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A NOTE ON CHOOSABILITY IN PLANAR GRAPHS
David M. BERMAN

Abstract: We call a graph k-choosable if for every assign-
ment of a list of k colors to each vertex, the graph can be pro-
perly colored so that each vertex is colored with one of the co-
lors on its list, Erdos, Rubin and Taylor have conjectured that
every planar graph is 5-choosable. In this note we show that in
& minimal counter-example to this conjecture every vertex of de-
gree five must have a neighbor of degree at least seven.

Key words: Choosability, coloring, planar graph.
Classification: 05C15

In [1] Erdos, Rubin and Taylor developed the idea of choos-
ability in graphs. Suppose each vertex of graph G has assigned
to it a list of k colors. We say that G is k-choosable or can be
k-list-colored if for every assignment of lists, G has a proper
coloring with each vertex assigned a color on its list,

We call the minimum k for which G is k-choosable the list-
chromatic number of G. It is immediate that the list-chromatic
number of G is at least as great as the chromatic number,

That this inequality may be strict is shown by the follow-
ing example:

1,35 {1,323 {2,3}

£273% iI,2%" 31,3%

The graph is 2-chromatic but the assignment of lists shown
in the diagram shows that it is not 2-choosable. It might be no-
ted that to show that a particular graph is k-colorable ons needs
only to exhibit a k-coloring; to show that it 1s k-choosable one
must show that it can be properly colored from any assignment
of lists to the vertices.
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It is clear that any planar graph is 6-choosable. The proof
is by induction., Delete from the graph a vertex x of degree at
most five, and 6-list-color the remaining graph,

When x is restored, it has at most five neighbors already
colored, so there must be at least one of the six colors on the
list for x that 1s not used for any of the neighbors, Therefore
x can be colored with that sixth color.

In [1] the conjecture is made that every planar graph is
S5-choosable.

It appears that the techniques used to attack the four co-
lor problem cannot be applied to the conjective of five-choosa-
bility. Kempe chains for instance cannot be used becauss the
Btep of recoloring a vertex, say from red to blue, requires that
blue be on the list for that vertex.

It is clear that a minimal counter-example to his conjec-
ture can have no vertex of degree four or less. The proof mi-
mics that for the 6-choosability.

In this note we show that in a minimal counter-example to
the conjecture every vertex of degree five must have a neighbor
of degree at least seven.,

The proof 1s by contradiction. Suppose in a minimal counter-
example G we have a vertex x of degree five, all of whose neigh-
bors are of degree six or less. It clearly suffices to consider
only the case tnat all neighbors of x have degree six,

We then have the configuration shown with the five neigh-
bors of x labelled p, q, r, 8, t (the inner ring) and their
neighbors labelled a, b ... j (the outer ring)

b




As a matter of notation: let L(v) denote the set of colors on
the list of v; let k(v) be the color assigned to v in a color-
ing of G. Say L(v) = {1,2,3,4,5}.

Delete x and 5-list-celor the remaining graph. When x is
rastored it will be possible to color x unless the five verti-
ees in the inner ring have been colored using all five of the
colers in L(x).

Without loss of generality, say p, q, r, 8, t are colored
1, 2, 3. 4, 5 respectively. If p can be ra-colored with a co-
lor other than 1, then x can be colored 1. We cannot re-color
p with any color used for a, b, or ¢ but there must be at least
one color on L(p) other than 1, k(a), k(b), k(c).

If this color is neither 2 nor 5, then re-color p with this
color. Then x can be colored 1.

Say therefore without loss of generality L{p) = {1,2, k(a),
k(b),k(c)}+ Recolor p with coler 2. Now q must be re-colored.
L(q) must have a fifth coler other than 2, k(c), k(d), k(e).

If this color is other than 3, then re-color q with this color
and color x with 2,

Say therefore that L(q) = {2,3, k(c),k(d),k(e)}. Repeating
the above procedure with vertex r, then s, then t we see that
the only obstruction to coloring x occurs if L(r) = {3,4, k(e),
k(f),k(g)}; L(s) = 14,5,k(g),k¢h),k(i)}, L(t) = {5,1,k{1),k(j),
k(a)}.

To look at this another way, we see that if x and the en-
tire ring p , q, r, s, t are all deleted and the remaining
graph is 5-1list colered, then the only obstruction to restoring
X, Py q, r, 8, t and extending the coloring to them is if the
lists for the inner ring and the coloring of the outer ring are
as described above.

We now propose two distinct methods of reduction, which
one to be used depending on the lists for the inner ring. In
each case the reduction will make impossible the coloring of
the outer ring in a manner such that the coloring cannot be ex-
tended to a coloring of G.

Case i: The lists for the vertice in the ianer ring have
in their union at least ten colors, including therefore at least
five colors other than those in L(x); say they include 6, 7, 8,

9, 10,
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Define graph (e by deleting vertices x, p, q, r, 8, t and
replacing them with a new vertex x~ that is joined to each ver-
tex a, b, ¢ ... j of the outer ring. Assign to x  the list
L(x") = 16,7,8,9,103. By induction G' can be 5-list colored;
say with x” colored 6. But since x’ is adjacent in G° to each
vertex of the outer ring, this gives a coloring with none of
the vertices of the outer ring colored 6. Since 6 is on the list
of one of the vertices of the inner ring, this list coloring
can be extended in to x, p, q, r, 8, t,.

Case ii: The lists for the vertices in the inner ring ha-
ve in their union at most nine colors. Then we must have some
two of the ten colors k(a),k(b) ... k(j) the same. Say k(y) =
= k(w) for some v,we {a,b, .., ji.

Define graph G’ by deleting x, p, q, r, s, t and Jjoining
vertex v to each other vertex of the outer ring. By induction
G’ can be 5-list-colored. In this coloring no other vertex of
the outer ring can be colored the same as v. Therefore this co-
loring can be extended in to color X, Po Qo ', 8, t,
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MODEL-THEORETIC PROPERTIES OF CAUSE-AND-EFFECT
STRUCTURES
Kurt HAUSCHILD

Abstract: Some questions of axiomatizability and decida-
bility connected with the study of so-called cause-and-effect
structures (as introduced by me under the influence of von
¥right) are treated.

Key words: Causality relation, axiomatizability, decida-
hility.

Classification: 03405, 03B25, 03C20
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Let & cause-and-sffect structure be defined as follows,

The domain consists of a set T of moments and a set S of sta-
tes; the elements of TS are called gvents. As relations and
functions we have a chronological order << TxT, a time ad-
dition +:T<x T—> T, a possibility of events ¢ < TxS, an
actuality of events U< TxS, and a cause-and-effect relation
—> ¢ T=<S= Tx S (we write t,s —>t ,s  instead of
> (t,s,t",8")). The axioms we assume to be fulfilled by cau-
se-and-effect structures are

(1) {T,<,+> is an ordered abelian group

(2) VvtIs O (t,s)

(3) Ye3ir O(t,s)

(4) Vie,s( O(t,s) —> O (t,s))

(5) Vi ,a),tp0mg((t;.8 > ty,8)a Tt 8) —> Oltg,sy))
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(6) th.sl.ta,sz((tl.llH taesg) —>t < ty)
(1) V‘p"v‘a-“r‘“‘"v“l‘“”‘z"z) «>
o>ty + t,m > tg + t,s))

(8) Vit,8( O(t,8) —=>It "8 (O (t 8" )A(t 8 >t,8))).
Let CES denote the class of all cause-and-effect structures.

Cause-and-effect structures differ from causality structu-
res as introduced (under inspiration of [11) in [2] in that
the uxiom (5) of [2) constating, intuitively spoken, that "the
behaviour of the system in the past is uniquely determined” is

missing.

Given L =(TuUS§, < ot O, > , Me CES, there is a natu-
ral way of embedding (I into a causality structure CL’ by pro-
ceeding as follows. Let L = {(Tx T)u isuis 3), <',+7, 07,
—>°, O°>, where

<" = K,ty, Ctgatdd st < TaVvilty = tgaty<t,)?

+7 = tietg2s <t3.t‘). <t5,t6>> ) vty =oAL, +

2

+ t.‘ = tag

O = {<<t1,ta>.l>:(tl =0 /\O(tz,a))v (t,+0As8 = s°)§

> = 1 tl.t;>.-1.<:2.t§>,sa>:(zl =ty = 0At 8>
> t',l)v(tl*of\ t2+0/\t1< ty)3

0% ={& tl,t27.n>:(tl =0 A0 (tz.n))v(tl*OAs = lo)f.
0O° is obtained from L by adding a one-state (and, hence,

uniquely determined) “past™ which precedes the whole "world"
Ul and (in order to secure (1)) a one-state "futuro" (the sa-
me state as in the past) which follows the whole "world"™ (¢ .

Of course, the "metatheoretical complicatedness” of (L' is not

exceeding that of (1L although the technical treatment of
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may be more labourious than that of ¢/ . This gives motivati-
on to investigate the model-theoretic properties of causality
structures by investigating the model-theoretic properties of

cause-and-effact structures.

Let Ot = <Tus,<,+ ¢, >, O0>€CES be called proper,
if, for every {t,s> € O , there is [1°S IxSxTxS such that
{t,8> € [I° and, likewise, (L' =<TuS,<,+, & ,+> , O°> < CES.
The class of proper cause-and-effect structures will be denot-

ed by PCES.

Theorem 1: With respect to the signature < ,+.O. -,
1>, PCES is not EC.

Froof. We demonstrate CES\ PCES not to be closed under the
operation of taking ultraproducts.
Let U =< (w* *t@)uS ,<,+, On' . 0> ew)
be defined as follows:
1, (¥« W,<,+ > is isomorphic to the additive group of in-
tegers
2. s =40,1,2,3} < (¥ 4+ @)
3. On = «x, <0,x>> :x=0(2)Ax<2n}
vidx, <1,x> :x=1(2)Ax<an + 1}
vidx, 2,22 :x£0v(x=0(2)Ax42n + 2)}
vidx, ¢3,x>> :x>1A(x=1(2)vxZan + 1)
t“ > = (}ﬁ N{x, <y, xY,x "<y x>
t (y=y'=3Ax" = x+3A0<x£2n+l1)
v y=y =3Ax =x+1 Ax > 2n+1)
vir=y '=2Ax =x+1A x<0)

viy=y =2 Ax"=x+210 £x)
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viy=y =1 A x =x+2)
V{y=y =0A x =x+2
VIKx,¥7=< 0,22 Ax ", 57> = <1,37)
vI{x, Y=< 2n+1,1>4<x",y D = <2n+2,2>)
vI{x,y>= <20+2,2>~A< 1",y > = (2n+3,3))
vKx,y»=<{2n,00A<{x",y >= {20+3,3>)}
5. o = Onﬂ({(x,<0,x>:x<2n§u

1 x,41,x>> i1x< 2n+1t v

«x,¢2,%x>> :x = 2n+2% v

{x,43,x>> :x>2n+3}).

Ula is illustrated by fig. 1 ( Da cannot be takenm from the

figure 1itself, but this does not matter).

y=0
1\
jva 3 X X LV S V') 3% .
* x KX - -
. /-
R X -
< * ¢ x X
<t » x x / — x=0

Fig. 1

In this figure, the event <x,{y,x”> is marked by a cross
at the point {x,y>, and two crosses are connected by an arc if
and only 1f the corresponding events are in cause-and-effect re-

lation (Note that > is nct transitive!). It is easy to check
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that each ULn is CES (the validity of (5) is based on the fact
that states belonging to differenct events are different - a
fact which cannot be taken from fig. 1 because {x,{y,x>” is
simply coded by {x,y); the validity of the remaining axioms can
immediately be seen). On the other hand, no (! _is PCES. For

n

instance, there is no (/7,; ={w*s wivs,<,+ ¢ —>

n’ n’

D;)E CES such that <2,{0,3>> ¢ Cl;l. For, assuming

{0,{2,0>> € D;, we have, by (5): <1,<3,1>> ,{3,<3,3>>,..,
ve0p$20+1,<3,2n+1>> , <2n+2,<3,2n+2 ) € D;l. and, again by (5),
(2,42,2>>, {(4,(2,4>>,...,{2n+2,{2,2n+2>> ¢ D;, but
(3n+2,¢3,2n+1>> ¢ D;, < 2n+2,{2,2n+2>>¢ Dr; 1s 1n contradiction
with (3).

Next we show that T _,0 /Ul € PCES, where ¥ is a
me @ n
nop-principal ultrafilter over « .
Let us investigate the structure , TT Uln/ U . The or=-
der is of type (w* + w ):(z* + v ), 8o that the moments can
be coded by couples < * « ,n), where o« € ©* , ne * + @ . The

substructure induced by all events possible 1n moments of type

0,n> is illustrated by fig. 2:

y:D
,
S X Y .
EH—H— H—r—n * =
P " i % e % 5%
—— % K % gl % ” %20

Fig. 2
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The substructure induced by all events possible in moments

(‘“‘o'n) where <cc°.no) is the moment attached to the event
pof TT, O‘I-n/ U  represented by the sequence

{« 2n,<2,2n>>;nem is illustrated by fig. 3:

Po = <<u.’°,no), 3, <o(,o,77.o>)

- v AY] 5 3¢ Lv3
< Lol Al Ea) —
<X L 3
( Ava x kv3
e v =) , ¥=0
=
Fig. 3

For moments resting, the corresponding substructures are

illustrated by fig. 4 (<ot ,0> <0), fig., 5 (0 << ,o><<c(°.0>)

and fig. 6 (<oo.0>><oco,0)):

e v

M,_ﬂ_\__ s v’ # >

MW‘A- . * x>
X =0

Fig. 4
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