

Werk

Label: Article Jahr: 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log52

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

23,3 (1982)

A NOTE ON ISOMORPHIC VARIETIES Jaroslav JEŽEK

<u>Abstract</u>: We shall characterize all the pairs (\triangle , Γ) of similarity types such that the variety of all \triangle -algebras is isomorphic (as a category) to some variety of Γ -algebras.

Key words: Algebra, variety.

Classification: 08C05

McKenzie [1] proved that for any finite type \triangle , the variety of all \triangle -algebras is isomorphic to a variety of (2,1)-algebras (algebras with one binary and one unary operation); he asks if the variety of all (2,1)-algebras is isomorphic to some variety of (2)-algebras (i.e. groupoids). The aim of the present paper is to give a negative answer to this question and, more generally, to characterize all the pairs (\triangle , Γ) of types such that the variety of all \triangle -algebras is isomorphic to some variety of Γ -algebras.

By a type we mean a set of operation symbols; every operation symbol F is associated with a non-negative integer, denoted by n_F and called the arity of F. Let \triangle be a type. $\mathbb{A} \triangle$ -algebra A is determined by a non-empty set (the underlying set of A, denoted also by A) and by an assignment of an n_F -ary operation on the set A to any symbol $F \in \triangle$; this operation will

be denoted by F.

Let V, W be two varieties and $X \mapsto X^*$ be a functor from the category V into the category W. Following [1], we say that $X \mapsto X^*$ is an isomorphic functor from V to W if every algebra from W is isomorphic to A^* for some $A \in V$, and if $X \mapsto X^*$ induces a bijection of hom(A,B) onto $hom(A^*,B^*)$ for every $A,B \in V$. (It is easy to see that if $A,B \in V$ then $A \cong B$ iff $A^* \cong B^*$.) We say that two varieties V, W are isomorphic if there exists an isomorphic functor from V to W.

Lemma 1. Let V, W be two varieties and $X \mapsto X^*$ be an isomorphic functor from V to W. Then:

- (1) If $A \in V$ then A is one-element iff A^* is one-element.
- (2) If α is a V-morphism then α is injective iff α^* is injective.
- (3) If ∞ is a V-morphism then ∞ is surjective iff ∞^* is surjective.

Proof. A is one-element iff for any B ϵ V there is exactly one morphism in hom(B,A). ∞ is injective iff it is a monomorphism. ∞ is surjective iff the following is true for all V-morphisms β , γ : if $\infty = \gamma\beta$ and if γ is injective then γ is an isomorphism.

Lemma 2. Let V, W be two varieties and $X \mapsto X^*$ be an isomorphic functor from V to W. Let $k \ge 1$ be an integer; let P be a V-free algebra of rank k and suppose that P^* is a W-free algebra of rank l; let x_1, \ldots, x_k be free generators of P and let x be a free generator of P^* . For every $a \in V$ we can define a one-to-one mapping L_A of A^* onto A^k in this way: if $a \in A^*$ then $L_A(a) = (\alpha(x_1), \ldots, \alpha(x_k))$ where α is the unique morphism

from hom(P,A) with $\ll^*(\pi)$ = a. If $\beta \in \text{hom}(A,B)$ in V, $a \in A^*$ and $\iota_A(a) = (a_1, \ldots, a_k)$ then $\iota_B(\beta^*(a)) = (\beta(a_1, \ldots, \beta(a_k))$.

Proof. Evidently, it is possible to define a mapping C_A of A^* into A^k as above. Conversely, define a mapping \mathscr{R}_A of A^k into A^* as follows: if $a_1, \ldots, a_k \in A^k$, put $\mathscr{R}_A(a_1, \ldots, a_k) = -\infty^*(x)$ where ∞ is the unique morphism from hom(P,A) with $\infty(x_1) = a_1, \ldots, \infty(x_k) = a_k$. Evidently, the mappings $\mathscr{R}_A \subset_A$ and $C_A \mathscr{R}_A$ are both identical, so that C_A is bijective and \mathscr{R}_A is its inverse. Let $\beta \in \text{hom}(A,B)$, $a \in A^*$ and $C_A(a) = -(a_1, \ldots, a_k)$. There is a unique $\infty \in \text{hom}(P,A)$, with $\infty^*(x) = -(a_1, \ldots, a_k)$. There is a unique $\infty \in \text{hom}(P,A)$, with $\infty^*(x) = -(a_1, \ldots, a_k)$. There is a unique $\infty \in \text{hom}(P,A)$, with $\infty^*(x) = -(a_1, \ldots, a_k)$. Now $\beta \in \text{hom}(P,B)$, $(\beta \infty)^*(x) = \beta^*(a)$ and so $C_B(\beta^*(a)) = (\beta \infty(x_1, \ldots, \beta \infty(x_k)) = -(\beta \infty(a_1), \ldots, \beta \infty(x_k))$.

Let V, W be two varieties. By an equivalence between V, W we mean an isomorphic functor from V to W commuting with the underlying set functors. (Then this functor induces a bijection between V, W.)

Lemma 3. Let V, W be two varieties and $X \mapsto X^*$ be an isomorphic functor from V to W. Let P be a V-free algebra of rank 1 and suppose that P^* is a W-free algebra of rank 1, too. Then V, W are equivalent.

Proof. It follows easily from Lemma 2.

Corollary. Let V, W be two varieties of idempotent algebbras. If V, W are isomorphic then they are equivalent.

Proof. It follows from Lemma 3 and assertion (1) of Lemma 1.

Lemma 4. Let \triangle , Γ be two types, let V be the variety of all \triangle -algebras and let W be some variety of Γ -algebras; let $X \mapsto X^*$ be an isomorphic functor from V to W. Then there are an integer $k \ge 1$ and an algebra $P \in V$ such that P is a V-free algebra of rank k and P^* is a W-free algebra of rank 1.

Proof. Evidently, there is an algebra $P \in V$ such that P^* is a W-free algebra of rank 1. Let us call an algebra $A \in W$ s-projective in W if for any surjective morphism ∞ in W and any morphism $\beta \in \text{hom}(A,B)$, where B is the end of ∞ , there exists a morphism γ in W with $\beta = \alpha \gamma$. Every W-free algebra is s-projective in W. Hence P^* is s-projective in W and so P is s-projective in V. However, in V every s-projective algebra is V-free (as it is easy to see). Hence P is V-free of rank k for some cardinal number k. Suppose k=0. Then for every $a \in V$, hom(P,A) contains exactly one morphism; but then hom(P*,B) contains exactly one morphism for every $B \in W$, which is evidently impossible. Hence $k \ge 1$. Suppose that k is infinite. Then P is the coproduct (in V) of ω copies of P, so that P^* is the coproduct (in W) of ω copies of P, so that P^* is the coproduct (in W) of ω copies of P^* ; thus P^* is a W-free algebra of rank ω . However, this is impossible.

In the following Lemmas 5,6,7,8,9 and 10 let \triangle , Γ be two types, let V be the variety of all \triangle -algebras and W be some variety of Γ -algebras; let $X \longmapsto X^*$ be an isomorphic functor from V to W; let $k \ge 1$ be an integer i $P \in V$ be an algebra such that P is a V-free algebra of rank P^* is a W-free algebra of rank 1. We shall fix ree generators x_1, \ldots, x_k of P and a free generator x of P^* . For every $A \in V$ defines as in Lemma 2; write U instead of U_A . Further, let us f a greatgebra Q

with an infinite countable set of free generators $\{x_{i,j}; 1 \le i < \omega, 1 \le j \le k\}$. The free generators $x_{i,j}$ of Q will be called variables and the elements of Q - terms. Define morphisms $\alpha_i : P \longrightarrow Q$ by $\alpha_i(x_j) = x_{i,j}$. Then Q is a coproduct (in V) of ω copies of P, with canonical morphisms α_i ($1 \le i < \omega$). Consequently, Q^* is a coproduct (in W) of ω copies of P^* , with canonical morphisms α_i^* . Put $y_i = \alpha_i^*$ (x); then Q^* is a W-free algebra with free generators y_1, y_2, \ldots and we have $\iota(y_i) = (x_{i,1}, \ldots, x_{i,k})$. For every $f \in \Gamma$ denote by $(f^{[1]}, \ldots, f^{[k]})$ the k-tuple $\iota(f_{Q^*}(y_1, \ldots, y_{n_R}))$.

Lemma 5. Let $I \subseteq \{1,2,\ldots\}$ and let $a \in Q^*$ be an element belonging to the subalgebra of Q^* generated by $\{y_i; i \in I\}$. Put $\iota(a) = (a_1,\ldots,a_k)$. Then every variable contained in some of the terms a_1,\ldots,a_k belongs to $\{x_{i,j}; i \in I, 1 \le j \le k\}$.

Proof. There is an endomorphism ε of Q such that $\varepsilon^*(y_i) = y_i$ for all $i \in I$ and $\varepsilon^*(y_i) = y_{i+1}$ for all $i \notin I$. We have $\varepsilon^*(a) = a$ and so $\varepsilon(a_1) = a_1, \dots, \varepsilon(a_k) = a_k$ by Lemma 2; hence $\varepsilon(z) = z$ for any variable z contained in some of the terms a_1, \dots, a_k . We have $\varepsilon(x_{i,j}) = x_{i+1,j}$ for all i, j such that $i \notin I$; hence $\varepsilon(x_{i,j}) = x_{i,j}$ implies $i \in I$.

Lemma 6. If Γ contains a nullary symbol then Δ contains a nullary symbol.

Proof. It follows from Lemma 5.

Lemma 7. Let M be a subset of Q such that every variable belongs to M, the terms $F^{\{1\}},\ldots,F^{\{k\}}$ belong to M for any symbol $F\in \Gamma$ and $\varepsilon(M)\subseteq M$ for any endomorphism ε of Q mapping all variables into M. Then M=Q.

Proof. Denote by D the set of all $u \in Q^*$ such that if $\iota(u) = (u_1, \ldots, u_k)$ then $u_1, \ldots, u_k \in M$. Since $\iota(y_i) = (x_{i,1}, \ldots, x_{i,k})$ and M contains all variables, we have $\{y_1, y_2, \ldots\} \in D$. Let us prove that D is a subalgebra of Q^* . Let $F \in \Gamma$ and d_1, \ldots, d_{n_p} and $ext{constant} = ext{constant} = ext{constant}$

Lemma 8. Let $F \in \Gamma$ be unary; let $a \in \mathbb{Q}^*$ be such that $\cup (F_{\mathbb{Q}^*}(a))$ is a sequence of pairwise different variables. Then \cup (a) is a sequence of pairwise different variables.

Proof. Put $\cup (\mathbb{F}_{\mathbb{Q}^*}(a)) = (z_1, \dots, z_k)$ and $\cup (a) = (a_1, \dots, a_k)$. Let \in be an endomorphism of \mathbb{Q} with $e^*(y_1) = a$, so that $e(x_{1,1}) = a_1, \dots, e(x_{1,k}) = a_k$. We have $e^*(\mathbb{F}_{\mathbb{Q}^*}(y_1)) = \mathbb{F}_{\mathbb{Q}^*}(a)$ and so $e(\mathbb{F}^{[1]}) = z_1, \dots, e(\mathbb{F}^{[k]}) = z_k$. From this it follows that $\mathbb{F}^{[1]}, \dots, \mathbb{F}^{[k]}$ is a sequence of pairwise different variables; by Lemma 5, $\{\mathbb{F}^{[1]}, \dots, \mathbb{F}^{[k]}\} = \{x_{1,1}, \dots, x_{1,k}\}$. Since $e(\mathbb{F}^{[1]}, \dots, e(\mathbb{F}^{[k]})$ are pairwise different variables, the same must be true for $e(x_{1,1}), \dots, e(x_{1,k})$, i.e. for a_1, \dots, a_k .

Lemma 9. Let $k \ge 2$. Then there is a symbol $F \in \Gamma$ of arity ≥ 2 such that $F^{[1]}, \ldots, F^{[k]}$ are pairwise different variables.

Proof. There is an element $a \in Q^*$ with $\iota(a) = (x_{1,1}, \ldots, x_{k,1})$. By Lemma 5, a does not belong to the subalgebra of Q^* generated by y_i , for any i. From this it follows that there are a symbol $F \in \Gamma$ of some arity $n \ge 2$, elements $a_1, \ldots, a_n \in Q^*$ and unary symbols H^1, \ldots, H^m $(m \ge 0)$ such that $a = H^1_{Q^*} \ldots \ldots H^m_{Q^*} F_{Q^*}(a_1, \ldots, a_n)$. Put $b = F_{Q^*}(a_1, \ldots, a_n)$. By Lemma 8, $\iota(b)$ is a sequence of pairwise different variables. There is an endomorphism ϵ of Q with $b = \epsilon^*(F_{Q^*}(y_1, \ldots, y_n))$; hence $\epsilon(F^{[1]}, \ldots, \epsilon(F^{[k]})$ is a sequence of pairwise different variables, so that $F^{[1]}, \ldots, F^{[k]}$ are pairwise different variables.

Lemma 10. There is a mapping $\lambda: \triangle \longrightarrow \Gamma$ with the following three properties:

- (1) $n_G \neq kn_{A(G)}$ for all $G \in \Delta$.
- (2) If $G_1, \ldots, G_m \in \Delta$ are pairwise different and $\lambda(G_1) = \ldots = \lambda(G_m)$ then $m \leq k$.
- (3) If $k \ge 2$ then the set $\Gamma \setminus \lambda(\Delta)$ contains an at least binary symbol.

Proof. Let $G \in \Delta$. Suppose that there is no symbol $H \in \Gamma$ such that $G(z_1,\ldots,z_{n_G}) \in \{H^{[1]},\ldots,H^{[k]}\}$ for some pairwise different variables z_1,\ldots,z_{n_G} . Then the set M of terms which are not of the form $G(z_1,\ldots,z_{n_G})$ with z_1,\ldots,z_{n_G} pairwise different variables satisfies evidently the assumptions of Lemma 7, so that M=Q by Lemma 7, evidently a contradiction. This shows that for every $G \in \Delta$ we can choose some $A(G) \in \Gamma$ such that $G(z_1,\ldots,z_{n_G}) \in \{A(G)^{[1]},\ldots,A(G)^{[k]}\}$ for some pairwise different variables z_1,\ldots,z_{n_G} . (1) follows from Lemma 5, (2) is evident and (3) follows from Lemma 9.

Theorem 1. Let \triangle , Γ be two types and let $k \ge 1$ be an integer. The following two conditions (I),(II) are equivalent:

(I) There exists an isomorphic functor $X \mapsto X^*$ from the variety of all \triangle -algebras to some variety of Γ -algebras such that for some $P \in V$, P is a V-free algebra of rank k and P^* is a W-free algebra of rank k.

- (II) There exists a mapping $\lambda: \triangle \longrightarrow \Gamma$ such that the following four conditions are satisfied:
 - (1) $n_G \leq kn_{\mathcal{M}(G)}$ for all $G \in \Delta$.
- (2) If $G_1, \ldots, G_m \in \Delta$ are pairwise different and $A(G_1) = \ldots = A(G_m)$ then $m \le k$.
- (3) If $k \ge 2$ then the set $\Gamma \setminus A(\Delta)$ contains an at least binary symbol.
- (4) If Γ contains a nullary symbol then Δ contains a nullary symbol.

Proof. The direct implication follows from Lemmas 10 and 6. Now let (II) be satisfied. Denote by Y the variety of all Δ -algebras. If k=1 then Δ is injective and $n_G \neq n_{\Delta(G)}$ for all $G \in \Delta$; this, together with (4), implies that Y is equivalent to a variety of Γ -algebras. Let $k \geq 2$. By (3) there exists an at least binary symbol $S \in \Gamma \setminus \Delta(\Delta)$, and evidently it is enough to consider the case when S is binary. For every $F \in \Gamma$ fix a finite sequence μ_F , consisting of all pairwise different symbols $G \in \Delta$ with $F = \Delta(G)$. If Γ contains nullary symbols, fix a nullary symbol $H \in \Delta$. For every Δ -algebra Λ define a Γ -algebra Λ^* with the underlying set Λ^k as follows:

 $S_{\underline{A}^k}((a_1,\ldots,a_k),\ (b_1,\ldots,b_k)) = (b_k,a_1,\ldots,a_{k-1});$ if $F\in \Gamma\setminus \{S\}$ is a symbol of arity $n\geq 1$ and $(\alpha_F=(G^1,\ldots,G^m),$

put

$$\begin{split} & F_{A^{(k)}}((a_1,\ldots,a_k),\ (a_{k+1},\ldots,a_{2k}),\ldots,(a_{nk-k+1},\ldots,a_{nk})) = \\ & = (G_A^1(a_1,\ldots,a_{n-1}),\ldots,G_A^m(a_1,\ldots,a_{n-1}),a_1,\ldots,a_1); \\ & \text{if } F \in \Gamma \text{ is nullary and } (^{\iota r}_F(G^1,\ldots,G^m), \text{ put} \\ & F_{A^{(k)}} = (G_A^1,\ldots,G_A^m,H_A,\ldots,H_A). \end{split}$$

For every \triangle -morphism $\alpha: A \longrightarrow B$ define a Γ -morphism $\alpha^*: A^* \longrightarrow B^*$ by $\alpha^*(a_1, \ldots, a_k) = (\alpha(a_1), \ldots, \alpha(a_k))$. It is not difficult to prove that the class W of Γ -algebras isomorphic to A^* for some $A \in V$ is a variety and that $X \longmapsto X^*$ is an isomorphic functor from V to W such that the V-free algebra of rank K corresponds to the W-free algebra of rank K. We shall not give here a detailed proof of this fact, since it is analogous to that of Theorem 1.1 of [1].

Theorem 2. Let \triangle , Γ be two types. For every integer $i \ge 0$ put $d_i = \operatorname{Card} \{ F \in \triangle : n_p \ge i \}$ and $g_i = \operatorname{Card} \{ F \in \Gamma : n_p \ge i \}$. The variety V of all \triangle -algebras is isomorphic to some variety of Γ -algebras iff the following seven conditions are satisfied:

- (1) If d_0 is infinite then $d_0 \leq g_0$.
- (2) If d_1 is infinite then $d_1 \neq g_1$.
- (3) $\min(d_i; i \ge 0) \le \min(g_i; i \ge 0)$.
- (4) If $g_2 = 0$ then $d_i \neq g_i$ for all i.
- (5) If $g_1 = 1$ then either $d_i \neq g_i$ for all i or $d_1 = 0$.
- (6) If $g_0 = 1$ then $d_0 \le 1$.
- (7) If Γ contains a nullary symbol then Δ contains a nullary symbol.

Proof. By Lemma 4, the isomorphism of V to some variety

of Γ -algebras is equivalent to the existence of an integer $k\geq 1$ satisfying the condition (I) of Theorem 1 and thus to the existence of k and Λ satisfying the condition (II) of Theorem 1. It is not difficult to re-formulate this condition in terms of the cardinal numbers d_i and g_i .

Reference

[1] R. McKENZIE: A new product of algebras and a type reduction theorem (to appear).

Matematicko-fyzikální fakulta, Universita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia

(Oblatum 23.4. 1982)