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FIXED POINTS FOR GENERALIZED NONEXPANSIVE MAPPINGS
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Abstrgct: The aim of the present paper is to prove the
existence of fixed points for generalized nonexpansive mapp-
ings in convex metric spaces. Such spaces, introduced by Taka-
hashi, included Banach spaces and results of this paper gene-
ralize those of Dotson, Rhoades and others.
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Introduction. In 1970 Takahashi [13] introduced a notion
of convexity in metric spaces (see Definition l.1) and extend-
ed some fixed point theorems to convex metric spaces. Subse-
quently Itoh [5], Machado [7), Tallman [12], Naimpally and
Singh [8], Naimpally, Singh and Whitfield [9) studied convex
metric spaces and fixed point theorems. This paper is a conti-
nuation of these investigations.

In section 1 a fixed point theorem is proved for genera-
lized nonexpansive mappings. Section 2 deals with the exist-
ence of fixed points in nonconvex domains.

Throughout this paper X and I denote, respectively, a
metric space X, with a metric d, and the unit intervsl L[O,1].

The following definition was introduced by Takahashi [ 13).

1) Research supported in part by a grant from NSERC (Canada).
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Definition 1.l. Let X be a metric space. A mapping W:
:X><X=xI—> X is gsaid to be a copvex structure if, for each
x,ye X and A € I, the following condition is satisfied:

di{u,W(x,y, A)) = Ad(u,x) + (1-A)d(u,y)

for all ueX. A metric space with a convex structure will be
called a convex metric spgce.

If X is a Banach space, then, as a metric space with
d(x,y) =lx=-yll , the mapping W:Xx XxI—> X defined by
wix,y, A) = Ax + (1-A)y is a convex structure. Thus a Banach
space, or any convex subset of a Banach space, is a convex me-
tric space. There are many convex metric spaces which cannot

be imbedded in any Banach space [13, Examples 1.1l and 1.2].

Definition l.2. Let X be a convex metric space. Let K
be a nonempty subset of X. K is called convex if W(x,y, A) be-
longs to K for all x,ye K and 2Ae I.

nit « A metric space X is said to be gtgr-sha-
ped if there exists an x, € X and a mapping W:Xx{x°§>< I—X
such that, for each x,yeX and A€ I,

d(x,w(y,xo, A)) £ Ad(x,y) + (1= A)dlx,x,).
Star-shaped metric spaces are generalizations of star-sha-
ped subsets of Banach spaces, where a subset K of a Banach spa-
ce is star-shaped if there exists an X, € K such that for each

xeK, Ae I, Ax + (l-ﬂ.)xoe K. It is obvious that convex me-

tric spaces are star-shaped metric spaces, but not conversely.

definiti l.4. A star-shaped metric space X is said to
satisfy copdition (I) if for any x,yeX, e I,

d(w(x,xo, A), Wly,xg, A)) £ Ad(x,y).
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The condition (I) is always satisfied in any normed line-
ar space. Indeed, let W(x,x, A) = Ax + (1~ A)x, and
W(y,xo,ﬂ.) = Ay + (1-A)x . Then d(w(x,xo,J\.), Wiy,xg, A)) =
= llw(x,xo, A) - W(y,xo,.ﬁ.)ll =Ax =Ayll = Allx - yl =-7Ld(x,y)h.

Definition 1.5. A mapping T:X—> X is said to be nopex-
pansive if d(Tx,Ty)< d(x,y) for all x,yeX. T is called gene-
ralized nonexpansive if for all x,ye X, d(Tx,Ty)< max {d(x,y),
d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)}. T is called a gussi-con-
traction if there exists a constant k, 0£ k<1, such that for
all x,ye X, d(Tx,Ty) £ k max {d(x,y), d(x,Tx), d(y,Ty), d(x,Ty),
d(y,Tx)%.

A generalized nonexpansive mapping may or may not be con-
tinuous. Indeed, let X =[0,5] with the usual metric. Define
T:X —>X by T(x) = x/2, O4x<4 and T(x) = -2x + 10, 4£x £5.
Then T is a continuous generalized nonexpansive mapping, which
is not nonexpansive (take x = 4, y = 5). On the other hand, if
X =[0,1], and T(x) = 0, 0£x £1/2, T(x) = 1/2, 1/2<x£1, then
T is a discontinuous generalized nonexpansive mapping.

The following is proved in [10, Theorem 2].

Theorem R. Let X be a complete reflexive Banach space, K
a closed, bounded, convex subset of C, T a selfmap of K satis-
fying

ITx-Tyll 2 alx,y) lx-yll + b(x,y) lx-Tx |l +

bly,x) Ny-Tyll + c(x,y) Nx-Tyl + c(y,x) ly-Tx Il ,
where a, b, ¢ are nonnegative real valued mappings from Kx K
satisfying (a+b+ec)(x,y) + (b+c)(y,x)£1 for all x,yeK. If in
addition, sup (b(x,y) + c(y,x))< 1.

x, 6K
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Then T has a fixed point in K,
In Theorem R, the mapping T is not necessarily continuous.
A theorem similar to Theorem R, for discontinuous genera-
lized nonexpansive mappings is not possible even in uniformly
convex Banach spaces, as can be seen from the following exam-

ple.

Exapple 1.1. Let X =R and K = [0,1)c R, Define T:K —»
—>K by T(x) = 3/4, 0£x41/2, ™(x) = 1/2, 1/2<x£1. Clear-
ly T is a generalized nonexpansive mapping without a fixed
point.

However, for continuous generalized nonexpansive mappings

the following can be proved.

Theorem l.1. Let X be a compact star-shaped metric spa-
ce satisfying condition (I). Let T:X—> X be a continuous ge-
neralized nonexpansive mapping. Then T has a fixed point.

Proof. Let xocx. For O<k<1, define the mapping Tk as
follows: Tk(x) = I(Tx,xo,k). Since X is star-shaped, it fol-
lows that T, maps X into itself. Using condition (1), T, 1s a
quasi-contraction. Indeed, d(Tk(x),Tk(y)) = d('(!.‘x,xo,k),
'(Ty,xo,k))é‘ kd(Tx,Ty) < k max {d(x,y) ,d(x,Tx),da(y,Ty),d(x,Ty),
d(y,Tx)} for all x,yeX. It follows from [2, Theorem 1) that

there exists an x e X such that Tk(xk) = x). Moreover,
a(T(x,),x,) = a(Tx,), T (x)) = a(T(x,), I(Txk,xo,x))

4 KA(T(x), Mx)) + (1-K)d(Nx) ,x ),

which approaches zero as k— 1, since X is bounded. Hence

lim, d(l‘(xk),xk) = 0. Since X is compact, ix,} has s conver-
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gent subsequence {xk§ converging to some point xe& X. Thus

1im, d(xki,T(xkil = 0. By the continuity of T, it follows that
T(xki)—>1‘(x). From the triangular inequality, d(x,Tx) <

£ d(x,xki) + d(xki,T(xki) + d(T(xki),T(x)). Taking the limit as
i1i—> 00 ylelds x = Tx.

An immediate consequence of Theorem 1.1 is the following.

Corollary 1.,1. [3, Theorem 1.] Let X be a Banach space and
K be a nonempty compact star-shaped subset of X. Let T:K—> K
be a nonexpansive mapping. Then T has a fixed point in K.

Deripition 2,1. A mapping T of X into itself is said to be
locally coptractive if for each xe€X there exist ¢ and A (e >
>0, 022 < 1), which may depend on x, such that p,qeS(x,e )=
= {y:d(x,y)< €3 implies d(T(p),T(q)) 4 Ad(p,q). T is called

(e-2)-uniformly locally contractive if it is locally contrac-
tive and both ¢ and A are independent of x.

Derinition 2,2. A mapping T of X into itself is called a
Banach operator if there exists a constant k, 04 k<1, such that
for all x& X, d('l’z(x),T(x))ékd(Tx,x).

A Banach operator may not be contimnuous, and may have more
than one fixed point. The following lemma, whose easy proof is
omitted, will be needed.

Lemma 2.1. Let X be a complete metric space, T:X—> X a
continuous Banach operator. Then T has a fixed point.

Dafinition 2.3. Let X be a convex metric space. X satis-
fies condition (II) if for all x,y,z€X and A 6 I,

diw(x,z,2), Wy,z,A)) £ 2ad(x,y).
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Condition (II) is always satisfied in any normed linear
space.

Theorem 2.1. Let X be a convex metric space satisfying
condition (II). Let K be a compact subset of X. Let T:K —> K

be a continuous mapping. Suppose,
(1) there exists qe K and a fixed sequence of positive
reals k,(k <1) converging to 1, such that w(Tx,q,k ) e K for

all x€K; further for each xe K and k., d(T(w(Tx,q,kn)),T(x) )<
£ d(w(Tx,q,kn,x),

or

(11) KX is star-shaped and d(Tx,Ty) £ d(x,y) whenever
d(x,y)< e (x,yeK) for € > O. Then T has a fixed point.

Proof. Define the map Tn by
Th(x) = w(Tx,q,k;).

Then each Tn is a continuous Banach operator. Indeed, using
condition (1) and (II),

AT2(x), To(x)) = alr, (WiTx,q,k ), W(Tx,q,k )

= d(W(T(W(Tx,q,kn)),q,kn)), W(Tx,q,kn))

IN

knd(T(w(Tx,q,kn),Tx)

< knd(W(Tx,q,kn),x)
kd(T (x),x).

By hypothesis it follows that each Tn maps K into itselr.
It follows from Lemma 2.1 that there exists a Yp€ K such that
Tn(yn) = ¥Yne

d(T(yn),yn) = d(T(y), W(Ty,,wk)) <
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< kd(r(y ), T(yn)) + (1-k )a(T(y,),q)

which spproaches zero as k —» 1. Hence limnd(yn,’r(yn)) = 0.
Since X is compact, iyn} has a convergent subsequence {yni}
converging to some point yeX and, from the above,

d(yni,'l‘(yni)——> 0. By the continuity of T it follows that

T(yni)—-> T(y). Finally,
d(y,Ty)éd(y,yni) + dy, ,T(yni) + d(T(yni),T(y)).
i

Taking the limit as 1 —» 00 yields y = T(y).

If (ii) holds, then each map T, defined by Tn(x) =
= W(Tx,q,k;) is ( €,k )-uniformly locally contractive. Moreo-
ver, K being compact and star-shaped is complete and ¢ -chain-
able. It follows from [4, Theorem 5.2] that each T has a fix-
ed point y . The rest of the proof is the same as in (1).

Remgrk 2.l1. If X is a Banach space and K is a star-shap-
ed subset of X (in particular if K is convex) then, for a non-
expansive self mapping T of K, (l-kn)q + knT(x)e K, for each
xeK and eny sequence ik } converging to 1(kn< 1), where q is
the star center of K. Moreover, from the nonexpansiveness of
T it follows that NT((1-k )q + k T(x)) - T(x) Il £ Nl (1-k )q +

+knTx-xl\.

Repark 2.2. If K is star-shaped, then Theorem 1 of [3]
follows from Theorem 2.1. Hypothesis (i) above weakens the

star-shaped assumption, as can be seen from the following ex-~

ample.

Example 2.1. Let K be the set {(0,y):yel-1,11% v
U {(1- £,0):neN§ v (1,003 with the metric induced by the
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norm ll(x,y)ll = Ix| + |yl . Define the map T:K —> K as fol-
lows: T(0,y) = (0,-y), T(1- ,0) = (0,1~ &), T(1,0) = (o,1).
Then T satisfies condition (i) of Theorem 2.1 with the choice
q=1(0,0), k,=1-2% n=1,2,..., slthough K is not star-
shaped.

Remark 2.3. Let X be a reflexive Banach space and K be
a nonempty weakly compact convex subset of X having normal
structure. It is clear from Example l.l1 that a discontinuous
generalized nonexpansive selfmap of K may not have a fixed
point. Also, if X is a Banach space and K is a nonempty weak-
ly compact convex subset of X, then a continuous generalized
nonexpansive map need not have a fixed point (see, e.g., [1]
and [11)). It is known (6, Exercises 1.12, 1.13, 1.14) that a
continuous generalized nonexpansive selfmap of a closed, boun-

ded, convex subset of certain Banach spaces is fixed point free.

Problem. Must a continuous generalized nonexpansive map-
ping of a weakly compact convex subset of a reflexive Banach

space with normal structure have a fixed point?
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