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ON THE REPRESENTATION OF ORTHOCOMPLEMENTED POSETS
Frantisek KATRNOSKA

Abatract: The possibility of the representation of ort-
homodular orthoposets is discussed in [3],[4],[7] Klukowski
4] used the notion of ultrafilter, which has been introduced
by O. Frink [2], for any poset and proved the theorem of Sto-
nean t{ge for Boolean weakly orthomodular orthoposets. In this
paper the notion of an M-base defined by A.R. Marlow [5] is us~
ed as a convenient tool for the construction of the represen-
tation of orthocomplemented poset. Some consequences of the
representation theorem are deduced.

Kﬂﬁ n_:gg: Poset, Boolean algebra, ultrarilter of Boole-
an algebra, Stone spaec’a and related topt’:logical notions.

Classification: 06410, O6El5, 54H10

§ 1. Baaic potions apd definitions
Derinition 1 [3]). An grthocomplemented poget is a parti-

ally ordered set (P, <,0,1, °) containing a universal lower
bound O, a universal upper bourd 1, and having a unary opera-
tion “:P—> P called grthocomplementation which for any a,beP
satisfies

(1) ae&bd implies b’z a’

(11) (a”)" = a for each acP

(414) aAa’ =0 and ave =1, acP.
The elements a,bcP are said to be orthogonal i# a<b’. We shall
write then alb. In a contrary case, i.e. if a 4 b’ for a,beP,

we shall call a, b mytually non-orthogonal, and then we write
a ¥ be. - 489 -



Batipition 2. Let (P, 2,0,1, °) be an orthocomplemented
pemet. A nonempty subset §+McP is said to be an N-set of P,
if for any a,beM a .,Mb holds. The N-set locP is a paximsgl
N-get, if there is no such N-gset Mc P that loc.ll, lo*l.

Eropopition 1. Ir (P,4,0,1, °) 4s an orthocomplemented
poset, pc P, p 30, then there exists such a maximal N-set McP,
that pe M.

Proof: It is obvious that A = ip} is an N-set. Let X be
the set of all N-sets of P containing the element p. X is par-
tially ordered by inclusion. Let {I‘g“s (S = the set of index-
es) be a chain in X. The set D = «Ysh, 1s also an N-set.

The validity of the proposition is then a consequence of Zorn's
lemma.

Definition 3. Let (Py,<,0.,1,, ), (Pyy 3 ,0,,1,,*) be
two orthocomplemented posets. A mapping r:Pl—-—> P2 is called an
orthogorphism, ir

(1) a,beP;, a<b implies £(a) 3 £(b)

(11) £(a”) = [#(a)1* for each aeP)

(1i1) f(Ol) = 0, _

An orthomorphism f:Pl——» Pz which is bijective, and such that
-1

the inverse mapping ¢ :P2—> Pl is also an orthomorphism is

said to be an orthoisomorphisp. We shall call then the posets
F,, P, orthoisomorphigc.

§ 2. Mcbases and their characterizatiop. The notion of M-

base was introduced by A.R. Marlow [53] for logics. Without any
modification we can use the definition of M-base also for ort-
hocomplemented posets.
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Derinition 4 [5]. Let (P, <,0,1, °) be an orthocomplement-
ed poset. The non-empty subset #=BcP is called an M-base of
P, if

(1) 1eB

(11) {p,p }n B3P for each peP

(111) Ir peP, qeB, q L p then pgB.

Lemma 1. Let (P,2,0,1, ) be an orthocomplemented poset,
then the following conditions are equivalent:

(a) The set BcP is an M-base of P

(b) The set BCP satisries the conditions

I peB, p4£q implies qcB
II card [{p,p}~nBl= 1 for each pcP

(¢) B is a maximal N-set.

Proor: (a) = (b)

(b) I Let peB, qeP and p<q. Since p<q = (q") ", we get
pLq’. Now (i1), (141) of Definition 4 implies q ¢ B. There-
fore qe B,

(b) II follows immediately from (ii) and (11ii) of Defini-
tion 4.

(b) => (¢). Assume that the set Bc P satisfies (b)I,
(b)II, and let p,qeB. Then p ) q. Indeed, if p<q  then (b)I
would imply q e B, which contradicts (b)II. We prove that B is
a maximal N-set.

Let B; be such an N-set in P that BcBl, B+Bl. If peB\B,
then by (b)II we should have p’c BcB;. But this last argument

contradicts the fact B; being en N-set. The validity of (c) 1s
now established.
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(e) = (a). Let BCP be a maximal N-set. We shall show
that B satisfies (1) - (411) of Definition 4.

(1) Por each pcB, p+0 we have 1° = O<p. Therefore
P .}( 1. The maximality of the Neset P implies leB.

(11) Let pe P, and assume that p¢B, p'¢ B, Maximality
of the N-set B implies the existence of suck oluntnto‘ql,qzs B
that p.L q) and p'l q,. From this 1t follows G L gy = a eont
radiction. Now it can be easily seon that for each pepP,
card [{p,p}nB] = 1.

(134) Let pc P, qeBand q L p. Then P& B because B is
an FKe-get.

Corollary. Let (P, <£,0,1, °) be an orthocomplemented po~
set. If peP, p+0, then always such an M~base B exists in P,
that peB.

Proof: evident.

Remember that if (P,<) 1s a poset, p,qcP, p<q, then {pyq =
={xcP|psx4qf.
The following lemma shows a method how to construct new M-ba~

ses from a given one.

lamma 2. let (P.£,0,1, *) be an orthocomplemented poset,
"o an M~-base of P, pe P\ Bo' P+0. Then the set Bl =
= (B\<0,p ») U <p,1) 1s an M-base eontaining p.

Proof: Fbllows immediately. It suffices to verify the va-
lidity of oconditions (b)I, (b)X of Lemma 1 for By.

Carollary. If (P,4,0,1, ) 4s a Beolean algebra, then
each ultrafilter of P is an M-base in P.
Proof: evident.
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But the contrary assertion may .be false.

Propogition 2. Let (P,<£,0,1, *) be such a Boolean algeb-
ra that card B=8, Then P contains an M-base, which is not an
ultrafrilter. .

Proof: Let Bl be any M~base in P, First of all we shall
show that we can always find such elements p,qe B, for which
P 4‘: Qs q 4 p. Suppose, on the contrary, that for every p,qe Bl
holds either p<£q or q<p. Because card Blzt must such Py € Bl'
i =1,2,3 exist that Py < Pp< p3<1. Now let us take the ele~
ment a = p3/\p2'. Then a4 pz', P,4B; and it follows that a¢B;.
Therefore a ¢ By. But a’= (p3/\p2')‘= p:;v Pos The fact that nei-
ther pgv pzé p3 mor p3é inpz contradicts the assumption about
By.

Now let B, be an ultrafilter in P. By Corollary of Lemma 2 Bo is
an M-base. Let further p, q be such elements of B, that p £ q,

q 4 p. Then pAq+0, PAQq ‘Bo because Bo is a proper filter.

Lemme 2 implies that By = (B \ <0,pAq»)U<(pAq) ,1> 1s an
M=-base in P. But pAgq ¢Bl although p,q 681.

Therefore Bl is not an ultrafilter in P. This completes the proof.

Bemark. Wwith little modifications one can prove an anale-
glical proposition for the so=-called Boolean orthomodular ortho=--
posets. In this case the ultrafilters are considered in the sen-
se of Frink’s definition [21.

Notations. Let (P,<,0,1, °) be an orthocomplemented poset
and denote by M(P) the set of all M-bases in P. If pcP, p+0
put Z(p) = {BcM(P)|Bop} and let 2(0) = 6. Pinally we put
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Z2(M(P)) ={2Z(p)|pec P% Then the following theorem of the Sto-

nesn type turns out to be valid,

Theorem 1. Every orthocomplemented poget (P, <,0,1, °)
is orthoisomorphic with the orthocomplemented poset (zZ(M(P)),
<48, M(P),*) the elements of which, the sets Z(p), peP are
clopen subsets of zero-dimensional completely regular topoio-
gical T,-space X = (M(P), J"), The set Z(M(P)) is a subbasis ror
the topology J° . The symbols & and * denote the ineclusion

relation and set-theoretical complement in M(P) respectively.

Proof: M(P)30 by Corollary of Lemma 1. Now we introduce
a topology 7 on M(P), requiring that Z(M(P)) be a subbagis for
closed subsets of M(P).

(1) The class Z(M(P)) is also a subbasis for open sets of
the topological space (M(P),7"), Indeed, if Be M(P), then there
exists such Po€ P, O#p,+1 that Py & Bs Therefore Bez(p°)~. Now
bII of Lemma 1 implies Z(p) = M(P)\ Z(p”) for each peP, There-
fore the sets Z(p) are open and it 1s also clear that Z(M(P))
is a subbasis for open sets in (M(p), 7).

(i11) 7 s a Hausdorf# topology on M(P). Let B,,B, e M(P),
By#B,. Then there exists such peP that PEB), p'e B,. The open
sets Z(p), Z(p’) are then disjoint neighbourhoods of B, B, res-
pectively.

(111) The topological space (M(P),J’) is zero-dimensional.
In fact, the basis U of open sets of the topology 7 is of the
form U= {U c M(P) | U 34’51 Z(pi), pPyeP, 1 =1,2,...,n%. Sin-
ce Z(pi) are clopen sets, it follows that the sets U e % are

also clopen,
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(iv) The topological space (M(P),J”) is completsiy rezu~
lar., This is a simple consequence of (ii) amt (iii).

(v) (z(M(P)), =,8,M(P), *) is an orthccomplemented poset.
The set Z(M(P)) is partially ordered by the inclusion relation.
€ .« If AcZ(M(P)), then we put A* = M(P)™> A. Clearly Z(1) =
= M(P}, Z(0) = @6, and M(P) end B are the universal uppar and
lower bounda in Z(M{(P)) respectively. According to the rueiation
Z(p’) = M(P)\ Z(p), pec P we obtas:

(1) [2(p)1*= M(P)\ Z(p) = z(p’)- for each peP.

It can be easily seen that X satis’ties all requirements impos-
ed on orthocomplementation.

(vi) Ifr p,qeP, then p<q<¢=> Z(p)ec Z(q).

(a) Let pZ£q. The property (b)I of Lemma 1 implies Z(p) <
c z(q).

(b) Assume Z(p)c Z(q). If p = O, then clearly O = p<q.
Also let p+0, and suppose that p4q. Then we can select such
an M-base B that Be Z(p). Following Lemma 2 B, = (B\<0,q>) U
u<q’,1> 1s an M-base, and By Z(p). Therefore B, cZ(q), and
q'e By, q&B; which contradicts (b)II of Lemma 1.

Now define a map h:P—> Z(M(P)) setting h(p) = Z(p) for <ach
peP,

(vii) h is bijective. This follows immedistely from the
definition of h and by (vi).

(viii) The orthocomplemented posets (P,< ,0,1, ') and
(z(M(P)), c ,0,M(P) ,* ) are orthoisomorphic. The fact that h is
an orthoisomorphism is namely a consequence of (vi), (vii) and
(1),
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Remark. If for P1sPre ) 4 PV p, resp. PjA Py exists in
P, then the following equalittes hold:

hipy v Pp) = h(pl)vh(pz), h(p A Py) = h(pl)/\h(p,_.
But it 1s necessary to warn. The operations v and A in a poset
(2(M(P)), < ,8,M(P) ,* ) qas long as they are defined may in gene-
ral differ from the usual set~theoretical operations U and n e

Proposition 3 [1]. Every zero-dimensional, completely re-
gular topological T)~space X or the total character w(X) = <
can be embedded homeomorphically in the Cantor cube D"":A'LTs B,
where Da = 40,13, 8cS are endowed as topological spaces with
a discrete topology, and card S = © .

Proof: See [11.

Corollary. If (P,<,0,1, °) is an orthocomplemented poset
end if card P = ¢ , then the space (M(P), 0°) can be embedded
homeomorphically in DT .

Proof: Clearly card Z(M(P)) =« , Ip % is a basis of
clopen sets in M(P) generated by Z(M(P)) as a subbasis or topo~-
logy 7' , then card %= <", Therefore for the total character
W(M(P)) or M(P) we get W(M(P)) < = |, Corollary follows now ap-
Plying Theorem 1 amd Proposition 3.

In s special case, when (P,<,0,1, °) is a Boolean algebra, and
$(P) the Stonean spaee of P, then the following assertion es-

tablishes the connection between the topological spaces < (P)
and .(P).

Eroposition 4. Let (P,<£,0,1, *) be a Boolean algetra.
Then the Stonean space Y¥(P) of P s a compact subspace of the
topological space M(P),
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Proof: Follows as a simple consequence of the fact th.at
the topology of the Stone space (P) is induced by the topo-
logy of M(P).

Theorem 2. If the orthocomplemented posets (P, < ,01,11,')
(P, £ ,02,12,*) are orthoisomorphic, then the correspording to-
pological spaces (M(Py), 07), (M(P,, 3,) are homeomorphic.
1 1l 2V 2

Proof: Let hiP)—> P, be an orthoisomorphism from Py on
Py. It 18 easy to show that B is an M-base in P; iff h(B) 1s an
M-base in Pz. Therefore the mapping h induces a mapping ﬁ:l(Pl)—)
—> M(P,). The bijectivity of h implies bijectivity of H. Now
if we denote by Zi(p), Pe Py the elements of subbases Zl(ll(Pi))
of topological spaces (M(P;),J%), 1 = 152, then the following
equality turns out to be valid:

(2) 871 (2,(p)) = 2,072 (p))  peP,
Now, if F is an element of the basis for closed subsets of the
topological space I(Pz), then there exists such pyé Pyy § =
= 1,2,...,n, that P -5L:51 Z,(py). According to (2) we obtain
Bm =572, 0, 20000 =, 0 82000 = T (0 hp ).
This implies that D >(F) is sn element of basis for closed sub-
sets in I(Pl), and hence the continuity of f. The continuity

of ?1'1 can be shown analogically. The converse of the theorem

m3y fail,

Example. Let be X = 11,2,3,4}, Py = {Ycexp X|card Y ¢
¢ 11,3}, 2 = {1,2,3,4,5,6,7,8% amd P, = {0,2,41,2}, {3,4},15,63,
Z\ 41,2}, 2\ 13,43, Z\ 15,63,
Define the partial ordering snd the orthocomplement on P:I.’ i=
= 1,2 as the inclusion relation and the set-theoretical comple-
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ment respectively. It can be easily shown thaet (Pl’ g,ﬂ,x,')

end (P,, < ,0,2, ‘) are orthocomplemented pogets. For the apa~-
ces M(P;), M(P,) it may be found that card M(P;) = card M(P,)=
= 4. So we can see that the spaces M(Pl), l(Pz) are discrete
and homeomorphie. But the posets Pl' Pz csnnot be orthoisomor-
phic, because while P2 contuins three different mutually orthe-
gonal elements, Pl contsins always only at most two mutuslly or-

thogonal elements.
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