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Abstract: A remainder of @ is a space X which is homeo~
morphic to 7@ - w , for some 'l‘2 compactification @ of the

countable discrete space < . It is folklore that all separab-
le ’l‘2 spaces are remainders. We show that in a certain model

of ZFC there is a graph G such that its space of complete sub-
graphs is a compact ccc space of weight at most continuum
which is not a remainder. Furthermore, the graph G yields a
supercompact Fréchet-Urysohn space with these properties. A mo-
dification yields a compact space of size continuum with only
one point of non-first-countability that is also not a remain-
der.
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Fréchet-Urysohn.

Classification: Primary 54D35
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1. Introduction. A remainder (of c>) is a space X which
is homeomorphic to y@ - @ , for some 1'2 compactification y@©
of the countable discrete space < . A possible remainder (of
@ ) is a compact T, space of weight at most continuum. All
remainders are possible remainders. Which possible remainders

are remainders is not sufficiently understood yet.

x) This research was supported by Grant No. UOO70 from the
Natural Sciences and Engineering Research Council of Canada.
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1. Parovi&enko [6] has proven that all possible remain-
ders of weight at most 601 are remainders and hence that all
possible remainders are remainders if one assumes the continu-
um hypothesis CH. On the other side of the coin, K. Kunen [4]
has shown that it is consistent with ZFC that ordinal space
wq + 1l is a possible remainder that is not a remainder. Other
examples of possible remainders that are not remainders are

given by E. van Douwen and T. Przymusinski in [21].

It is known that all separable possible remainders are
remainders and T. Przymusinski [7) has proven that all perfect-
ly normal possible remainders are remainders. In Section 4, we
will show that separable cannot be generalized to ccc by con-
structing a consistent counterexample. Whether this could be
done had been asked in [7]. Our example is also a supercompact
Fréchet-Urysohn space., The question of whether every first
countable possible remainder is a remainder, cf. L7), is still
open, but by modifying our main example, we get a possible re-
mainder that is not a remainder and that has only one point of

non-first-countability.

In Section 2, we list the definitions and concepts used
in our paper. In Section 3, we investigate the space of all
complete subgraphs of a graph. Our main example is a space of

this type.

2. Preliminaries. Our set theory notation is standard.

A cardinal is an initial ordinal. The first three infinite car-
dinals are denoted by <, 611 and a)a. The cardinal of the

continuum 2% is denoted by c. If X is a set, then F(X) is

- 526 -



the set of all subsets of X. A collection of sets is linked

if every two sets in the collection have a non-empty intersec-
tion. For a cardinal r , [k Ja represents the set of all 2-ele-

ment subsets of K .

The quotient algebra, P(w ) modulo its ideal of finite
sets, is denoted by P/F. P/F is isomorphic to the boolean al-
gebra of clopen sets of (5 @ - @ , the Stone-Cech remainder
of @ . As such, if X is a compact O-dimensional ‘l'2 space which
is a remainder of & , then the boolean algebra of clopen sets

of X is embeddable in P/F.

A graph G consists of a set of vertices and undirected ed-
ges between some of its pairs of vertices. If there is an edge
between vertices v and w, then we write v— w, if not, then
we write v —Z— w. A subgraph H ef G consists of a subset of
vertices and exactly the same edges between them as in the graph
G. H is a complete subgraph of G if every two vertices of H are
Jjoined by an edge.

If (P, &) is a partially ordered set, then a finite subset
F of P is compatible if there exists p <P such that for all qe
€F, p£q. If F i8s not compatible, then we say that F is incom-
patible. A subset A of P is an antichain if every 2-element sub-
set of A is incompatible. P is ccc if P does not contain an un-
countable antichain. P has precaliber i if every subset R of P
of size k& contains a subset S of size K such that every fini-

te subset of S is compatible.

The weight of a space X is the least cardinal of a base
for X. A closed subbase S for a space X is binary if every
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linked subcollection of S has a non-empty intersection. X is
supercompact if X has a binary closed subbase. A space X is
ecc if every collection of pairwise disjoint open sets is coun-
table. X is Fréchet-Urysohn if whenever Ac X and xeCle. then
there exists a sequence -ian:n < @¥<c A such that (a_) con-

n'n<o
verges to x,

3. The space of complete subgraphs of a graph. Let G be

an infinite graph. Set C(G) ={C: C is a complete subgraph of
G} We include the empty set ¢ as a complete subgraph of G.
For each ve G, set v' = {C:CeC(G) and ve C? and v = {C:C &
€ C(G) and v§C%. We topologize C(G) by using v\‘JG{v",v'i as
a closed (also open) subbase. If F is a finite subset of G, we
set F* = M\ _v* and F~ = MN\_v™. If we identify C(G) with {f:
ve F veF
: £ is a characteristic function of a complete subgraph of G%,
then C(G) has the subspace topology inherited from the Tycho-
nov product 26. 4s such, C(G) is a compact 'l’a space. For each
n<® , set F (G) =1C: CeC(G) and ICl4n}. Set F(G) =
.uyd) Pn(G). It is easily seen that each F,(G) is a closed sub-
space of C(G), that each F,(G) - Fn-l‘c) is discrete, and that
F(G) is dense in C(G). As an exercise, the reader may prove
that if G is a complete graph, then C(G) is homeomorphic to a¢
and if G is an independent graph, then C(G) is homeomorphic to

the one-point compactification of a discrete space of size |G/,

Proposition 3.1. C(G) is a supercompact space of weight
1G6l.

Proof: Let {v':veAlu{v :veBl be a linked collection,
This implies that Ac C(G) and AnB = ¢ . Hence, A € f\A v a
ve



(\”QBV-. Thus,vgeiv’.v'f is a binary closed subbase and

C(G) is supercompact.

The weight of C(G) is clearly at most |G ). Since {v':v ¢
€ G% is a collection of | G| distinct clopen sets and C(G) is
compact, its weight is exactly |G|,

If G is countable, then C(G) is a compact metric space.
Whereas, if G is uncountable, then the ¢ is not even a G;. J
So, C(G) is first countable iff G is countable. However, we
can get non-trivial sequential properties of C(G) for uncount-

able G.

Proposition 3.,2. C(G) is Fréchet-Urysohn iff every comp-
lete subgraph of G is countable.

Proof: (only if). Let AeC(G). AcCL{iF: F is a finite
subset of A}, By assumption, there exists a sequence ('n)ncw
of finite subsets of 4 converging to A. But, then A =ML‘J‘)F“.
For, if ac A 'm&jw Fn. then a* is a neighbourhood of A disjoint
from {F :n < w3l ., Thus, A is countable.

(if). C(G) viewed a& if: f is a characteristic function
of a complete subgraph of G} is now a subspace of a ‘Z-m'oduct

in 26 which is well-known to be Fréchet-Urysohn.

Proposition 3.,3. C(G) is cecc iff F(G), partially ordered
by F£K iff K& F, is ccc.

Proof: (only if). Let A be an uncountable subset of F(G).
{F*:Fe Al is an uncountable collection of distinct clopen sets
of C(G). By assumption, there exists F#+K in A such that F'
nk*+ ¢ . Hence FUKEF(G) and FuUK4F and Fu K £K,

(if). Let {F;nl';: < < wli be an uncountable collection



of distinct non-empty basic open sets of C(G). We must show
that there are ot + (3 such that (Fzn K )n (Fz nky )+ ¢
1l.0., that E v Fy € F(G) and (F v Fg)n(k uk,;) = ¢ . By
restricting to an uncountable subcollection, we may as well as-
sume that there exists n < @ and m <« such that for each
<< @, {F | = n and Ik, | = m. Since each lf:n K, + ¢

we know that F ¢ F(G) and that F, n K, = & . If there exists
< + (3 such that F, = F; , then F, U Fy € F(G) and (B v L n
r\(K‘Lu Kﬂ) =¢ and we are done. So, we assume that {F, ¢

tk < @} is faithfully indexed. There cannot exist an infini-
te subset I of @y such that for every oc, B in I, either

F, A ‘p + ¢ or Fan K, + ¢ , as this would force

sup {|F_ U K, | : « €1{ = & , Invoking the partition relation
W, — (col.a)). cf. pg. 115 of (31, we conclude that there ex-
ists an uncountable A & G)l such that for every o« , (3 1in A,
F,.n ‘[3 =¢ and F/a NEK, = $ . Now, by our assumption, there
exists o + (3 in A such that F, u F(a € F(G). since (F_u Fﬁ)r»

n(KeL V] K/s) = & , we have proven C(G) to be ccc.

The next proposition is the reason why the space that we

construct in Section 4 is not a remainder of o -

Proposition 3.4. If C(G) is a remainder of < , then there
exists ¢ :G —> P (w) such that for all v, w in G, v— w iff

@(v) n @(w) is infinite,

Proof: 1If C(G) is a remainder of « , then its boolean
algebra of clopen sets is embedded in P/F. Let h be such an em-
bedding. Let a¥ be a cl:oice function for P/F, i.e., sr(b)eb
for all be P/F. Define @ :6 —>P(w) by @(v) = x (hiv})),
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Since v— w iff v'nw'+ ¢ , @ does the job required.

4. The Cohen-generic graph on (P vertices. Our basic re-

ference for the forcing used is K. Kunen s Set Theory [ 51. We

refer there for all of our undefined notions.

Starting with a partially ordered P in a ground model M,
we get a generic filter GS P in the universe and form a new mo-
del MIG] the least model of ZFC containing M and G. There is a
forcing language in M involving P and names X for all sets x
in M[G], If % is a formula of set theory, and pe P, then
pll- cy(xl....,xn) iff for every generic filter H containing
P I[HJ-—-atisf;s Cj(xl....,xn). For our purposes, we need only
know what a name for an M[G]-subset of < is. An M-subset x of
@ » P names the following MLG)-subset of c , x = {n: there
exists 8 €G with (n,s)e x3%. Conversely, every M[Gl-subset x of
@ has such a name x. Even more, if x is an MLG]-subset of w,

then x has a nice name of the form x = '/ i{nix A, where each

mn
An is an antichain of P,

Let M be our ground model. Set P = ip: p is a finite par-~
tial function of [.12 into 2%. We say that pzq if qSp. As
a partial order, P is isomorphic to the partial order of basic

lw,)?

_ under inclusion and thus P is c¢cc and has

clopen sets of 2
precaliber @ge Since P is ccc, the cardinals of MIG] are preci-

sely the cardinals of M,

In the universe, let GSP be a generic filter. In MIG],

the model gotten by adding Wy Cohen-reals to M, w,<c., In

2
MIGl, UG: [w.‘.]z—az. Let G represent the graph on @, des-

cribed by: &« — 3 iff UG({x,33) = 0. No confusion will
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arise from our double use of the letter G.

Theorem 4.1. In M{G], C(G) is a supercompact, ccc, Fré-

chet-Urysohn space of weight 2 and C(G) is not a remainder
of .
Proof: That C(G) is supercompact and of weight @g fol-

lows from Proposition 3.1,

To prove that C(G) is ccc, according to Proposition 3.3,
we must show that F(G), ordered by F£ K iff KSF, is ccc. This
is a standard exercise in forcing using a delta system. See

problem C6 on page 292 of [51.

To prove that C(G) is Fréchet-Urysohn, according to Propo-
sition 3.2, we must show that every complete subgraph of G is
countable. Let A be an uncountable subgraph of G. Consider the
dual graph G* of G, defined as follows: < — (3 iff

UG({<, 3%) = 1. As in the preceding paragraph, C(G’) is ccc.
Therefore, in C(G‘), there exists o &= (3 in A such that ¥ n
~n 3"+ ¢ . This means that « — (3 in G’ and hence o¢ —[3
in G.

To prove that C(G) is not a remainder of <« , according to
Proposition 3.4, it suffices to show that if @: c, — P (w),
then there exists o =+ (3 such that either o« — (3 and
gl{) ng() is finite or o« —“—(3 and @(x)ng(f) is in-
finite. To do this, we will take a pe P that forces our hypothe-

8is (with names) and find a q<p that forces our conclusion

(with names).

We work in M now. Let p |- @: 6)2-—-’3’ (w). For each

® < @4, choose p % p such that p, N - g(cc) =%y wherek
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is a nice name for a subset of @ . That is, for each o < @Wg
X, =myw{n§x A;:’ , where each A:‘; is an antichain of P. Since
;’—is cce, for each « < @g Xg is a countable set. Since P has
precaliber @,, we now choose D c wq of size @y such that for
every o« , (3 € D, p. and Pp are compatible, i.e., | S pr:x € P,
For each « € D, set D, =4y < @gt 7y is mentioned in p, or

in fgc_% «fDytcc e D% is a collection of @, countable sets.

Invoking Hajnal s Free-set theorem cf. page 86 of {31, we can

get o + (3 in D such that « ¢ Dp and 3 ¢ D -

Set t =p_ v Py v f({ec, BF,1)}. IL ¢t || = Xg N X ig in-
finite, then let q =t and we have q4p and q Il - 43 and
x N xp is infinite. So, we are finished. If not, then there

exists r<t such that r |l - X,N Xz is finite. Consider the
following automorphism h of P that only affects edges between oc
and (3: Let p& P, Set dom(h(p)) = dom(p) and if {y ,d € dom p
define h(p)({y,0"%) to be p({y,0'%) if iy, T ¥+{x, 3} and to
be 1 - pl{ec, B33) ifdy ,d ¢ =4{x,p3 .

Claim: h(r) |l - 30 X, is finite.

Proof of Claim: Let H be a generic filter of P containing
h(r). Then h(H) = fh(s):s<H} is a generic filter of P contain-
ing h(h(r)) =r. Since r || - X, O X3 1is finite, {n < @ : there
exists se h(H) with (n,s)e¢ xoc—ifn {n<w : there exists se h(H)
with (n,s)e xﬂi is finite. But h(H) and H have precisely the
same 8 s suc—k_l that (n,s)e X U Xp since for no n < @ and for
no s with {«,3je dom s, i;—(n,ﬁs X U Xg e Consequently,

{n < @ ; there exists s€H with (n,s-)—e xo(?—r\{ n <w: there ex-

ists sc H with (n,s)e xﬂ} is finite. We have proven the claim.
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In this case, let q = h(r) and we have q<4p and
qll- x — 3 and X N X is finite.

We now present two byproducts of this example.

Example 4.2. In M(G], Fz(G) is a possible remainder of
size &)2 which is a union of 3 discrete subspaces but which is

not a remainder.

Proof: Fz(G) is not a remainder because v'n w‘:# ¢ iff
vinw'n Fa(G) + ¢ . Also, FolG) = [F (G)JULF(G) - F (G)) U
v [Fz(G) - FI(G)], each of which is discrete. We remark that 3
is the least possible number here since a possible remainder
which is the union of 2 discrete subspaces is just a finite dis-
Jjoint union of one point compactifications of discrete spaces

and hence is a remainder.

Example 4.,3. In M[G], there is a first countable, locally
compact space of size ¢ no compactification of which is a remain-
der. In particular, its one-point compactification is not a re-

mainder.

Proof: Let h: @, —»>2" be an injection. Set X = [ay > 200
v] Ll"a(G) - FI(G)J. We define a countable neighbourhood base of
clopen sets at each point of X as follows: Each i<, Bie Fz(G) -
- Fl(G) is isolated. If (c,f) € wgx 2“ and n< @ , Bet
B (o¢,f) = {(cc,g)ighn = tPnyu{{et,?:c—y, h(g)Pn =
=fMn and h(y )4} X is first countable, O-dimensional, ‘l‘2
and locally compact - each Bo(ac.f) is "similar" to a closed
subspace of the Alexandrov double of 2% . For each o < Wa
sot Vo = [{oci= 2“0 [{{et, 93t ¢ — »}] . Each V¢ is a com-

pact open set of X and hence is clopen in any compactification
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of X. Since VN V. = ¢ iff o« —— 3 , we see that no com-

pactification of X 18 a remainder.

Let us call a space X 6 -linked if the topology of X is

the union of countably many linked collections.

Problem 4.4. Is a S -linked compact T2 space a remainder

of o 7?7

No counterexample could be supercompact since E. van Dou-
wen [ 1] has proven that all supercompact & -linked spaces are
separable. A possible counterexample is the Stone space of the
Lebesgue measurable subsets of [0,1) modulo the ideal of null

sets.
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