A}_{ij}^{\kappa\beta}(\nabla \mathbf{u})\frac{\partial}{\partial x_j}(\frac{\partial \mathbf{u}_\beta}{\partial x_k})\right]=0\quad \text{in } \ \mathbb{R}^n,\quad 1\leq\alpha\leq m,$$

where
$$A_{ij}^{\alpha\beta}(\nabla u) = a_{ij}(|\nabla u|^2) \delta_{\alpha\beta} + 2 a'(|\nabla u|^2) \frac{\partial u_{\alpha}}{\partial x_{\ell}} \frac{\partial u_{\beta}}{\partial x_{j}}$$
.

Thus $\omega = \nabla u$ satisfies a system of the form (10) and (11) is a consequence of (2).

III The main result:

Let $u = (u_1, \dots, u_m)$ be a solution of (1):

$$-\frac{\partial}{\partial x_{i}} (s_{i,j}(|\nabla u|^{2}) \frac{\partial u_{\alpha}}{\partial x_{j}}) = 0 \text{ in } \mathbb{R}^{n}, \quad 1 \leq \alpha \leq m.$$

Theorem III.1: We assume the ellipticity condition (2) and ∇ $u \in (L^{\infty}(\mathbb{R}^n))^{nm}$. Then each component u_{∞} of u is affine on \mathbb{R}^n .

<u>Proof</u>: Standard arguments yield $u \in W_{loc}^{2,2}(\mathbb{R}^n)$; cf.[7] or [1]. In view of the results of the preceding section and of Remark II.1, it is enough to show:

(19)
$$\lim_{R \to \infty} R^{-n+2} \int_{B_R} |D^2 u|^2 dx = 0.$$

In order to prove (19), we first observe that an easy computation yields:

$$-\frac{\partial}{\partial x_{i}} \left[A_{ij} (\nabla u) \frac{\partial}{\partial x_{j}} (|\nabla u|^{2}) \right] + a_{ij} \frac{\partial^{2} u_{\alpha}}{\partial x_{i} \partial x_{k}} \frac{\partial^{2} u_{\alpha}}{\partial x_{j} \partial x_{k}}$$

$$+ 2 a_{ik}^{\prime} \frac{\partial u_{\alpha}}{\partial x_{k}} \frac{\partial u_{\beta}}{\partial x_{j}} \frac{\partial^{2} u_{\alpha}}{\partial x_{i} \partial x_{s}} \frac{\partial^{2} u_{\beta}}{\partial x_{j} \partial x_{s}} = 0 ,$$
where $A_{ij} (\nabla u) = \frac{1}{2} a_{ij} (|\nabla u|^{2}) + a_{ik}^{\prime} (|\nabla u|^{2}) \frac{\partial u_{\alpha}}{\partial x_{k}} \frac{\partial u_{\alpha}}{\partial x_{j}}$

In view of (2), we see that (for more details, see [4])

(21)
$$\exists y > 0$$
, $\forall \xi \in \mathbb{R}^n$, $A_{ij}(\nabla u(x)) \xi_i \xi_j \stackrel{\lambda}{=} \nu |\xi|^2$,
$$\{A_{ij}(\nabla u(x)) A_{ij}(\nabla u(x))\}^{1/2} \stackrel{\underline{\mathcal{A}}}{=} \text{ s.e.in } \mathbb{R}^n$$

and (20) implies:

(22)
$$-\frac{\partial}{\partial x_i} (A_{ij}(\nabla u) \frac{\partial}{\partial x_j} (|\nabla u|^2)) + \propto |D^2 u|^2 \leq 0 \text{ in } \mathbb{R}^n,$$

for some $\alpha > 0$. We denote $\mathbf{M} = 1 \| \| \nabla_{\mathbf{u}} \|^2 \|_{L^{\infty}(\mathbb{R}^n)}$.

We are now going to prove:

(23)
$$R^{-n+2} \int_{B_{R/2}} |D^2u|^2 dx \le c_3 R^{-n} \int_{B_{2R}} (M - |\nabla u|^2) dx.$$

To this end we introduce $\eta \in \mathbb{F}_0^1$ (B_{2R}), the solution of:

(24)
$$-\frac{\partial}{\partial x_i} \left(A_{ji} \frac{\partial Y}{\partial x_j} \right) = \frac{1}{R^2} \text{ in } B_{2R} .$$

Stendard results yield: * 0 in B2R and

(25)
$$\|\gamma\|_{L^{\infty}(\mathbb{B}_{2R})} \stackrel{\leq}{=} c$$
 infess $\gamma \geq c_5 > 0$.

Then multiplying (22) by χ^2 and using (24), (25), we deduce:

$$c_{6} \int_{B_{\mathbb{R}/2}} |D^{2}u(x)|^{2} dx \leq \int_{B_{2\mathbb{R}}} A_{i,j} \frac{\partial u^{2}}{\partial x_{i}} \frac{\partial}{\partial x_{j}} (\mathbf{M} - |\nabla u|^{2}) dx \leq$$

end this yields:

$$\int_{B_{R/2}} |D^2 u(x)|^2 dx \le \frac{c_7}{R^2} \int_{B_{2R}} (M - |\nabla u|^2) dx$$

and (23) is proved.

To conclude, we see that (19) follows from (23), applying the following lemma to $w = |\nabla u|^2$, $\alpha_{ij}(x) = A_{ij}(\nabla u(x))$. Lemma III.1: Let $w \in H^1_{loc}(|\mathbb{R}^n) \cap L^{\infty}(|\mathbb{R}^n)$ satisfy: $-\frac{\partial}{\partial x_i} (\alpha_{ij}(x) \frac{\partial w}{\partial x_i}) \leq 0 \text{ in } \mathbb{R}^n$

where $\alpha_{i,j} \in L^{\infty}(\mathbb{R}^n)$ satisfy:

$$\{\alpha_{ij}(x) \ \alpha_{ij}(x)\}^{1/2} \leq \frac{1}{\nu}, \ \alpha_{ij}(x) \notin_{i} \notin_{j} \geq \nu \notin_{i}^{2} \ \forall \in \mathbb{R}^{n},$$

for some y > 0. If $M = \sup_{\mathbb{R}^n} w$, then we have:

(26)
$$\lim_{R \to \infty} (1/|B_R|) \int_{B_R} w(x) dx = M.$$

Proof: This lemma is proved by the use of a weak Harnack inequality (cf.[3], for example) which implies:

(27)
$$R^{-n} \int_{B_{2R}} z(x) dx \leq c_{\delta} \inf_{B_{R}} ess z$$

with z = M - w. Now if we let $R \rightarrow \infty$, we obtain (26) since inf ess z \longrightarrow inf ess z = 0; and z \ge 0 a.e.in R^n . $\stackrel{B}{R}$

References

- [1] M.Gisquints: Multiple integrals in the calculus of variations and nonlinear elliptic systems, Universität Bonn, Sonderforschungsbereich 72, Preprint No. 443.
- [2] M.Gisquints and J.Nečas: On the regularity of weak solutions to nonlinear elliptic systems of partial differential equations, J.Reine Angew.Math.316(1980), 140 159.
- [3] D.Gilbarg and N.S.Trudinger: Elliptic partial differential equations of second order, Springer-Werlag, New York, 1977.
- [4] P.A. Ivert: Regularitätsuntersuchungen von Lösungen elliptischer Systeme vom quasilinearen Differentialgleichungen zweiter Ordnung, Menuscripta Meth. 30(1970), 53-88.
- [5] J.Mečas: Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.
- [6] J.Wečas: A necessary and sufficient condition for the regularity of weak solutions to nonlinear elliptic systems of pertial differential equations, Abh.Akad.Wiss.DDR, 1981.
- [7] J.Nečes: Régularité des solutions faibles d'équations elliptiques nonlinéaires; applications à l'élesticité, Université Paris VI, Analyse numérique et fonctionnelle, 1981.
- [8] K.Uhlenbeck: Regularity for a class of non-linear elliptic systems, Acta Math.138(1977), 219-240.

CEREMADE
Université Peris IX, Dauphine
Place De-Lettre-de-Tassigny
75 775 Peris, Cedex 16
Frence

Matematicko-fyzikální fakulta Univerzita Karlova Malostrenské nám.25 110 00 <u>Preha</u> 1 Československo

Matematicko-fyzikální fekulta Univerzita Karlova Sokolovská 83 186 00 <u>Praha</u> 8 Československo

(Oblatum 7.7, 1982)