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Introduction. Let Gc R® be an open set having non-empty

boundary 3G and let & be an arbitrary function on G such
thet 0< & (x)<dist(x, dG), the distance of x from the bounda-
ry. A Borel measurable function g on G is said to have the re-
stricted mean value property with respect to balls, if for eve-
ry x€ G the mean value of g over the ball with centre x and
radius d(x) (i.e. the integral of g over the ball divided by
its volume) is equal to g(x). A function g with the described
property is sometimes called J’-harmonic function on G. Not so
frequent is the study of o’-harmonicity with respect to sphe-
res where the mean value may be interpreted as the integral
with respect to harmonic measure, nevertheless this serves to

us as a starting point for our generalization of the problem,
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A quite natural generalization in the context of a har-
monic space X may be formuleted as follows: For every x from
an open set GCX fix a measure Py 8such that for every func-

tion h e'ZE(G), the set of harmonic functions on G, we have

V() = [nd »_ = nx).

Now the problem consista of finding conditions involving @, g
and the choice of measures Yy which imply g € ¥(G) provided
Y. (8) = g(x) for every x€ G. A lot of results is known for
the classical case and various conditions imposed on G, g and
d” which give the validity of

g is Jd-harmonic => g e (G)

were studied (see, e.g. [51,1121,0[4]; a survey article [ 9] con-
tains 81 references concerning the protlem)., As far as we know
in the frame of an exiomatics such a Problem has not been stu-
died. Our approach to it is closely connected with the Dirich-
let problem and avoids pProbabilistic methods which occurred

to be very efficient in the classical cage. Itg origin goes
back to Lebesgue [7] (this influenced our terminology). Other
comments may be found at the end of the article,

1. Notation. Let X be a 2 -harmonic space with countab-
le base in the gense of [3]. In what follows, GcX ig a fixed
open set for whichdG+f@ For a set McX, the symbol ¥ (M)
stands for the set of continuous functions on M while J3(M)
denotes the set of Borel measurable functions on M. The get
of functions from <%(X) having compact support is denoted by
€. (X) and CBb(M) is the subset of H(n) consisting of bound-
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ed functions.

For an open relatively compact GcX let us denote by
S(G) = S the cone of lower semicontinuous functions (l.s.c,)
on G which are extensions of superharmonic functions on G. For
every xg G choose a representing measure <y with respect to

S, i.e. a measure Ly such that

(1) BeS => o (8)£8(x).

Redefining foxr a function s < S the value s(x) for am x € 3G in
such a way that s(x)<s(y) for all ye G \{x} we can easily show
Ly = & (the Dirac measure); hence Ly = €, for all x € 3G.

Now we can put for fe!&b(c)
(2) Af(x):= oo (£)

where we identify A with the collection {“’x}xe'c" Since most-
ly the choice of o, together with (2) does not determine &
"good operator" A, we must be a bit careful: Af = f means only

that f is ocx-integrable for all x and

(3) oL (£) = £(x).

If (2) determines an operator acting on the space ¥ (G) or
53b(§), we shall call A "continuous" or "Borel" operator, res-

pectively. Our first aim will be to find sufficient conditions
for the validity of

(4) Af = £ => £|G € H(G);

here f|G means the restriction of f on G. Then we shall use it

in connection with the restricted mean value property.
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2+ Lebesgue’s operators. Let G be & relatively compaoct

open set, For A = '{G{’x}xeﬁ suppose (1) and
(5) Ly+2e, for all xeG.

In what follows we shall need a variant of the minimum prin-
ciple:
If SA is the set of l.s,c. functions s on the compact

set G for which As£s, then for every s €S, we have
(6) 8136z0=>g20.

Suppose, on the contrary, that there is & function se SA such
that s(x) <0 for an xeg and 8 (3G>0. If P >0 18 a continu-
ous potential on X, put £ = s, g = PlG in Lemma 2 ([31, p. 26)
to obtain a contradiction with (5)e By a Lebesgue ‘s operator
A= {d‘x}xe(f (shortly: L-operator) we understend a continuous
operator defined by (2) Provided (1) and (5) hold. Denote by
oc: the measure determined for all X and n with the help of
the eoquality

(7 % 2(£):= A%f(x), £ e € (F)
(here A® ig the identity operator and AD = A*An'l, ns=1,2,

+++y Where x stands for the composition of operators) and by

vy the harmonic measure corresponding to G and x.

3. Pro osition, Let GcX be &n open relatively compact

8set and A = {"Cx}xeﬁ be an L-operator. If a(,: are defined by

(7), then for every f e €(G)

(8) L 3(£) —» “x(£), xe6
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as n—> o0 (i,e. eC: —> Uy weakly) and the convergence in
(8) is uniform with respect to x on compact subsets of G.
Proof, Since the differences of continuous potentials
are uniformly dense in <?.’c()() (cf.[3), Th. 2.3.1), we rest=
rict ourselves to the case of f ¢ ¥(G) and £|G superharmoniec.,

Then we have

fyi= AfL L, Toi= AP £1,,...

and if % is lower bounded. Put u = 1im £,- It is easily seen
that v(x):= w_(£)£u(x), x€G and Au = u.

If s is an upper function for f£| 3G, we extend the dif-
ference (s-u) by 1im inf from G onto G. Then s-ue S, and by
(6) we have u< s, Consequently u = v. The rest follows from

the Dini’s theorem (cf, [ 131, Th.6).

4. Corollary, Let Gc X be an open relatively compact set.
Suppose that for a Borel operator A = i bt .5 there is an I-

operator B = {3 3 & for which
(9) seS = e, ()< 3 (8), xeG.

Then (8) is valid for every f e € (G).

Indeed, it is easily seen that for every s &S we have
(ux(s)éao;‘(s)é{ii(s) —> @, (8) and hence the statement is
an easy consequence of (9), In connection with the Dirichlet
Problem both previous assertions offer the solution as & 1i-
mit of a sequence of functions. More precisely, if f e €(%)
is an extension of the boundary condition in the Dirichlet
problem and A is as above, then APf is convergent on G to the
solution of the problem (see [13]),
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Now we shall turn to the restricted mean value Property,

We shall suppose
(10) 8pt o C G for all x eG;

this assumption is quite natural with regard to the classic-
al case we discussed in the introduction. The same may be
said on the definitionm:

If GcX is open and A = {“x}xec is a collection of me-
asures having compact support and satisfying (1),(5) and (10),
then a locally bounded f e HB(G) 1s said to be A-harmonic on G
provided (3) holds for every x€G.

5., Proposition. Suppose that GcX is an open relatively
compact set and A = {ch}xec is a Borel operator (i.e. Ag e
e ﬁb(G) whenever ge B, (G)) for which there is an L-operator
B = iR, 1 e such that (9) 1s valid. Ir ¢ € B,(C) and £ is
(“x - 8lmost everywhere continuous on G for every x &G, then
from A-harmonicity of f follows f£1G ¥, (6).

This is & consequence of Cor. 4, namely the weak conver—
gence uc;I —> (4y» Which we established there and from which
it follows for f

T(x) = 2 (f) = u (£), =xea.
(See (11, Th, 4.5 1,)
The condition (9) shows that for every x €G the corres-
ponding oy 1s balayed ﬁx with respect to the cone S. Rough-
ly speaking, A-harmonicity implies harmonicity if A is a Borel

operator (on ﬁb(G)) which is a "pointwise balayed I-operator",
It seems a bit inconvenient to work with an f defined on
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G since the result is naturally connected with its values on

G« This is removed by the next theorem.

6. Theorem. Let GCX be an open relatively compact set.
Suppose that f e Bb(G) is an A-harmonic function on G with
reaspect to the Borel operator A = -[ooxlx eG® Moreover, suppo-

se that (i) there is an L-operator B = 'iﬁx} g and (9) holds,

xe
(ii) there is a Borel set Nec 8 G such thet

(11) lim f(x)
K>

ig finite for every y € 3G\ N, and (iii) the set N, is negli-

gible in the sense that

(12) ;u-x(Nf) = 0 for every x €G-

Then f is a bounded harmonic function on G.

Proof., Consider the weak convergence o(,xx1 —> Uy in (8) for
e fixed x € G. Recall that by (10) spt cclxch while for the har-
monic measure we have spt 4y €3G, Put P = E\Nf, aC:lP = olys
@y |P = ¥ . It is easily seen that the function f extended from
G on P by limits (11) is a Borel measurable function which is xr-
almost everywhere continuous on P, It remains to prove oLn—> ¥
weakly and again to apply Th. 4.5.1 in [1], where also erui-
valent conditions for the weak convergence of measures may be
found. For any Vc P open there is an open V’'c G such that
VA P = V. Since we know (8), we can easily prove
]’.wim_’ :gonf o(.n(V)Z_ W(V) and the required wesk convergence will
be established. Indeed, lim inf oc (V) = lim inf o J(V) =
= lim inf «2(V) Z @ (V) = @ (V) = 7(V), and hence o —>

—> 7y 1s proved.
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Let us remark that it is not obvious whether (12) is e-
quivalent with v(Nf) = 0 for a measure » . But it is the
case if we choose a countable dense subset {xn;ne Nic G and
put »= X270 (axn. Since there is a continuous potential P>0
on X, it is easily seen that the measures (u.xn are uniformly
bounded and hence v is a finite measure. Now, if (12) holds,
»(Ng) = O is obvious. On the other hand, if »(M) = O for an
M C 3G, then (,cxn(ll) = O for every ne N. Since (ax(ll) is - as
a function of x on G - harmonic and therefore continuous on G,
it is equal O everywhere and (12) is valid,

To find a connection of the theorea to the results known
in the classical case, we shall at first examine collections
A of "typical" Ly Ifr Vx is a neighbourhood of x ¢ G such

that VICG is compact, then a good candidate for such an Lo

is E:Vx (the harmonic measure corresponding to the set v, at
x). Since the support of the measure is compact, every

fe 33b(G) will be < y-integrable. In what follows, U, V (some-
times with primes or indexes) will stand for open relatively
compact subsets of G. Let us fix a metric So on X compatible
with its topology and introduce

&(0,V) = B(U,7) + @( 3y, av),

where § is the Hausdorff metric om the system of compact sub-
sets of X, It is easily seen that © is & metric on the set
of open relatively compact subsets of G. Moreover, if e > 0

is given and for a U we put
V' ={xeU; aist(x,CU) > €}, V" = {xe G;dist(x,U) < e},

then V'c Uc V" and for every v, 6(U,V) < & we have
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V’c VcV". For a technical reason let us put
o« (U,x,2):= [ £ eV

for xeU, UcG and fs.Bb(G).

7. Broposition, Let Gc X be an open set. Suppose that the
mapping @ :x —> Vx, x€G has the following properties ;

(1) V; is a neighbourhood of x such that ch G is com-

Ccv. CV.
pect ana € X . €y x

(i1) <« 1is continuous (w.r. t. e-6).
Then, for every f € ¢(G), the function
Af(x):= cc(Vx,x,f), xeG

is continuous (here cc(Vx,x,-) denotes & measure previously

denoted by ocx).

Remark. The equality of measures in (i) implies certain
continuity: put V = Vx and choose Un' U; in such a way that

U, AV, U NV, Then it follows from Pr. 7.2.4 in [3] that
cv. ‘ =
L a —)63", €y n_ egv for every y €V and hence our as-
sumption implies that both limits coincide for y = x. (The
condition is fulfilled if the set of points of OV in which

CV is thin is "small"; of. [10], Th.1.)

Proof. Let us prove the continuity of Af at arbitrarily
chosen x6 G. For such a fixed x choose U, \—Txc YcUc G. Now if
6'(V1,Vy) is sufficiently small, then Vyc U and hence the ve-
lues Af(y) depend only on values of f on the set U. From this
it follows with the help of approximation theorem Th, 2. 3.1
in [3] that it is enough to prove the continuity of Ap at x

for any potential p on X.
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The assumption (i) implies (see the remark above) the exis-
tence of neighbourhoods U, U° of x such that ﬁcvxc Vx cU',
for which the difference of estimates of oc(Vx,x,p) in

«(U”,x,p) € . (V,,x,p) € (U,x,p)

is arbitrarily small. For e(vx,vy) small enough we have
Uc Vyc U and the analogous estimate together with the conti-
nuity of @ gives

(13) i | d'(vxvxvp) - Oﬁ(vy;xyp) ‘ >0

as ©(x,y) —> 0. It is easily seen that for all y sufficient-
1y close to x we have Uc Vy and hence the functions M(Vy,-.p)
are harmonic on U. Moreover, these functions are uniformly boun-
ded for all y from a neighbourhood of x, This implies by Th.
11.1.1 in [3] the equicontinuity of all these functions on a
neighbourhood of x, Now from (13), the equicontinuity and the
estimate
lAp(x) - 2p(3)) £ | & (V,x,p) - o (Vy,x,p)| +

+ 1 oo(Vgux,p) - cc(Vy,y,0)|

we shall easily obtain the required continuity of Ap at x.

In the case of classical harmonic functions the mean va-
lue over a ball can be interpreted as an "infinite combination"
of harmonic measures corresponding to smaller balls with the
same centre. In what follows, we shall study A-harmonicity for
A e{aox}xs ¢ With measures <y of a similar type.

8, Lemma, Let D be an open subset of a metric space. Let
us suppose:

(1) {fx;xe D} is a set of positive decreasing and uni-
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formly bounded functions defined on [0,d], d>0;

(ii) for any x€D and 8,t,t’c [0,d], t<s<t’, there is
a neighbourhood U(x) of x in D such that the inequality
(14) e MOPEMOES M)
holds for every ys U(x);

(1iii) g is a continuous strictly increasing function on
Lo,al, g(0) = o.
Then the average

c
(15) 0 (fpogs0)i= (&(e))™h [ (+)ag(t)

is a continuous function (w.r. t. the usual product topology)

of (x,c) on D»10,dl.

Proof. Clearly, c |—>Q(fx,g,c) is a continuous function
on ]0,d[ for any x¢ D. It is easily seen that it is also decre-
esing, For a fixed c €]0,d[ the continuity of x > Q& (£ ,g,c)
follows from the approximation of the integral in (15) by an
integral sum combined with the property (14). Indeed, for P =
={0 =t <ty<...<tg = c}and s;elt, ;,t;[ we can choose a
neighbourhood U(x) of x auch that fx(ti_l)ny(si)zfx(ti)
holds for all ye U(x). Now the expression

& e
LZ 2 (e l8(ty) - gty 1)1 - 3 £.(s;) [a(ty) - ety y)]]

may be done arbitrarily small by the choice of P and 8y while
both integral sums are close enough to the corresponding inte-
grals, (For details see the proof of L.1ll in [13].) From the
separate continuity in x and ¢ and monotonicity in ¢ it fol-
lows that (l(fx,g,c) is continuous on D><]0,dl .
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9+ Proposition. Let Gc X be an open set, Let us suppose
that
0:6x6 —>RY, a:6 —>RY, g: [0,0[ —> RL

are positive continuous functions enjoying properties:

(1) O (x,x) = 0 for every x €G, f(x,y)>0 for every x,y€
€G, x+y;

(11) for every x&G, O<c< d(x), the closure of the set

(16) vx,c ={ye6;Q(x,y)<c?

is 2 compact subset of G and its distance (w.r.t. the metrics‘o
fixed above) from Cvx,c’ is strictly positive for every c<c <
<d(x);

(ii1) g is & continuous strictly increasing function and
g(0) = 0
Then for every h &« €(G)

-1 ¢
an An(x,e)i= (g(e))™ [“oo(v, ,,x,n)ag(t)

defines a continuous function of (x,c) on the set {(x,c); xX€eG,
O<c<d(e)}.

Proof., Fix-a point (x,c) in the set and choose a neigh-
bourhood D of x and an interval Je,bl containing ¢ in such a
way that Vx’ec G for all (y,e)c Dxla,bl.

Likewise in the proof of Pr. 7 it suffices to prove the
continuity of (O p for every potential p. We shall show that in
this case Pr. 9 follows easily from L.6. Indeed, the assumption
(111) implies that L.8(iii) holds for g on [O,bl. On the same
interval, the functions Tpitr— oc(Vx’t,x,p), xeD, satiafy
L.8(1).
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If xeD and 8,t,t"€ [0,b), t<s<t”, then it follows from
(11) end the uniform continuity of © on compact subsets of
Gx G that there is a neighbourhood U(x) of x in D such that

we have V_ . C cV. ,, for every yc U(x). Now (14) is a con-
x,t x,t

v

y,8
sequence of the monotonicity of the balayage. Since we have ve-
rified that all essumptions of L.8 are fulfilled, the proposi-

tion is proved.

10. Corollary. Assume the same as in Pr. 9 and suppose
that e B(G), 0< J(x) <d(x) for every x€ G. Then

(18) Alh(x):s QAn(x, I(x)), =xeG,
where (O h is defined by (17), and
(19) A2h(x):- “(vx,d'(x)’x’h)' XEG

are Borel operators (on ﬁb(G)). If J° is moreover continuous,

then Aqh e ‘eb(G) end Ayh € Jib(G) whenever h € Sf’b(G).

Indeed, if h € ¥, (G) and " is continuous, then Pr. 9 im-
plies that (h(x, o(x)), x€G is continuous. Put g(t) = t, +>0.
It is easily seen that

Ah(x) = lm n (Gh(x, (@) - Qh(x, o) - o)
m —> co

and hence Ah € iBb(G). This gives the first part of the asser-
tion.

Now we can give a more explicit description of a broad
class of operators A which we met in connection with A-harmo-
nicity in Th. 6. More precisely, we shall show how to construct
for the operators A,, A, from (18) and (19) a corresponding L~
operator B for which (9) holds provided "the velues of the si-

ze function d° are not too small" in G. The same will be shown
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for an operator A from Pr. 7,

11, Theorem, Let GCX be an open relatively compact set
and © the metric fixed above.

(a) Assume, moreover, the same on {1, d, g and o as what
was supposed in Pr, 9 and Cor, 10. If for every compact set
ccG

(20) inf {J(x);xe C} = 1,>0,

then the operators A,, A, defined by (18) and (19) have all
properties recuired in Th. 6.
(b) Assume now the same on  and Vx what was supposed in

Pr. 7. 1f
(21) Jd(x) = dist(x,CVx)
fulfils the condition (20), then the operator A from Pr, 7 has

all properties required in Th. 6.

Proof, All ;hat remains to prove is the existence of &
corresponding operator B. In the first case (i,e. (a)) choose
compact sets Cy, Cy /G and for k = 1,2,... put iy:= (1:+1)"11ck
(cf. (20)). Then choose f, € ‘€c(x) in such & way that Oéfk £
é—ik - ikfl’ fk(x) =i - i, on Cy and tk(x) = 0 on CCp
Now denote by A the restriction of ka on G; since ae ¢(G),
0 < Aa(x) < d(x), B can be defined by

Bh(x):= QA h(x, A(x)), =x€G
(and, formally, Bh(x) = h(x), x €3 G) and every h € €(G). Ine-

quality (9) is a consequence of monotonicity of QAh(x,c) from
(17) in the variable c.
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In case of (b) the construction can be repeated with
Q(x,y) = p(x,¥), a(x) = dist(x,CG) and g(t) = t, t>0.
Function d° is defined by (21). Inequality (9) now follows from
the monotonicity of the balayage.

12. Remarks and comments

(1) Lebesgue in [ 7] replaced essentially the Laplace equ-
ation in the Dirichlet problem by the equation Af = f with a
"Lebesgue ‘s operator” A. He obtained one of the first theorems
on the restricted mean value property (cf. also L8l).

(2) Our results are a generalization of a theorem proved
in the classical case in [11); the authors use a probabilistic
approach. Remark that in R® the mean values of h w.r.t. balls
can be obtained if we choose fl(x,y) = © (x,y), the Fuclidean
metric and g(t) = #%~1  £50; then (17) determines the mean va-
lue since in the case oc(vx.t.x,-) is the normalized surface me-
esure on the sphere avx't .

(3) For the generalization of the Lebesgue ‘s approach to
the Dirichlet probésm in [7] Bee lé%].( tIn the formula (20) in
[13] instead of £ ¥ should be €y x5

(4) In our assertions we used mean values of a quite ge-
neral form but we admit only functions with a "good boundary
behaviour a.e. on JG". It would be interesting to know whether
similer results can be obtained in the frame of an axiomatics
for functions with more general boundary behaviour.
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