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Abstract: We show thet if u =(“1""’“m) is @ solution with

bounded gredient in IR® of en elliptic system of the form:
Jdu
? 2 ol
- -s;i (aia(IVu] )"r'xj )’ O, 1 €t £ m,

then each u, is en affine function on RV,
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I Introduction:

We consider here & nonlinear second-order elliptic system of
the following form:

3 2, %u _
W - g3 (ag;(1Vul® 77‘; ) = 0in IR%, u=(ug,eee,uy),
1€« €&m,

Throughout e11 the paper we will sssume that 3 € Ci(ln) (for
1%i,j%n) end that (1) is very strongly elliptic in the sense

thet for every Yy end § #A0

e o35 113 €165 + 2 af (gl B E0 >0

We orove below thet if u hes & bounded gradient on mP, then
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e8ch component u, of u is affine on R".

This result is clearly a Liouville type theorem. Let us ex-
plain now how this result is releted to verious facts from nomli-
near second-order elliptic systems theory. To this end,let us con-

sider a genersl second order elliptic system:
(3) - 5%; (a;(x,u, Vu) + a%(x,u,Vu) = £%x) in 0.

where 41 ¢« & p y= (ui,...,n.) end 0. is e bounded domein in
IR", The very strong ellipticity of the system (3) is expressed
by the following conditiom:

e ”
(4) T‘;}—(x,j,y) §1§§>o, £ #o.

Of course, when (3) reduces to (1), (4) is nothing else than (2).
Assuming thet u is a Lipschitz solution of (3), one may ask
the following naturel (end fundementel) question: is y of class
¢ or even clipt (for some w6 (0,1)) ?

As shown by M.Gisquinte end J,NeZas [2], thise regulsrity
question turns out to be, in some sense, equivelent to the fol-
lowing Liouville type conditiom: (3) is said to setisfy the Liou-
¥ille condition (in short L(IR")) provided the following implice-
tion holde: for el1 x°(.0., § ERE, if v = ( Viseee,Vy) is & so-
lution with bounded gredient of

(39 - -3% (05(x°% §,V¥) =0 in @&,

them each v is effine on R™, More precisely, in [2] it is pro-
ved thet if the system (3) (where we sssume (4) with ef,
"¢ ci(.ﬁ. x R" x IR™) satisfies L( IR") and p > n, then for every
» > 0 end every compact set Kc there is c(y yK) < o0 sueh
that
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(5 Nug ¢ c(»,m), 16« én,

|
clrex)

with 4 =1 - (n/p), whenever £% LP(N) end u ie 8 Lipschitz
solution of (3) sueh that

tull £l €y,

+ 0
=)™ [LP(a)]™
Conversely, in some sense, L( IR®) is & consequence of regulerity
results of the form (5) - see J.Nefas [6],[7] or M.Giequinte [1].
Therefore the Liouville result we prove in this peper imme-

distely yields the 01 'A regulerity for special systems of form:
3 duy
& - 73 <aij<x.u.|Vulz) 573-) + 8% (x,u, Vu) = £%x) in N

(for 1 €« & m), At this point, we want to point out thst this re-
gularity result (e consequence of our result and an equivelent
when s, ; depend on {Vul? only) wes estsblished by P.A.Ivert [4]
in e generslization of deep results due to K.Uhlenbeck [8].
Thus, in some sense, the result we present here is not new end
could be derived from Uhlenbeck - Ivert results. On the other
hend, our method of proof is quite different from those of [47,
[8] and, we believe, much simpler. Let us elso mentiom that it is
straightforward to edept our method of proof to show directly the
cl1f regularity result (looking, roughly spesking, st little
bells insteed of large bells).

Let us conclude this introduction by @ few words on our
method of proof. In section II below, we present a genersal result
on nonlineer elliptic systems which implies in perticuler that,
if we denote by w=Vu, we have: there is ¢, > O such that if
§.° (R) < €, then for every ¢ €¢(0,R)

$)) $ulg) £ ¢ dum®
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where C_ depends only on |l wll 5. ) end where for a vector
L

velued function g we denote:

$ 00 = ie-n f lgx) - (2)f]2 ax,
B
H
@% = wigh [ gtoa.
%

By en easy use of Poinceré inequelity, we see thst in order to
conclude (using(7)) we just need to show thet w=Vu hes the so-

-~celled Saint-Venant property:

(8) %i_.x’nu R-0+2 f (Vwx) % ax =0

By
The main ides used to prove (7) goes beck to e fundementel lemma
of E.Giusti - see e.g. [2] .

Next, in section IITI, we stete snd prove a Liocuville type
theorem, This is done by remerking - following [4],[8] - thet
\Vul2 = w setiafies:

(9) - ali- (A "f,—;'a-_) + «|0?u]2 40 in O

for some o > 0, end for some uniformly elliptic coeffieients ‘ij'
Using this inequslity end e Harneck type inequality proved in
D.Gilbarg and N.S.Trudinger [3] (for exsmple), we show that (8)
holds end thus w is constent.

The suthors wish to thenk P,A.Ivert for useful discussions

end' for a cereful reading of our nanuscript,

II A general result on quesilinear elliptie systems:

In this section we consider s solution w= (wl,...,‘dN) of
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3 rep d .
(10) - 'ﬁ: [Aij(w) -0—;?']= 0 in R", «=1,...,N,

where A:_/; ere continuous on [R® sand where the ellipticity com-
dition
o/} «
(11) Aij(§)§i§j>0 for § #£0
holds.

Theorem II. 1: Let R > 0, let w be a bounded solutiom of (10)
in (Hl(BR))R end let us sssume thet (11) holds. We dencte

Ma=1lall . Then there exist €¢_ >0, C.> O such that the
L“YBR) @ * o
following statement holds:
it $ @ ¢ g2,
Z
then B, (§) ¢ ¢, bum

whenever ¢ (O,R). In addition to» C, depend only on M4 end on

o
the ellipticity constents in (11).

Before giving the proaof of Theorem II.1, let us mention the
Corollary IX.1: Let w be 8 bounded solutiom of (10) in
(%oc( ®*))N¥ setisfying the Saint-Venant property

lim B2 f IVa(x)?ax = o,
R~»o0 By

and let us sssume that (11) holds. Then w is a constant vector.

Proof: Observe that we have by Poinceré inequality:

(12) R flw(x) ~(w)R)2 ax ¢ cIR'n"'Z fle(x)lZ ax.

Br By

(Here and below Cy1Cpyene denote various positive contants inde-

pendent of R,w,u.) Thus we see that (8) implies: lim ¢}m(a) = 0,
R->c0

Therefore by Theorem II.1, ém(?) =0 for ell ¢> O and the
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proof is complete.
Proaf of Theorem II.1: First of ell, in view of (11), there exists

¥y >0 such that for every § and ](l ‘(u. we have

A

ap «
M0 G501V e 5, 5o g1l v e,

Let us also recell thet it is kmown (see e.g.[Z]) that there
exists ¢, ( = c(M,Y)) such that we heve:
(13) P (T) £¢,T2, $(1), o0<7 ¢ 1,
if «w is & solutiom of the system:
9 «p day,
i I “15(§"a_y‘:. )=0 in B,

where |14 4,
Next, let T e (0,1). We are first going to prove that there
exist ¢ = Eo((a,'l‘, ¥) > 0 sueh thet

(14) ¢, (T) 62¢,22 $, @

where w solves (10) and satisfies: Il ewli fa, §,01) & Es .
()
Let us ergue by contradictiom ana let us thus assume that the-

re exists a sequence (mn)ne1 of solutions of (10) satisfying:
(15) Hew® ¢ w2 ., _,
L“(Bl) e {écu“ } 3 ! S
§wn(t )>2¢,7% 2,

To simplify notations, we will use indifterentlythe notetions
é () or §(wn,’€). We then set: an=5—1-[¢un- (wn)‘l].
w n

Obviously we have:

(16) J om0 l%x = 1; § (om, 1) » 2,72
By
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aaf
axj

p)
17 - —;;;. (A:g( w™)

J=o0.

Without loss of generelity we may sssume that:
6" —>6 weekly in (L(8y))¥, ¢ 67— 0 intP(m)»F
and a.e,,

for some 6e€ (Lz(Bi))l. In edditiom,in wiew of (16): §€ (1)£1,

Furthermore, recelling thet we heve:

w=e, 6% +(w™l, Iwrl

&
I(8)) &
we see thsat l(wn)il tu end wt - (wn)i___) 0 sa.e, Since we
may essume without loss of generslity that (wn)i—)§ (151 L),
we finelly deduce: a)n—-)g «8.€0 o
Next, we obtain from (16) and (17):

(18) f [Ve™(y) 12 ay € €(kx) for ke (0,1),

By

thus we may suppose that 6 *— 56 weskly in (HJ‘(BK))N (for ell
k < 1), Thus, passing to the limit in (17), we get:

p) «p 067 .
E(Aij(g)ﬁ;) =0 in By.

In eddition,since 6, —> 6 in (Lz(Bk))R (for ell k < 1), we
deduce from (16): §(6,7) 2 2 c272 2 2, 726(0‘,1). This
contredicts (13) end the contrediction shows our claim,

Let us choose now 7 € (0,1) satisfying: 2c27,2 € 1, Given
€ 6(0,1), let k > 0 be the integer such that: ASE YA ¢< Tk,
Now, if w solves (10) end sstisfies: [l Il I(B.) 4‘44, &&,(1)‘3 Eg

we have in view of (14):
TR f lw-(w)®]2 ax & (g /TE)Re™ flw-(wfl 2 ax ¢
Be B¢
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L (hHm flw ~(@)™12 gy 4 (PE)n f lw ~(wF " |2 ax &
B? B'L'k
¢ J' lw- (w)1] 2 gx
B'.I.
thet is, we proved: @w(g’) &¢n éw(i).
The proof of Theorem II.{ is eesily completed by considering
the functiom @ (x) =w (x/R).

Remerk II.1: We now show how the preceding results sre related

to the system (1): indeed, iar uc(Bfoc(an))m is a solutiom of
ug

(1) then, for 1 £k £ p, 3*1: satisfies:

o

2 2
where A;{;(Vu) = °ij(lvu12) J“ﬁ+ 2 .’(‘Vula).a_s-: 'a-:'j& .

Thus w= Vu gatisfies @ system of the form (10) snd (11) is

a8 consequence of (2),

III The mein result:

Let u = ("1""'%) be & solutiom of (1):
3
- 3‘3;; (aij(\VUlz)g_x‘,}:) =0 in mn’ 1 ¢xép,
J

Theorem IIX,1: We sssume the ellipticity comdition (2) end

TR 2t

¥V u e (L (1R")) D™, Then each component uy of u is affine on
B",

Proof: Stenderd srguments yield uewfaﬁ( IB); et [7] or [1]) .

In view of the results of the preceding section and of Remerk II.i,

it is enough to show:

(19) lim R™D*2 f |02 ul? ax = o,
R=>co Br
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In order to prove (19), we firat observe that en easy com-

putation yields:
2_ [4,.(Vw) o= (I7ul® ]+ 5£3’— By
T 3% igeve 'Tx'j L2 ®ijoxy x dx303

, duy dup 5%y, Qzuﬂl
* zaikgx—.'k axj Ix;9x, 9x39x, =0

(20)

'
1 2 3 2. 9 P)
where A;5(Vu) = 3 aij(IVul ) + o IVul "aT:; 5__!'_'::_
In view of (2), we see that (for more deteils,see [4])
(1) 3y>0, Y{e®, A (Tu) {5 2! §e,
{ag5(Tut) A (Tu) Y2 45 eecnd®

end (20) implies:

(22) - ,?q (Ay5(Vw) -5";3 (Vul?) + «|p2ul? €0 in W,
for some o > 0. We denote M=11Tul2 1 —

We sre now going to prove:

(23 ®°*2 f | p2ul2 &x & e f(u-\vulz)ax.

Br/2 Bor
To this end we introduce 7e¢ Hio (Ba) pthe solution of:
3 oY 1
(24) - '5;1 (Aji —“3 ‘j ) = R2 in BZR .

Stenderd resulta yield: ¥ # 0 in B,z end

(25) v il £ ¢ infess 2e.> 0.
l"“xf‘(sz,ﬂ) Be/2 Lhes
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Then multiplying (22) by |‘2 and using (24), (25), we deduce:

2
cg J. [Dzu(x)lzdxé f A i;—""—- gx—_(I-\Vulz)dx‘
By/2 Bop : J

&2 f -;'QQ(I-Wulz) dx - 2 f P g-‘g-i g%(u.wu,?)d,
Bog Bog J

end this yieldas:

c
f [ D%u(x) (2 & éé—f M =17 ul|?)ax
B,
Br/2 7R
end (23) is proved,
To conclude, we see that (19) follows from (23), epplying
the following lemme to w = |V y|2 ’ ocij(x) = Aij(Vu(x)).

Lemme IIT.1: Let weBl _(IR") n 1= ( g0 satisfy:
Lemme ITT,1

= o2 (%, .(x) dw ) £0 in |RP
é_x;l' ij 313.

where %4 € L% ( ™) satisfy:

{ocij(x) dij(x)}i/z é'li’_' , otij(x) fi fj 3 vlilz Vf & ",

a.e,in IR
for some ¥ >0, If y = 8up ess w, then we have:
RR
(26) lim (i/lBﬂl) f w(x)dx = M,
R—> e By

Proof: This lemma is proved by the use of a week Harneck inequeli-
ty (ef.[3], for example) which implies:

(27) R~® f z(x) ax ¢ e inf ees 2
Bop By
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with z = M - w. Now if we let B—>oo, we obtein (26) since

inf ess 2 —> inf ess z = 0; end z 2 0 s.e.,in R%.

®"
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