

Werk

Label: Article Jahr: 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log43

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

23,3 (1982)

SELF-DUAL SUBNORMAL OPERATORS G. J. MURPHY

Abstract: A characterization of self-dual subnormal operators is given, and this characterization is shown to give quick proofs that certain classes of operators consist of self-dual subnormal operators.

Key words: Self-dual subnormal operator

Classification: 47B20

Recall that a <u>subnormal</u> operator is the restriction to an invariant subspace of a normal operator (all operators are understood to be bounded linear operators defined on Hilbert spaces). Every subnormal operator has a minimal normal extension N, and N is unique up to unitary equivalence [2]. Suppose then S is a subnormal operator on a Hilbert space H and N is a normal operator on a Hilbert space K \geq H such that N is the minimal normal extension of S. Then relative to the decomposition $K = H \oplus H^{\perp}$ of K, N has operator matrix

$$N = \begin{pmatrix} S & X \\ 0 & T* \end{pmatrix}$$
.

Now if S is a <u>pure</u> subnormal operator (i.e. S has no nonzero reducing subspace on which it is normal) then T is unique up to unitary equivalence and is called the <u>dual</u> of S (see, for example, [1]). S is said to be <u>self-dual</u> if S is unitarily

equivalent to its dual T.

It is convenient to make the following definition - an operator S is <u>pure</u> if S has no non-zero reducing subspace on which S is normal.

We now give a simple characterization of self-dual subnormal operators which eliminates reference to the minimal normal extension.

[X,Y] denotes the commutator XY - YX for operators X and Y.

Theorem 1. Let S be a pure operator on a Hilbert space H.

Then S is a self-dual subnormal operator if and only if there
exists a normal operator A on H such that

$$[S*,S] = AA*$$
 and $AS = S*A.$

Proof: Suppose first that S is a self-dual subnormal operator and

$$N = \begin{pmatrix} S & X \\ O & T* \end{pmatrix}$$

is its minimal normal extension on $H \oplus H$. Then for some unitary operator U on H, $T = USU^*$. But the equation $NN^* = N^*N$ implies

$$\begin{pmatrix} SS^* + XX^* & XT \\ T^* X^* & T^* T \end{pmatrix} = \begin{pmatrix} S^*S & S^*X \\ X^*S & X^*X + TT^* \end{pmatrix}.$$

Hence $[S^*,S] = XX^*$, $XT = S^*X$ and $[T^*,T] = X^*X$.

We define A = XU. Then X = AU*, and AS = XUS(U*U) = (XT)U = (S*X)U = S*A, i.e. AS = S*A. Also [S*,S] = XX* = AU*(AU*)* = AA*. Finally A is normal, because

A*A = (XU)*XU

= U*X*XU

= U*[T*,T]U

= U*((USU*)*USU* - USU*(USU*)*)U

= U*(US*SU* - USS*U*)U

= [\$*,\$]

= AA*

Now to prove the converse, suppose we are given a normal operator A such that $[S^*,S] = AA^*$ and $AS = S^*A$, and we'll show this implies S is a self-dual subnormal operator.

Put

$$N = \begin{pmatrix} S & A \\ O & S^* \end{pmatrix}$$

Thus N is an operator on $H \oplus H$, and some trivial matrix calculations show

$$\mathbf{N*N} = \begin{pmatrix} \mathbf{S*S} & \mathbf{S*A} \\ \mathbf{A*S} & \mathbf{A*A+SS*} \end{pmatrix}$$

$$NN^* = \begin{pmatrix} SS^* + AA^* & AS \\ S^*A^* & S^*S \end{pmatrix}$$

So from the relations $[S^*,S] = AA^*$ and $AS = S^*A$ we deduce that $NN^* = N^*N$, i.e. N is normal. Thus the proof will be concluded if we show N is the minimal normal extension of S.

Supposing it is not, we derive a contradiction:

(For notational convenience let K denote the space on which N acts and regard H as a subspace of K, so that $K = H \oplus H^{\perp}$.)

Now as N is not the minimal normal extension there exists a proper subspace M of K which reduces N, and M contains H

but is not equal to H. Thus $\mathbf{M}_{\mathbf{M}}$, the restriction of N to M, is normal.

Now $K = H \oplus H^{\perp} = (H \oplus M \ominus H) \oplus M^{\perp} = M \oplus M^{\perp}$.

Thus relative to the decomposition K = H \oplus (M \ominus H) \oplus M $^{\perp}$, M has operator matrix

$$\mathbf{N} = \begin{pmatrix} \mathbf{S} & \mathbf{X}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{N}_2 \end{pmatrix}$$

and relative to the decomposition $K = M \oplus M^{\perp}$, N has operator matrix

$$N = \begin{pmatrix} N_1 & O \\ O & N_2 \end{pmatrix}$$

Also since M is reducing for N, we must have N₁, N₂ normal. But we can also identify the operator matrix of N relative to the decomposition $K = H \oplus (M \ominus H) \oplus M^{\perp}$ as

$$N = \begin{pmatrix} s & x_1 & o \\ o & (s*) \end{pmatrix}$$

Hence identifying corresponding submatrices of the above 3 \times 3 operator matrices we deduce that

$$\$ * = \begin{pmatrix} x_2 & 0 \\ 0 & x_2 \end{pmatrix}$$

relative to the decomposition $(M \ominus H) \oplus M^{\perp}$.

Thus $S^* = X_2 \oplus N_2$ on the space $(M \ominus H) \oplus M^{\perp} = H^{\perp}$, and hence $S = X_2^* \oplus N_2^*$. This implies S is normal on the reducing subspace M^{\perp} (since N_2 is normal) and hence $M^{\perp} = 0$ by the purity of S. Thus M = K, a contradiction.

Corollary 1. If S is a pure hyponormal operator and $[s^*,s]^{1/2}$ S = $s^*[s^*,s]^{1/2}$ then S is a self-dual subnormal operator.

Proof: Take $A = [s*,s]^{1/2}$.

<u>Corollary 2</u>. If S is a pure isometry, S is a self-dual subnormal operator.

<u>Proof</u>: S*S = 1 implies [S*,S] = 1 - SS* is a projection, whence $[S*,S]^{1/2} = 1 - SS*$. Thus $[S*,S]^{1/2}S = (1 - SS*)S = 0 = S*(1 - SS*) = S*[S*,S]^{1/2}$. The result now follows by applying Corollary 1.

<u>Corollary 3</u>. A pure quasinormal operator S is a self-dual subnormal operator.

Proof: S has a commuting polar decomposition S = U|S| = |S|U, and as S is pure U is an isometry. Now $U^*|S| = |S|U^*$ also, so $S^*S - SS^* = U^*|S|U|S| - U|S|U^*|S| = |S|^2(U^*U - UU^*) = |S|^2(1 - UU^*)$. Hence $[S^*,S]^{1/2} = |S|(1 - UU^*)$.

We conclude $[S^*,S]^{1/2} S = |S|(S - UU^*S) = |S|(S - U|S|) = |S|(S - S) = 0$, and so also $S^*[S^*,S]^{1/2} = 0$.

Remarks. One could generalize Corollary 2 by stating that if S is a pure operator, $[S^*,S]$ is a projection, and $[S^*,S]S = S^*[S^*,S]$, then S is a self-dual subnormal operator.

The results in Corollaries 2 & 3 are not new, see [1] for example.

The condition given in Corollary 1 is not a necessary condition on an arbitrary pure operator that S be a self-dual subnormal. In [1] it is shown that the unilateral weighted shift

S with weights (1/4, 1,1,1,...) is a self-dual subnormal operator. But S does not satisfy the condition $[S^*,S]^{1/2}$ S = $S^*[S^*,S]^{1/2}$. This is because $S^*S - SS^*$ is the diagonal operator with diagonal sequence (1/4,3/4,0,0,...), and hence $[S^*,S]^{1/2}$ is diagonal with sequence (1/2, $\frac{\sqrt{3}}{2}$,0,0,...). Thus $[S^*,S]^{1/2}S = [S^*,S]^{1/2} = [S^*$

We conclude with a new characterization of the pure hyponormal operators which are self-dual subnormal operators.

Theorem 2. Let S be a pure hyponormal operator on the Hilbert space H. Then S is a self-dual subnormal operator if and only if there is a unitary operator U on H such that

$$U[S^*,S]^{1/2} S = S^*[S^*,S]^{1/2} U$$

and $U[S^*,S]^{1/2} = [S^*,S]^{1/2} U$.

<u>Proof</u>: Suppose firstly that S is a self-dual subnormal. Then by Theorem 1 there is a normal operator A on H such that $AS = S^*A$ and $[S^*,S] = AA^*$. Now we can polar decompose $A = U \mid A \mid A \mid U$ where U is a unitary.

Hence AA* = $|A|^2 = [S^*,S]$ implies $|A| = [S^*,S]^{1/2}$. Also AS = S*A implies $U[S^*,S]^{1/2}$ S = S* $[S^*,S]^{1/2}$ U.

Conversely if we suppose that a unitary operator U exists for which $U[S^*,S]^{1/2} S = S^*[S^*,S]^{1/2} U$ and $U[S^*,S]^{1/2} = [S^*,S]^{1/2} U$, we simply put $A = U[S^*,S]^{1/2}$ and find that $[S^*,S] = AA^*$, $AS = S^*A$, and A is normal. Thus by Theorem 1, S is a self-dual subnormal operator.

References

- [1] CONWAY J.B.: The dual of a subnormal operator. To appear, J. Operator Theory.
- [2] HALMOS P.R.: A Hilbert space problem book, D. Van Nostrand Co., Princeton (1967).

Dalhousie University, Halifax, N.S., Canada B3H 4H8

(Oblatum 17.2. 1982)

