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BASIC EQUIVALENCES IN THE ALTERNATIVE SET THEORY
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Abstract: In the paper we study a special case of equi-
valences of Indiscernibility, so-called basic equivalences,
The equivalences, whose definition has quite a set-logical
character, play an important role in non-stendard descripti-
ons of topology and other areas of the alternative set theo-
ry. We proved here among others that there is not possible
to include a proper set-theoretically definable class into a
monad and that each set-theoretically definable function which
has a fixpoint with respect to the basic equivalence in a mo-
nad is necessarily an identity on this monad.
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This work is devoted to the studying of some properties
of equivalence {%} . The equivalence 2 is defined in tvy,
che V, § 1. Already from the results presented in the quoted
book it follows that £ 1is of consequence in the alternative
set theory. In the paper [V 1), the definition of the equiva-
lence % which is a generalization of = , is given, and se-
veral essential theorems are proved there. Other works in the
alternative set theory, especially L - V], confirm the im-
portance of these equivalences and, above all, the signifi-
cance of 2=, ; we shall call it basic equivalence.

{ct
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Now we remind (from [ V) and [V 1)) several crucial defi-
nitions and assertions which we shall need later on.

We put x %y iff the formula 9(x) = 9(y) holds for any
set-formula ¢ (z) of the language FLy.

Even now we can see that the non-standard description of
topology is much closer to set-logical considerations than the
standard one.

If X is a finite or a countable class, then % is an e-
quivalence of indiscernibility (cf. [ V), oh. III) which is to-
tally disconnected. The clopen figures in —;’(—-' are just the
classes which belong to de-

Moreover, it was proved in [V 1] that for each equivalen-
ce of indinoornibility = there is an equivalence {% which
is finer. This fact actually led to the name - basic equive-
lenge - for{% .

Monads 1n{§-; » 1, e, classes of decomposition of V accor-
ding to {cé] » correspond (by a one-one correspondence) with
ultrafilters on the ring of classes Sd{ o} (recall that Sa fe}
denotes the system of all classes of the form ix; @(x){ where
® 1is a set-formula of the language I"L{c§; cf. LS - Ve 1]),
The correspondence is described as follows: for “e V/{%-l and

¥ being an ultrafilter on Sdicys we have X €F'= X 2 @ for
each Xe¢ Sdi 3’

We shall define an ordering {?l on monads (note that it
is similar to Rudin-Keesler’s ordering on ultrafilters) and
investigate ite pProperties.

Perhaps, the most interesting result of this paper is the
theorem, analogous to the classical theorem of the get theory,
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which asserts that two moneds have the same strength (in order-
ing by {_23‘ ), iff there exists a one-one mapping between them.
Note that through the whole paper we do not use the axiom
of extensional coding (the axiom of choice) and the axiom of
cardinalities. When we speak about ordering on V, we bear in
mind the patural oxdering on the class (see [V], ch. II, § 1).

The authors thank P. Vop¥nka for discussionas concerning
the problems studied.

§ 1. At first we prove that the following statement holds
for each function Fe& Sd{ﬂ: if P has a fixpoint with respect to
i%i , then F is an identity. We also show that the condition
cannot be generalized in the sense that ir P,GeSd{ ot and
F(x){%,k G(x), then F(x) = G(x) is valid; see Example 1.

Theorem 1. Let F eSd{O}, F be a function. Then
W) [F(x) 2y x = QXe 540 )(FT X = TATX & @iy (X)),

Proof. Let P(x);3; x for FeSd; ;. Let us denote X =
= §t;F(t) = t3. Because X € Sd ¢ and hence X is a clopen figu-
re, it suffices to prove that xeX since this implies
“iey (x)eXx.

Suppose x¢X and put Y = dom(P) - X . Obviously Ye Sdj 3+
Moreover, xcY and hence @{c;(x)sY.

Let us construct the graph G of F; its chromatic number
being less than or equal to 3. Therefore, the field of G is
the union Y{uYjuY; where Y{ (1 = 1,2,3) are mutually disjoint
(Yi contains just the elements of G which are coloured with
the seme colour). Hence (P"Y,' )n Y; = @§. Pirstly, we prove that
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we can choose Yi in such a way that Yi'e Sd{cg; we simply colour
the graph G,

Let {KZ}ZcN be the system of components of G, Firstly, let
Kl terminated by a cycle. Then we colour the smallest element
of the cycle by the colour 1 and going back around it the verti-
ces will be alternately coloured by colours 1 and 2, eventually
3 (when the cycle has an odd number of vertices)., If Ky ends
by a vertex which does not belong to dom(F), we colour it by
the colour 1 and when going backward we alternate colours 1 and
2, If Ky is confinal with N (KZ is now a proper class) we find
its least element and colour it by the colour 1. Then, starting
from the point to both the opposite sides, we alternate colours
1 and 2, Thus, Yie 84,y (1 =1,2,3).

Put ¥, = Yin dom(F) for i = 1,2,3, Obviously Ye Sd{c}' Sin-
ce xeY, there exists j€11,2,3% such that xeYJ;then Gie3(x) e
= YJ. Moreover, for each i there is P"Yin Yi = @ and therefore
also P" @ic}(x) N ey (x) = @#; this is in contradiction to
P(x)ggy x.

Remark., It is possible to reformulate Theorem 1 into the
following equivalent version:

(¥x,c) Def{x,o'&“‘“’{c}(x) = ix%,
since the formula ye Def&'d is equivalent to the formula y =
= P(x) for a suitably chosen function Fe Sd{ci’

Example 1, There are functions F,G & Sd such that
@x)(F(x) = 6(x) & F(x)$G6(x)).
We shall define functions F, G, as follows: for each {t,u”

we put P({t,u?) = t and G({t,ud) = u. Let v, w be such that v4w
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and v <= w, Then it suffices to put x = < v,w).

Now we shall take an interest in a question how monads
are mapped by set-theoretically definable relatioms and how

functions of Sd{c& behave on monads in {%s-

Theorem 2. (V¥x,y,c) dom( (“'{c}«y'x))) = (“'{cg(x)&
& rng( @y (€ysx¥)) = @3 (¥).

Proof. We prove only the first assertion; the second one
can be proved analogously. Firstly, note that if XeSd{c} and
{y,xY€ X, then x€ dom(X) and dom(X) €5dg,p. Let {Xn;neFN} be
a descending sequence of classes from Sd{c} such that (u.{c}(x)=
= ﬂ«ixn;nemi and let i!n;neFN? be such a descending sequence
of classes from Sdy , for which e (KT X)) = ﬁ{Yn;nePNf and
dom(Yn)QXn. Then according to [VI, ch, II, § 5, we have
dom( @i Kyex?) = dom(n{yn;nerni)- N4{dom Yn}neyn} =

= C“'ic?(x)'

Theorem 3. Let Re Sdic}' R be a relation, Then for each

x, the class R"u, 1(x) 18 & closed figure in {%}’

Proof. The fact that R"w, .;(x) is a figure follows im-
mediately from the previous theorem when applying it to
(u{c;«y,x)) for {y,x>€R. It remains to prove that R" (b{c;(x)
is & s-class (cf. § 2 ch, III LV]), Since R" w, 3(x) =
= dom((RN(V > (u{c}(x)))'l) and since the classes R, V,
(u-{cl(x) are Jr-classes, the class R" (“"{ci(x) is also a -
class (see § 5 ch, II [V]),

From Theorem 3 it follows immediately:

Theorem 4. Let R€Sd . 4, R be a relation, Let {y+x”€R
and 'x'&%‘ x. Then there is & set ¥ such that T{%i y and
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{¥,X7€R.
The next theorem asserts that functions of Sd{c} are both

continuous and open with respect to {%—} .

Theorem 5. Let Fe Sd{c}' F be a function. Let w be a
monad in {%} « Then F"(u, is either empty or F“(w is a monad
o
in =
Proof. The assertion follows directly from Theorem 4.

Remark. Realize that Theorem 3 results in: The inverse

image of a monad in {%7 is a closed figure.
Lemma 1. (Vx,y,t,c) x{é{! y iff {t,x> {%} {t,y0 e

Proof. At first, let x{;.%} y. We know that x{é—“ y ite
for each formula @ the condition P(x,c,t) = @ (ysc,t) holds.
We have to prove that for each formula ¥ , it is provable:
y((t,x),c) = y(<t,y>,c). Thus, let y be given, then we put
q(x,c,t) = (3z)(z = {t,x> & v(z,c)). Conversely, assume that
{t,x? {%1 {t,y> is valid. Now the formula @ is given and we
£ind a corresponding formula y : We take y(z,c) = 3t,x)(z =
= {t,xY & @ (x,c,%)).

Theorem 6. Let Pe Sdsqq» F bea function. Let x) &= X,
and F(x;) = F(x,) = y. Then xl{E%,} X5.

Proof. Define a function G as follows: G(%t) = {F(t),%2.
Then Ge Sd{o'& and thus G is continuous in {%i . Therefore
(y,xl> = G(x;) k%l G(x,) = {yyx,7. According to Lemme. 1 we ha-
ve xli?:‘y! Xye

Remark. It follows immediately from Theorem 6 that for
Pe Sd{c}, P a function, the inverse image of each element y
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o

o
restricted to a monad in 1 is a monad m{c’,@} .
Our next remarks are concerned with the question whether
it is possible to converse Theorem 5; i.e. if for each ¢, P¢

€ de, P a function, the assertion

(Vers o1 (3 @rep) B @iop = @yp = PeSdgy)
is valid. We shall show that the anawer is negative. Let us
reformulate the problem in this way: Let F‘Sdidi' P a functi-
on, and let, for each (w, ., (a{oi such that P" w1 =
= (‘—"{o} exist, What kind of definability holds then between ¢
and 4 ¢

At first, we introduce a new notion,

Definition. The sets ¢, d are called incomparable iff
¢4 Defy4; and d¢ Def s+

The following theorem 7 gives the example of such a func-
tion which belongs to Sd{di' Sd{c} (c, d are incomparable) and
transforms monads in {-E"—.; onto monads in (%} .

Por proving the theorem we need two lemmas. Remember now
that in [S - Ve 1], there is proved that there exists at least
one class of indiscernibles which is a proper s -class and which
is an intersection of countably many classes from Sdo. We shall

choose one of them and denote it Ind.
Lemma 2, Ind is a moned in £

Proof. Ind is a figure in = (see [ V1), For Ind being a
monad in = it is sufficient to prove that x 2 y for each X,y €
€ Ind; in other words, we must prove that for an arbitrary
formula oe FLO, @(x) = @ (y) holds. According to the de-
finition of indiscernibles we know that for each ordered n-tup-
le it 18 true ?(xl"""h) = g:(yl,....yn) and hence also
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9(x) = @ (y).
Lemma 3. (Yc >Def) (le,dzelnd) f(dl,d2>Def{c} %
&dl{%} a4, & 4, +d,) = °¢Def;<dl,d2>z3'

Proof. Let ce Dedel'dzﬂ « Then there is de Ind such

that d<c<d1< d2 (note that ¢ > Def and monads tend confinal.

ly to Def), Since ce Def{(.d a5 we have F(dl’dz) = ¢ for
172

a suitable function Fe Sdo. Construct f“{c}(dl)‘ the monad is
a class of indiscernibles, for (q{c}(dl)E—Ind holds. But the
there is d3 such that d3<d1, d3< d2 and d3> Def{d. Let
‘f’(t'tl’tz) = F(tl,t2)>t. Obviously y is true for d'dl’dZ'
These elements are, however, indiscernibles and hence it is
also true 4r(d3,d1,d2). Thus c>d3, which 1s in contradietion
to d3> Def&c}.

Theorem 7. There is a set-formula @ € FL such that for
each c¢> Def there exists d incomparable with ¢ and ® defines

a function Fe Sd{d& - Sd{o} for which the condition

VB @Ese3) ™ “gey = et
holds.,
Proof. Let c¢c>Def and let dl,d2€ Ind be sets satisfying
the assumptions of Lemma 3, It is easy to verify that (dl,d2>
and ¢ are incomparable: c#Det{<dl’dz>} follows directly from

Lemma 3 and for d,,d, > Def_fc} we have <d1,d2>¢Def{c§. Deno-
te d = <d1,d27. Furthermore, define a function F by: F(4y) =
= d2, F(dz) = dl and F(t) = t for each t different from dl’dz'
Then obviously Fe Sd{(ﬂ and F transforms each monad in {%? on-

o
to a monad in ey
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§ 2. In the beginning of this paragraph we shall investi-
gate the "strength" of monads from the standpoint of definabi-
1lity. Further let 9y Mo denote monads in {%—} .

Definition. We say that «, is stronger than 4, (nota-

tion: (4 3} (4,) iff there is a function FeSd ., such that
2 32 i
Py = Gqe I @y (T p and 4T3 (4, at the same ti-
me, we say that ¢y and (“—2 have the same strength (notation
@1 (&g @p)e We write g (F; M, if simultaneously

2
1 {3} o and (‘"1{%} “ o and we say that “p is strictly
stronger then (U-l.

Remark. Notice that from the results of § 1 it follows:

“1(F] ¢p= GPESAP @,y € ()= APeSdyg) P* @pn
N @ *g.
Lemma 4. (V @, @) [Ty 4y = BHeSY 1)
H: @, <> (“’2']'

Proof., Let (ul{”g’} (4pe Then there are functions F,G ¢
€ Sd{d such that F(x) € (91 for each x € & and G(y) “p
for each y 4y Construct a composite of F and G. Obviously
Fo Ge Sdic?;' dom(Fo G) 2 “q and (Fo G)" @ = qe Thus
y{zi-fi(F 0.G)(y) for each y € ;. In accordance with Theorem 1
there is a class XeSd{d such that Fo G is the identity func-
tion on X and (u.{c}(y)gx. Since (u{c}(y) S (4, We have Fo G =
= I4q (41 and therefore G P(F"X) = (FP xT'.Hence it suffices
to put H = G} (F"X). The converse implication is obvious.

Lemma 5. Let M4 (7} &, and let F,Ge Sd{c}, be such
functions for which F: @€ Mo and G: My <> *> hold.
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Then P M @) =6 P u,.
Proof. The assertion is an evident corollary of Theorem 1.

Remark. Note that the assumption “11% “, in the pre-
vious lemma is essential., Namely, it follows from Example 1
that:

Gx)(3 @, “2)OF,Ge8d, 1) @y £ w &Py Gy —> @, &
&G ¢ —> (0-2&1'(1):#(}(:).

Lemma 6. Let (ul{‘c"; “ 5+ Then

(YP)(F is a figure in 2y ) Pn( “1* @) ¥P = Fr @ <> (g

Proof. Let xerr\((alx (42)s then {x,F(x)> ¢ ¢y = (a.2,
Denote » = (u'{ci« x,F(x)>). Since » is a monad, there is a des-
cending sequence of classes gle Sd{ﬁ such that » = ﬂ{%an €
€ PN},

We prove that there is ke FN such that xk is a function,
Assume that for each ne FN there is x € dom(ln) such that
I{l {xn} has at least two elements, We prolong the sequence
{x,n;nem} by the axiom of prolongation. Let <, be the great-
est element such that for each 3, 1 < B« oci. the class
x; {!{5} has at least two elements, Evidently <42 FN for each
i€ FN, The sequence -{cci} is a descending one. Therefore there
exists o such that for each iec FN we have 1 ¢ y e oC 4o Const-
ruct N{ xil‘ix,‘rh 1€ FR}; by a consequence of the axiom of pro-
longation, the class has at least two elements, too. At the sa~-
me time, however, N<{ nt {xz.} $1€PN{c » and » is a functi-
on - a contradiction,

Thus let k € FN be such an element for which X, is a func-
tion, Since » ¢ xk we obtain that I e Sd{c} is a function
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which is a one-one mapping of “ onto (Yoo It is true now
that F I 1 = 5 M @ = (recall that the domain of a monad
is a monad); this completes the proof.

Further we shall formulate several criteria which enable

us to verify whether (w, < oo

Lemma 7. Let FeSd,;, F be a function, If F" w, = &,
then the following are equivalent:

Q) @13 ¢

(2) (Vy)ly e @qg=> (F1"{yin @, has at least two ele-
ments)]

(3) (vy) Ly € @y = (F"1"{y} 0 @, 1s infinite))

(4) Vy)ly e 4y = (Fy3n @, is a nontrivial monad
1n{c=‘,3:!})3 v

Proof. For (1)=> (4) see Theorem 6. The implications
(4) => (3) and (3) => (2) are trivial, For (2) = (1) realize
that 1(1) says actually that (w, (Fh (4, and hence, in accor-
dance with Lemma 6, the function F is a one-one function and
therefore 11 (2) is valid.

Remark., It is possible to rewrite (equivalently) the sta-
tements (2),(3),(4) using only the quantifier 3 ,

Finally, we prove that for each monad in{—;-g there 1is no
proper class xede which is a part of the monad. The assertion
is interesting with respect to the prolongation theorem which
implies that in each infinite &' -class (and therefore elso in
each semiset) there existes an infinite set which is a part of
it. Thus, if we want to use the direct analogy to the prolonga-
tion axiom for clesses, we Mave to turn to the technique of
Sd.’; classes (see [S - V 21),
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Theorem 8, Let Xe¢ Sdo. Then

(vx,y) [ X"ix} = ()& X" {x} has at least two elements ] =
= «(¥y) = m(x).

Proof. If z = x, then obviously X"{z$ < (y) and X"{z}
has at least two elements. Define functions Fl, F2 as follows:
for each t let Fl(t) be the first element of X"{t% end let
Fz(t) be the second element of the same class., Then Fl,FaeSdo
and FY w(x) = @(y) for 4 = 1,2, This implies (w(y) 22 “(x).
If w(y)= (f’“(x) then Fl = F2,which is a contradiction. Thus
ee(y) 3 m(x).

Remark, Theorem 8 and also the following Theorem 9 hold

obviously also for the relation _(cé ;

Theorem 9, Let  be a monad in = , Then
ﬂ[GXeSdV) (X a proper class&X < (u.) A

Proof. Let y e  and let there be a proper class Xe de
such that X < (u,(y). Then there are x, X such that f"{x} = X and
feSdo. Since X = w(y) we have X"{x} < ¢(y) and by Theorem 8
the assertion & (y) < @ (x) holds. Define (by induction) a
function G by the rule: for each t let G(t) be the smellest e-
lement of X"{t} - rng(GM{z;z< t3), Evidently Ge Sdo and G is
e one~one function, Purthermore, G(x)e X"{x} < (y)e Thus G is
& one-one mapping of x into “(y) and hence x =~ Y+ this is in

contradiction to w(y) < ©w(x).

§ 3¢ In the last part of this paper we shall formulate

several interesting statements concerning algebraical proper-

ties of the relation 2 .
{c}
Theorem 10. There is no maximal monad (in ordering by
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{?} ).

Proof, Let U be a meximal monad. Let x,y € M  and x+y.
We claim that ﬂ({x,y}){é} « o Obviously (u.({x.y}){fc:,’ .
Since e"{ix,ylt = {x,y{ S & we have @l x,yt) & @ due to

Theorem 8,

Theorem 11, There are uncountably meny minimal monads

. |
(1n{-é-} )o
Firstly we prove the following assertion:

Lemma 8, (u. is a minimel momad (in {é} ) iff each func-

tion Fe Sd{c} is either constant or one-one mapping on w .

EProof. Suppose &« 1is not a minimel monad. Then there is
e monad ¥ such that » ,23: « and » 1s not trivial. This im-
plies the existence of a function Ge Sd{c} for which ¥ = G" w
and G is not one-one mapping. Thus G is a constant function,

which is a contradiction (» is not a singleton).

Conversely, let ¢ be minimel, Let Fe Sd{c}’ F be a func-
tion which is not one-one on w . We shall prove that then F
is a constant function on &« . By Theorem 5 we know that Mo
is a monad. Moreover, o .[‘éf “ o According to the defini-
tion of minimal monads we have, however, that Fraw  is a sing-

leton and therefore F is constant on « -

Proof of Theorem 11, We shall prove that for each count-
able system of monads -{(ui} there is a minimal monad M which
is a proper class and which is disjoint with all Yy e

Let us enumerate all functions of Sd{c?‘; denote them Fi.

We shall construct a descending sequence of proper classes
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Iie S(!._[°§ for which two conditions hold: !1 is either const-
ant or one-one on X; and o *4 = . The classes I; will ve
constructed by induction, Let xi be formed, we produce 11+1
in such a way: Divide X; into two disjoint proper olasses I,
I! - ii' Then the monad “141 is a part of one and only one
of them, Purther we consider just the class from the couple
ii’ Ii - ii which is disjoint with (“441 — denote it Yi.

Now we investigate Fiﬂl‘ 1’1. It 1'1+1’ Yi is a set, then
r“lr Yie Sd{c}. Denote u = In dom(Fiﬂ). In this case, we
put Ii+1 = Y, - u, Let further 1'1+1 I Y; be a proper class., Then
either P, " ¥, 18 a set or Fiaa" Y€ V. In the first situati-
on we have Pi+1" !12 Sd{o‘. Let t be the smallest element of .
Fijs" ¥j such that (F;_ll)"{t}¢v; such a t exists since Y, is
& proper class, We shall put now xi+1 = (inl)"“;’ It !‘1+1" Yi
is a proper class, then ’Iil generates a decomposition of Yi
according to the equivalence x ~ Yy =F(x) = F(y); denote

{zt} tel”'Yi the system of classes of the decomposition, In this

second case we shall put xi+1 = {2; 2 is the smallest element
of Z,& tePy,3,

Let us construct 011. The intersection is a proper -
class and therefore a figure in {=é’=§ o We claim that for each
Pe Sd{cl the function F is either constant or one-one on nxi
and that NX; N ¢4 = @. The assertion Nx, n “y = ¢ is tri-
vial since for each 4y we have X5 N (uj = @. Let further be
Pie Sd{d; then - acoording to our construction - the function
Pi is either constant or one-one on X;. The seme is therefore
true also for Dxi.

Because nxi is & proper class, there is a monad in (]Ii
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which is a proper class, too. Thus we have constructed (see
Lemma 8) at least one proper minimal monad.

It 18 easy to verify that we can produce an uncountable
amount of such monads. If there is only a countable number of
minimal monads then we create - in accordance with the above
mentioned procedure - a next minimal monad which is different

from all preceding ones. This completes the proof,

Remark, It follows from the results of J.B. Paris concer-
ning non-standard models of PA that there is a monad which has
no minimal monad "under itself",

Note further that using the familiar construction of the trans-
finite induction one can prove (by means of the axiom of choice
and the axiom of cardinalities) that there is a chain £ of mo-
nads :Ln{‘-‘:—-‘ s with ordering {é} of type -0-1 such that each mo-

nad in{%} "lies under" a monad of the chain L .

Theorem 12. (3 (g, @) ( oy By ¢ & ¢ By ¢p)e

Proof. We know from the previous theorem that there is an
uncountable amount of minimal monads. We prove now that there
are among them two monads which are not comparable with reapect
to ordering {é§ o Thus, if «w,» are minimal monads and either
@ F3» or » .3 « holds, then we have w (3;» . But the-
re is only a countable number of monads like these, since the-
re is just a countable amount of functions from Sd{d which are

one-one functions,.
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