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Abstract: L is a bounded domain with smooth boundary
3. “and L is a linear properly elliptic partial differential
operator (not necessarily self-adjoint) of order m withlsmooth
real coefficients on L% | {Bj}. 1%2j%zm is a set of zm dif-

ferential boundary operators which cover L and have smooth co-
efficients on 8 . A is L acting on functions satisfying the
boundary conditions:

Bju = 0 on 350 , .léj,‘;%n. g: < R—> R is a function.
The purgose of this paper is to seek a solution of A(u) =
= g(x,u) under conditions different from the known ones. It is
assumed that O is an eigenvalue of A,
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1. Introduction. Let {L be a bounded domain with smooth

boundary 3Q and L be a linear properly elliptic partial dif-
ferential operator of crder m with smooth real valued coeffi-
cients on &L . Let {Bj} be a set of %n differential boundary
operators with real valued coefficients smooth on 3Q which
covers L ‘(for definitions and further descriptions of such
problems see [ 5] and 18)). Let A be the operator L acting on

‘ ‘nctions which satisfy the boundary conditions:
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The operator A when considered as defined on l.z(n,) is closable.
We may, therefore, regard A as a closed operator with domain
Ac Lz(ﬂ.). It is known that A is a Fredholm operator, i.e.,
R(A), the range space of A is closed in Lz(.().) and both R(A)‘L
and the null space N(A) are finite dimensional (see [8]).
Throughout the paper we will assume that N(A)+{0}, Let g:

t > R —>R be a function such that for each t€R the functi-
on x —>g(x,t) is measurable in £l and for each x € L (a.s.)
the function t —> g(x,t) is continuous in R. Assume that there
exists a function F(x)e Ll(.().) such that

(1.3) lg(x,t)|&F(x), xe Q& ,teR

Further assume that there exist functions g+(x)e Ll(_ﬂ) such
that

(1.3) t-&-ig-oo gix,t) = ;t(x) a.e.
Let T:R(A)X —> N(a) be a linear mapping such that

(1.4) T(szo 8,(x)z(x)dx ‘T(z'(<0 8_(x)z(x)dx>0

for each nonzero zc R(A)' , where T(z)Z 0 = fxc Q1 (Tz)(x)Z 0 .
Also let

(1.5) ®glc) —> 0 as ¢ —0

where

@qlec) * L %UP,)L measure ix € L 2z(x) %0, l(‘ll‘zzx)|x)| <ct.

Under the conditions (l.1) to (1.5) Schechter [9] has proved
that there exists ue dom A such that

A(u) = g(x,u)
This type of problem has been considered first by Landesman and
Lazer [4] and then by Williams [10], Browder [1], Nirenberg ([6],

[71), Schechter [9] and meny others. In [4] Landesman and Lazer
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have considered the Dirichlet problem where the above operator
A is self-adjoint second order with dimension of N(A) = 1 and
g(x,t) is of the form h(x) - g(t) and is continuous.

Assuming that _}’i:m g(x,t) = lt(x)c thn). N(A) is spanned

+ .

by w with (lwl 2.0 = ] and a condition correspending te (1.3),
L

Landesman and Lazer ({4], Theorem 5.2) have proved that there

exists uc D(A) satisfying A(u) = g(x,u) if
{1.6) [w‘[o 8, (x)w(x)dx .w'fa g_(x)w(x)dx][w[o s_(x)w(x)dx +
+w'£0 l,(x)w(x)dx]co

This result of Landesman and Lazer [4] has been extended by Wil-
liams [10] to the case where A is higher order self-adjoint o-
perator and N(A) is of arbitrary finite dimension and by Brow-
der [1) to the case where A is arbitrary self-adjoint operator
and N(A) is of arbitrary finite dimension. Nirenberg [ 7] is the
first to deal with the case when A is non self-adjoint and N(A)
is of arbitrary finite dimension. The result of Nirenberg [7]
involves assumptions expressed in terms of nonvanishing ef de-
gree of a certain map when Ind A = dim N(A) - dim I(A)‘L = 0 and
the nontriviality of the stable homotopy class of a ce¢.:2in map
when Ind A> 0, while that of Schechter [ 8] mentioned at the be-
ginning involves conditions (l.4) expressed in terms of inequa-

lities which are easy to verify.

Since all these results have grown out of the paper of Lan-
desman and Lazer [4] it is of considerable interest to see if
the result of Schechter can be proved with condition analogous
to condition (1.6) of Landesman and Lazer, i.e. if condition

(1.4) can be replaced by
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(1.7) g, (x)z(x)dx + 8_(x)z(x)dx g_(x)z(x)dx+
[T(szo * Tcz)f<o ][nzf»o

* (x)z(x)dx|< 0
T(ir><o fs J

for each nonzero zec I(A)J‘ s

In this paper a little more than this has been achieved.,
The condition (1.7) is indeed analogous to the condition (1.6),
for if A is self-adjoint, R(A) = N(A) and T can therefore be
taken as the identity operator. We also note that in this case

the condition (1.5) is automatically satisfied.

Our approach is via a simple theorem of Krasnosel “skii [3]
on degree theory, the application of which seems to the best

of the author’s knowledge to be new.

3. A fixed point theorem. 1In this section we will prove

a fixed point theorem for which we need the following result,

due to Krasnosel ‘skii L3], which we write as a lemma,

Lemma 3.1. Let X be a real Banach space and Dc X an open

bounded set symmetric with respect to the origin and contain-
ing it.
Let T:D -—> X be a compact mapping (i.e. T is continuous and
T(D) is relatively compact in X) such that
(I - T)(x) % w(I-T)(-x) for every «we L0,1] ana every
xedb,
the boundary of D, where I is the identity on X. Then there e-

xists at least one xcD such that T(x) = x.

Theorem 2.1. Let X be a real Banach space and Z a finite

——————

dimensional real Hilbert space. Let T:Z —> X, G:X —> X and H:

- 502 -



tX—>Z be all compact mappings (i.e. mappings which are conti-
nuous and map a bounded set onto a relatively compact set).

Assume that

(1) Lim, sup %)_“ Lk
and (ii) for large fzl ,
{z,H(T(z) + G{u)) = wH(Ti-2z) + G(-u)))+0
for all u and € [0,1] where (.,.) denotes the inner product
in Z.
Then the mapping T:XxZ —> X Z defined by
(u,z)) = (u¥%,2%) = (T(z) + G(u), z - H(T(z) + G(u)))

has a rixed point.

Proof. Clearly, X»Z is a real Banach space with the norm
5 A
l(u,z) I = lull + Nzl , ueX, z¢Z and T is a compact mapping
on Xx<2Z,
By virtue of Lemma 2.1 it would suffice to show that there is
Dc X< Z a bound open set containing the origin and symmetric
with respect to the origin such that

(2.1) (1 - /‘f)(u,z) + @(I - ?‘)(-u.-z)

for every we L[0,11 and every (u,z) € 8D, I being thc 1denti-
ty on XxZ,

Let R be a pesitive real number such that condition (ii)
holds for |zl = R>R". By assumption (i) there exists (3 with
0 £ (3 <1 and R~R’ such that

16 & @ Dull for Nuil >R,

There are also constants Kl' and Ka such that

hTz)l K; whenever |z |l«R
and NG(z) | £ Kg whenever lull=r.
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Now let for some (u,z)c XxZ and some we [ 0,1]
(I - T(u,2) = w(@ = T)(-u,-2),
i.0. (u,2z) - (u¥2%) = @ (-u,~z) = w((-u)*, (-z)¥)
which yields
(2.2) (1 + @)u =a*- w(-ul* =T(z) + G(u) - «(T(-z) +
+ G(-u))
and (1 + w)lz = z* = w(-z)* =2 - H(T(z) + G(u)) -
= -z - H(T(-2z) + G(-u)), i.e. H(T(z) + G(u)) - wH(T(-z) +
# G(-u)) = 0, which in vi;w of condition (ii) implies that
Nzl &R, Lot M = max 1-;%. K, + k).
Now if Hull> R we have from (2.2)

wor @) lul & RT@EIN « 1GIN & w( IT(-2)) +
*HG(-)h )SK) + pllull e wK) + «uplull as NzV &R,

'Y
Thus nu\uﬁé- & M.

When Hull £ R we have again from (2.3)
A+ @)llullax) + K3+ @& +Kj, ice. Nulax +
+ laél.
Thus in either case lul & M. The constants R ana M are inde-
pendent of @ o Let ﬁ be any real number greater than R + M and

D = {(u,z)&XxZ: l (u,z) l < R}. Clearly then (2.1) holds with
this D and the proof is complete.

3. Main results. In this section we prove the existence
of the solution of the nonlinear boundary value problem A{u) =

= g(x,u).

Theorem 3.1. Let £, L, B (léjéén) and A be as in the
beginning of section 1. Also let g: O = R — &, F(x)eLl(D)
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satisfying (1.2) and g_t(x)el.l(_n.) satisfying (1.3) be as in
section 1,
Noting that A:dom Ac n.z(n)—> L‘(n) is a Fredholm mapping
and N(A) # {0} by assumption (vide section 1) let T:R(A)L >
—> N(A) be a linear mapping. Assume that

(a) for each 0+zcR(A): and each we [0,1],

@) Mplz,@) = S g (xzixdax + S g (x)z(x)dx -

- C"[T(£>o’ g_(x)z(x)dx + T(zf)<0 z’(x)z(x)dx] 0

(3.2) (b) gbr(c)-—a 0O asc—>0

where $°‘l‘(°) is as defined in section 1.

Then there exists ue dom A such that A(u) = g(x,u).

Bofore proving this theorem we note that (3.1) implies
tnat iind AZ O for T satisfying (3.1) is injective. To see this
let z ¢ N(T). Then lr(zo,(b) = 0 for every < [ 0,1] contra-
dicting (3.1).

Proof. We will maintain the notation and follow more o~
less the same argument of (9], Let us assume that dim R =
=n and (z,23,+..,2,) be an orthonormal basis for Ra)L . Lot
P be the projection of Lz(_ﬂ) onto R(A)L defined by

g 1
P(h) -hZ=‘.4 (h,z, ,hel ().

It follows that P maps L'(£) into L®(0), z,, k = 1,2,...,n
being smooth in 8 . From the linear theory of elliptic boun-
dary value problems it is known that there is a linear opera-
tor S:R(A) —>N(A)L such that S is the inverse of A restric-
ted to N(A)‘L » S(I - P) maps Ll(.ﬂ.) into LP{) for some p>1
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and is compact (for details see [8] and [91), We will apply
Theorem 2.1 and to this end we take X = l.p(.()_). p>1 obtained
as above, Z = R(A) and define G:X—> X and H:X —> Z by
G(u) = S(I - P)g(x,u), ueX
and H(u) = Pg(x,u), ueX.
Obviously T, G and H are all compact mappings. It can be pro-

ved (see Schechter [8]) that
= . ) Geu)ll
lim_ s —J-“— =0
A= Lim, sup —ju
and that there is a constant 6 such that
I G(u)ll £ 8 for all ue X.

We now verify the condition (ii) of Theorem 2.1, Let ue X,
O+zeZ, we [0,1) and € > 0 be given. Since by assumption
e Ll(ﬂ.). there exists o > 0 such that

p 13
(3.3) Jy 8(x)dx < €/,
for any W < 0 with m(W) <O where m(A) denotes the measure

of Ac QO . Let W =1{x « Q:lGu)(x)|> %57’-}. Then n('1)<§§.

Again by (3.2) there is a positive integer N independent of z

such that m(l2)< %where W, = {x e Q: (1 :)xx I <§}. Also by
(1.3) and Egoroff Theorem there is a set '3 c §) with m(la) <

<g-‘and a positive constant J such that

(3.4) lglx,t) - gx)l < 15000,

holds for *t>J and x € Q.\ Wy. Let L = 25—‘ _& g(x)dx and set

3
W=, W. Clearly m(W) < d".

Lastly let D =4x € O NW:i(T(z))(x)i < z\)m /LN and E =
= Q\N(buw),
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We now consider the following:
| Jo Latx,u®) - wglx, (-u)*] 2(x)dx - Mp(z,u)l
£ )[{g(x,u*) - 8,(x)} - wiglx,(~u)*) -
= T(z)>0
- )ld (x,u¥) - )¢ -
g_(x)3] z(x lax « _r({kol [{gi{x,u g_{x)¢
- wlalx, (-w¥) - g, (x)3] z(x)|dx = 1) + I,

where (u)* has been defined in Theorem 2.1.

= *) o - -u)*) -
Now I, T({))gl[{g(x.u ) - g, x)} - w{glx,(-u)¥)

- )3] ) &
g_(x z(x)|dx ‘Wn[‘f/;

By (3.3) we have

+ +
z)>01 Dn [‘{;zbO] En L/T(z)>01

~ £ _
Watraoy € 34 @) Nzl Lo Ex)ax) 24 2l £ -
=%"z“m.

Allo__D L‘&zbOJé ?JI—Z&L lfz f.c‘z ﬁ(x)dxéf iz, .g_ﬁ(x)dx
(a}

é%"z"w as |lz(x)| < z"ao/l. on D.

We now take llzllcoZ LNW + -3?6:-). the right hand side being
independent ¢f z, u and o -
Now on ENLT(z)>0]

el
T(z) + G ZT(2) - 1G22 -3E2y

-zl 34
and T{-z) + G(-u)£-T(z) + |G(-u) < N * T E- .

Hence by (3.4) we have

Er\tj‘;’(z)ﬂf ll!?e(m *é‘ﬁ%ﬁ')_—f, Pz l, mea) =& Nzl .

£
Thus we have proved that 1,< 5 Il z"co .

Proceeding exactly as above and noting only that on En (T(z)<
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Shzll
T(z) + G &T(z) + |Glu)l & —y2 + 38 2. 4

Nzl
and T(-z) + G(-w)Z -T(z) - IG(-u)l 2 —py® - 3L > 4

3
we can show that I, % z "ao .

Hence, replacing z by tz, t>0, we obtain

(3.5) Vit,z,u, w) = | (g(x,t(T(z)) + G(u)) - wglx,-t(T(z)) +
+ G(-u)),z) - Mp(z,u)) & €zl

whenever t~ LN(j + %—)/ Nzll, =X(e)/Nzll, and hence the left
hand side of (3.5) tends to zero uniformly in u, “ and z pro-
vided Wzl and 1/l zll is bounded. V(t,z,u, &) being continu-
ous in the variable (z,w) for each t and closed bounded sets
in Zx[0,1] being compact, it follows that It(z.y-) is continu-
ous in (z, ) for z2%0. Now since the set A = {{z, @l izl =1
and we [0,1)% is compact and connected in Zx[ 0,11, it fol-
lows that Il.l.(A) is a closed bounded interval [a,b], say. Again
by virtue of (3.1), 0¢L[a,bl, Hence either (1) [a,b] consists
only of negative real numbers or (2) [a,b] consists only ef po-
sitive real numbers. In case (1) we have lr(z.u)<§|lzl for
all 0+zeZ and all we [0,11, Using € = -Lg-l- in (3.5) we ob-
tain that for sufficiently large llz ||,

g(x,Tiz) + G(u)) - wug(x,-T(z) + G(-u)),z)%0
for all u and we [0,1],
In case (2) we have ll.l.(z.y.)>-; izl for all O%zeZ and all
e [0,11, Using e= i in (3.5), we obtain that for suffici-
ently large llz |l

(g(x,T(z) + G(u)) - ug(x,-T(z) + G(-u)),z)%0

for all u and we (0,11,

Thus in either case for sufficiently large Iz |l
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(3.6) (g(x,T(z) + G(u)) - M 8{x,~T(z) + G(-u)),z)+0
for all u and @e [0,1].

Now let z = £§4 X jZye Then

(H{T(z) + G(u)) - @H(T(-z) + G(-u)),z)

)

(3.7) = /f—u, (2(x,T(z) + G(u) =~ “g(x,T(-z) + G(-u)),zi)zi.
:%4 ”‘i"‘i) = (g(x,T(z) + G(u)) - “g(x,T(-2) +

1
+ G(-ull,2) %0
for all u and we [0,1] and for sufficiently large Izl .

Thus the condition (ii) of Theorem 2.1 is verified.,

It is trivial to see that if (u,z) 1s the fixed point ob-
tained by Theorem 3.1, then ueD(A) and A(u) = g(x,u).

Thus the .proof is complete.

Corollary 3.1. Let O, L, B (1% ), A, T, g, &, 84
be as in Theorem 3.1, Let the condition (b) of Theorem 3.1
hold. Further assume that the following holds:
for each 0+ ze R(A):

@8) [ [ gxaxlax + [ o 8-(x)z(x)dx ]

T(z) >0 T(z)<

[T({)>0 g_(x)z(x)dx + T(if)\<0 g_._(x)z(x)dx] <0

Then there exists uc dom A such that A(u) = g(x,u).

Proof. The condition (3.8) implies the condition (a) of

Theorem 3.1 and hence the corollary is proved.

Corollary 3.2. Letf, L, Bj (1¢jt4m), 4, T, g, &, g,
be as in Theorem 3.1. Let the condition (b) of Theorem 3.1

hold. Furthermore let either of the following conditions hold:
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(i) for each o*zsa(l)‘L

[T(i/;>0 8,(x)z(x)dx ’T(i);<0 8_(x)z(x)dx ] > o0;

(ii) for each 0+ ze R(A)*

[T(zj;> 0 g.(x)z(x)dx *T(£)< 0

Then there exists uc dom A such that A{u) = g(x,u),

s_(x)z(x)dx] < 0.

Proof. Setting Q(z) = T({;)Q &, (x)z(x)dx fr({kog_(x)z(x)dx

and noting that T is linear, it follows that for any ze ﬂ(A)‘L

- Qez) = [ g (x)z(x)ax + rd o Belm)z(x)ex.

Let us now assume that the condition (i) holds. Then for each
0+zemr(a)t » Q(z)>0 and Q(-z)> 0 and hence Q(z) I -Q(-z)J <0
which is the condition (3.8) of Corollary 3.1. Similarly we can

prove the corollary under condition (ii).

Remark 3.1. The corollary 3.1 includes the result of

Schechter [9]. We should also point out that the condition (3.8)
of Corollary 3.1 or more generally the condition (3.1) of Theo-
rem 3.1 implies that either condition (i) or condition (ii) of
Corollary 3.2 hodds. This follows from the continuity of

Mp(z, ) asserted in the proof of Theorem 3.1 and the fact that
the set 1(z,w): izl = 1 and @€ [ 0,1} is closed and compact
(see Theorem 3.1). Thus under condition 3.1 the possible new

hypotheses are limited to either (i) or (11).

—Remarks 3.2
1, The condition of (b) of Theorem 3.1 holds if A has the
unique continuation broperty, i.e. the only solution of A(u) =

= 0 which vanishes on a set of positive measure in . isu=20
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(for proof of this result see Lemma 2 in [7] or 12), p. 160),

2. Nlronborg's remark in (9] that instead of assuming T

to be linear, it is sufficient to assume T to be continuous and

homogeneous and ind A to be Z 0 is also valid in our case.

The author is grateful to the referee for valuable sugges-

tions.
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