

Werk

Label: Article Jahr: 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log45

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23.3 (1982)

ON THE REPRESENTATION OF ORTHOCOMPLEMENTED POSETS František KATRNOŠKA

Abstract: The possibility of the representation of orthomodular orthoposets is discussed in [3],[4],[7] Klukowski [4] used the notion of ultrefilter, which has been introduced by O. Frink [2], for any poset and proved the theorem of Stonean type for Boolean weakly orthomodular orthoposets. In this paper the notion of an M-base defined by A.R. Marlow [5] is used as a convenient tool for the construction of the representation of orthocomplemented poset. Some consequences of the representation theorem are deduced.

<u>Key words</u>: Poset, Boolean algebra, ultrafilter of Boolean algebra, Stone space and related topological notions.
Classification: 06AlO, 06El5, 54HlO

§ 1. Basic notions and definitions

Definition 1 [3]. An orthocomplemented poset is a partially ordered set $(P, \leq, 0, 1, ')$ containing a universal lower bound 0, a universal upper bound 1, and having a unary operation ':P \longrightarrow P called orthocomplementation which for any $a,b\in P$ satisfies

- (i) a
 b implies b
 a'
- (ii) (a')' = a for each $a \in P$
- (iii) $a \wedge a' = 0$ and $a \vee a' = 1$, $a \in P$.

The elements $a,b \in P$ are said to be orthogonal if $a \le b'$. We shall write then $a \perp b$. In a contrary case, i.e. if $a \not = b'$ for $a,b \in P$, we shall call a, b mutually non-orthogonal, and then we write $a \not \perp b$.

Perinition 2. Let $(P, \angle, 0, 1, ')$ be an orthocomplemented perset. A nonempty subset $\emptyset + M \subset P$ is said to be an N-set of P, if for any $a,b \in M$ a $\not\perp$ b holds. The N-set $M_0 \subset P$ is a maximal N-set, if there is no such N-set $M \subset P$ that $M_0 \subset M$, $M_0 \neq M$.

<u>Proposition 1.</u> If $(P, \leq, 0, 1, ')$ is an orthocomplemented poset, $p \in P$, $p \neq 0$, then there exists such a maximal N-set $M \subset P$, that $p \in M$.

Proof: It is obvious that $A = \{p\}$ is an N-set. Let X be the set of all N-sets of P containing the element p. X is partially ordered by inclusion. Let $\{M_{\infty}\}_{\infty \in S}$ (S - the set of indexes) be a chain in X. The set $D = \bigcup_{\alpha \in S} M_{\infty}$ is also an N-set. The validity of the proposition is then a consequence of Zorn's lemma.

<u>Definition 3.</u> Let $(P_1, \leq, 0_1, l_1, ')$, $(P_2, \preceq, 0_2, l_2, *)$ be two orthocomplemented posets. A mapping $f:P_1 \longrightarrow P_2$ is called an <u>orthomorphism</u>, if

- (1) $a,b \in P_1$, $a \neq b$ implies $f(a) \preceq f(b)$
- (ii) $f(a') = [f(a)]^*$ for each $a \in P_1$
- (iii) $f(0_1) = 0_2$

An orthomorphism $f:P_1 \longrightarrow P_2$ which is bijective, and such that the inverse mapping $f^{-1}:P_2 \longrightarrow P_1$ is also an orthomorphism is said to be an <u>orthoisomorphism</u>. We shall call then the posets P_1 , P_2 <u>orthoisomorphic</u>.

§ 2. M-bases and their characterization. The notion of M-base was introduced by A.R. Marlow [5] for logics. Without any modification we can use the definition of M-base also for orthocomplemented posets.

<u>Definition 4</u> [5]. Let $(P, \leq, 0, 1, ')$ be an orthocomplemented poset. The non-empty subset $\emptyset \Rightarrow B \subset P$ is called an M-base of P. if

- (1) 1 E B
- (ii) $\{p,p'\} \cap B \neq \emptyset$ for each $p \in P$
- (111) If $p \in P$, $q \in B$, $q \perp p$ then $p \notin B$.

Lemma 1. Let $(P, \geq, 0, 1, ')$ be an orthocomplemented poset, then the following conditions are equivalent:

- (a) The set BcP is an M-base of P
- (b) The set B⊂P satisfies the conditions
 I p∈B, p∈q implies q∈B
 II card [{p,p'} ∩ B] = 1 for each p∈P
- (c) B is a maximal N-set.

Proof: (a) \Rightarrow (b)

- (b) I Let $p \in B$, $q \in P$ and $p \neq q$. Since $p \neq q = (q')'$, we get $p \perp q'$. Now (ii), (iii) of Definition 4 implies $q' \neq B$. Therefore $q \in B$.
- (b) II follows immediately from (ii) and (iii) of Definition 4.
- (b) \Longrightarrow (c). Assume that the set BCP satisfies (b)I, (b)II, and let p,q \in B. Then p $\not \perp$ q. Indeed, if p \leq q then (b)I would imply q \in B, which contradicts (b)II. We prove that B is a maximal N-set.

Let B_1 be such an N-set in P that $B \subset B_1$, $B \neq B_1$. If $p \in B_1 \setminus B$, then by (b) II we should have $p' \in B \subset B_1$. But this last argument contradicts the fact B_1 being an N-set. The validity of (c) is now established.

- (e) \Rightarrow (a). Let BCP be a maximal N-set. We shall show that B satisfies (i) (iii) of Definition 4.
- (1) For each $p \in B$, $p \neq 0$ we have 1' = 0 < p. Therefore $p \neq 1$. The maximality of the N-set P implies $1 \in B$.
- (ii) Let $p \in P$, and assume that $p \neq B$, $p' \neq B$. Maximality of the N-set B implies the existence of such elements $q_1, q_2 \in B$ that $p \perp q_1$ and $p' \perp q_2$. From this it follows $q_1 \perp q_2$ a contradiction. Now it can be easily seen that for each $p \in P$, card $[\{p,p'\} \cap B] = 1$.
- (iii) Let $p \in P$, $q \in B$ and $q \perp p$. Then $p \notin B$ because B is an N-set.

<u>Corollary</u>. Let $(P, \leq, 0, 1, ')$ be an orthocomplemented poset. If $p \in P$, $p \neq 0$, then always such an M-base B exists in P, that $p \in B$.

Proof: evident.

Remember that if (P, \leq) is a poset, $p,q \in P$, $p \leq q$, then $\langle p,q \rangle = \{x \in P \mid p \leq x \leq q\}$.

The following lemma shows a method how to construct new M-bases from a given one.

Lemma 2. Let $(P. \le 0.1, ')$ be an orthocomplemented poset, B_0 an M-base of P, $p \in P \setminus B_0$, $p \neq 0$. Then the set $B_1 = (B \setminus (0,p')) \cup (p,1)$ is an M-base containing p.

Proof: Follows immediately. It suffices to verify the validity of conditions (b)I, (b) I of Lemma 1 for B_1 .

<u>Corollary</u>. If $(P, \leq , 0, 1, ')$ is a Boolean algebra, then each ultrafilter of P is an M-base in P*

Proof: evident.

But the contrary assertion may be false.

<u>Proposition 2.</u> Let $(P, \leq, 0, 1, ')$ be such a Boolean algebra that card $B \geq 8$. Then P contains an M-base, which is not an ultrafilter.

Proof: Let B_1 be any M-base in P. First of all we shall show that we can always find such elements $p,q \in B_1$ for which $p \not \models q$, $q \not \models p$. Suppose, on the contrary, that for every $p,q \in B_1$ holds either $p \not = q$ or $q \not = p$. Because card $B_1 \ge 4$ must such $p_1 \in B_1$, i = 1,2,3 exist that $p_1 < p_2 < p_3 < 1$. Now let us take the element $a = p_3 \land p_2$. Then $a \not = p_2$, $p_2 \not = B_1$ and it follows that $a \not = B_1$. Therefore $a \not \in B_1$. But $a' = (p_3 \land p_2')' = p_3' \lor p_2$. The fact that neither $p_3' \lor p_2 \not = p_3$ nor $p_3 \not = p_3' \lor p_2$ contradicts the assumption about B_1 .

Now let B_0 be an ultrafilter in P. By Corollary of Lemma 2 B_0 is an M-base. Let further p, q be such elements of B_0 that $p \not= q$, $q \not= p$. Then $p \land q \not= 0$, $p \land q \in B_0$ because B_0 is a proper filter. Lemma 2 implies that $B_1 = (B_0 \land \langle 0, p \land q \rangle) \cup \langle (p \land q)', 1 \rangle$ is an M-base in P. But $p \land q \not= B_1$ although $p, q \in B_1$. Therefore B_1 is not an ultrafilter in P. This completes the proof.

Remark. With little modifications one can prove an analogical proposition for the so-called Boolean orthomodular orthoposets. In this case the ultrafilters are considered in the sense of Frink's definition [2].

§ 3. Representation theorem for orthocomplemented posets

Notations. Let $(P, \leq, 0, 1, ')$ be an orthocomplemented poset and denote by M(P) the set of all M-bases in P. If $p \in P$, $p \neq 0$ put $Z(p) = \{B \in M(P) | B \ni p \}$ and let $Z(0) = \emptyset$. Finally we put

 $Z(M(P)) = \{Z(p) | p \in P\}$. Then the following theorem of the Stomean type turns out to be valid.

Theorem 1. Every orthocomplemented poset $(P, \leq, 0, 1, ')$ is orthoisomorphic with the orthocomplemented poset $(Z(M(P)), \leq, \emptyset, M(P), *)$ the elements of which, the sets $Z(p), p \in P$ are clopen subsets of zero-dimensional completely regular topological T_1 -space $X = (M(P), \mathcal{T})$. The set Z(M(P)) is a subbasis for the topology \mathcal{T} . The symbols \subseteq and * denote the inclusion relation and set-theoretical complement in M(P) respectively.

Proof: $M(P) \neq 0$ by Corollary of Lemma 1. Now we introduce a topology $\mathcal T$ on M(P), requiring that Z(M(P)) be a subbasis for closed subsets of M(P).

- (i) The class Z(M(P)) is also a subbasis for open sets of the topological space $(M(P),\mathcal{T})$. Indeed, if $B\in M(P)$, then there exists such $p_0\in P$, $0\neq p_0\neq 1$ that $p_0\in B$. Therefore $B\in Z(p_0)$. Now bII of Lemma 1 implies $Z(p)=M(P)\setminus Z(p')$ for each $p\in P$. Therefore the sets Z(p) are open and it is also clear that Z(M(P)) is a subbasis for open sets in $(M(P),\mathcal{T})$.
- (ii) \mathcal{T} is a Hausdorff topology on M(P). Let $B_1, B_2 \in M(P)$, $B_1 + B_2$. Then there exists such $p \in P$ that $p \in B_1$, $p' \in B_2$. The open sets Z(p), Z(p') are then disjoint neighbourhoods of B_1 , B_2 respectively.
- (iii) The topological space (M(P), \mathcal{T}) is zero-dimensional. In fact, the basis \mathcal{U} of open sets of the topology \mathcal{T} is of the form $\mathcal{U} = \{ \cup \subset M(P) \mid U = \bigcup_{i=1}^{n} Z(p_i), p_i \in P, i = 1, 2, \ldots, n \}$. Since $Z(p_i)$ are clopen sets, it follows that the sets $U \in \mathcal{U}$ are also clopen.

- (iv) The topological space $(M(P), \mathcal{J}')$ is completely regular. This is a simple consequence of (ii) and (iii).
- (v) $(Z(M(P)), \subseteq, \emptyset, M(P), *)$ is an orthocomplemented poset. The set Z(M(P)) is partially ordered by the inclusion relation. \subseteq . If $A \in Z(M(P))$, then we put $A^* = M(P) \setminus A$. Clearly Z(1) = M(P), $Z(0) = \emptyset$, and M(P) and \emptyset are the universal upper and lower bounds in Z(M(P)) respectively. According to the relation $Z(p') = M(P) \setminus Z(p)$, $p \in P$ we obtain
- (1) $[Z(p)]^* = M(P) \setminus Z(p) = Z(p')$ for each $p \in P$. It can be easily seen that * satisfies all requirements imposed on orthocomplementation.
 - (vi) If $p,q \in P$, then $p \neq q \iff Z(p) \subseteq Z(q)$.
- (a) Let $p \le q$. The property (b)I of Lemma 1 implies $Z(p) \subseteq Z(q)$.
- (b) Assume $Z(p) \in Z(q)$. If p = 0, then clearly $0 = p \le q$. Also let $p \ne 0$, and suppose that $p \ne q$. Then we can select such an M-base B that $B \in Z(p)$. Following Lemma 2 $B_1 = (B \setminus \langle 0, q \rangle) \cup \cup \langle q', 1 \rangle$ is an M-base, and $B_1 \in Z(p)$. Therefore $B_1 \in Z(q)$, and $q' \in B_1$, $q \in B_1$ which contradicts (b)II of Lemma 1. Now define a map $h: P \longrightarrow Z(M(P))$ setting h(p) = Z(p) for each $p \in P$.
- (vii) h is bijective. This follows immediately from the definition of h and by (vi).
- (viii) The orthocomplemented posets $(P, \leq, 0, 1, ')$ and $(Z(M(P)), \subseteq, \emptyset, M(P), *)$ are orthoisomorphic. The fact that h is an orthoisomorphism is namely a consequence of (vi), (vii) and (1).

Remark. If for $p_1, p_2 \in P$ $p_1 \vee p_2$ resp. $p_1 \wedge p_2$ exists in P, then the following equalities hold:

 $h(p_1 \lor p_2) = h(p_1) \lor h(p_2)$, $h(p_1 \land p_2) = h(p_1) \land h(p_2)$. But it is necessary to warn. The operations \lor and \land in a poset $(Z(M(P)), \subseteq ,\emptyset, M(P), *)$ as long as they are defined may in general differ from the usual set-theoretical operations \lor and \cap .

<u>Proposition 3</u> [1]. Every zero-dimensional, completely regular topological T_1 -space X of the total character $w(X) = \tau$ can be embedded homeomorphically in the Cantor cube $D^{\tau} = \prod_{x \in S} D_x$, where $D_g = \{0,1\}$, $s \in S$ are endowed as topological spaces with a discrete topology, and card $S = \tau$.

Proof: See [1].

<u>Corollary</u>. If $(P, \leq, 0, 1, ')$ is an orthocomplemented poset and if card $P = \tau$, then the space $(M(P), \mathcal{T})$ can be embedded homeomorphically in D^{τ} .

Proof: Clearly card $Z(M(P)) = \tau$. If $\mathcal U$ is a basis of elepen sets in M(P) generated by Z(M(P)) as a subbasis of topology $\mathcal T$, then card $\mathcal U = \tau$. Therefore for the total character W(M(P)) of M(P) we get $W(M(P)) \leq \tau$. Corollary follows now applying Theorem 1 and Proposition 3.

In a special case, when $(P, \leq, 0, 1, ')$ is a Boolean algebra, and $\mathcal{G}(P)$ the Stonean space of P, then the following assertion establishes the connection between the topological spaces $\mathcal{G}(P)$ and M(P).

<u>Proposition 4</u>. Let $(P, \leq, 0, 1, ')$ be a Boolean algebra. Then the Stonean space $\mathcal{G}(P)$ of P is a compact subspace of the topological space M(P).

Proof: Follows as a simple consequence of the fact that the topology of the Stone space $\mathcal{G}(P)$ is induced by the topology of M(P).

Theorem 2. If the orthocomplemented posets $(P_1, \leq, 0_1, 1_1, ')$ $(P_2, \leq, 0_2, 1_2, *)$ are orthoisomorphic, then the corresponding topological spaces $(M(P_1), \mathcal{T}_1)$, $(M(P_2, \mathcal{T}_2))$ are homeomorphic.

Proof: Let $h: P_1 \longrightarrow P_2$ be an orthoisomorphism from P_1 on P_2 . It is easy to show that B is an M-base in P_1 iff h(B) is an M-base in P_2 . Therefore the mapping h induces a mapping $h: M(P_1) \rightarrow M(P_2)$. The bijectivity of h implies bijectivity of h. Now if we denote by $Z_1(p)$, $p \in P_1$ the elements of subbases $Z_1(M(P_1))$ of topological spaces $(M(P_1), \mathcal{T}_1)$, i = 1,2, then the following equality turns out to be valid:

(2) \hat{h}^{-1} ($Z_2(p)$) = $Z_1(h^{-1}(p))$ $p \in P_2$ Now, if F is an element of the basis for closed subsets of the topological space $M(P_2)$, then there exists such $p_j \in P_2$, $j = 1,2,\ldots,n$, that $F = \frac{n}{2} \tilde{U}_1 Z_2(p_j)$. According to (2) we obtain $\hat{h}^{-1}(F) = \hat{h}^{-1}(\frac{n}{2} \tilde{U}_1 Z_2(p_j)) = \frac{n}{2} \tilde{U}_1 \hat{h}^{-1}(Z_2(p_j)) = \frac{n}{2} \tilde{U}_1 Z_1(\hat{h}^{-1}(p_j))$. This implies that $\hat{h}^{-1}(F)$ is an element of basis for closed subsets in $M(P_1)$, and hence the continuity of \hat{h} . The continuity of \hat{h}^{-1} can be shown analogically. The converse of the theorem may fail.

Example. Let be $X = \{1,2,3,4\}$, $P_1 = \{Y \in \exp X | \text{card } Y \notin \{1,3\}$, $Z = \{1,2,3,4,5,6,7,8\}$ and $P_2 = \{\emptyset,Z,\{1,2\},\{3,4\},\{5,6\},Z \setminus \{1,2\},Z \setminus \{3,4\},Z \setminus \{5,6\}.$

Define the partial ordering and the orthocomplement on P_i, i = = 1,2 as the inclusion relation and the set-theoretical comple-

ment respectively. It can be easily shown that $(P_1, \subseteq, \emptyset, X_1')$ and $(P_2, \subseteq, \emptyset, Z_1')$ are orthocomplemented posets. For the spaces $M(P_1)$, $M(P_2)$ it may be found that card $M(P_1)$ = card $M(P_2)$ = 4. So we can see that the spaces $M(P_1)$, $M(P_2)$ are discrete and homeomorphic. But the posets P_1 , P_2 cannot be orthoisomorphic, because while P_2 contains three different mutually orthogonal elements, P_1 contains always only at most two mutually orthogonal elements.

References

- [1] R. ENGELKING: Topologia ogólna, Warszawa 1976.
- [2] O. FRINK: Ideals in partially ordered sets, Amer. Math. Monthly 61(1954), 225-234.
- [3] H. GRAVES S.A. SELESNICK: An extension of the Stone representation for orthomodular lattices, Colloq. Math. 27(1973), 21-30.
- [4] J. KLUKOWSKI: On the representation of Boolean orthomodular partially ordered sets, Demonstratio Mathematica 8(1975), 405-423.
- [5] A.R. MARLOW: Quantum theory and Hilbert Space, Journal of Math. Phys. 19(1978), 1-15.
- [6] M.H. STONE: The theory of representation for Boolean algebras, TAMS 40(1936), 37-111.
- [7] N. ZIERLER M. SCHLESINGER: Boolean Embeddings of orthomodular sets and Quantum logics, Duke Math. Journal 32(1965), 251.

Department of Mathematics, Institute of Chemical Technology, Suchbátarova 1905, 166 28 Praha, Czechoslovakia

(Oblatum 14.10. 1981)