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Abstrget: In this paper we are looking for periodic so-
lutions of the equations - ¥ = VU(x,t). We suppose that the
problem is asymptoticslly lineer and that C belongs to the
spectrum of linearized operator at infinity. We obtain multi-
plicity results. The proof of the theorem is based on g recent
abstract theorem, that has been proved for a functionel that
satisfies a weaker condition than Palais-Smale condition.
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0. Introduction. The aim of this paper is to look i'or
solutions x(t) e CZ(R,Rn) of the equations
¢ =% = VU(x,t)
(0.1) x(o) = x(T}

L x(o) = x(T)

where T>o0 is a given period, U{x,t) € Cz(Rn><R,R), U(x,t)
= Ulx,t+T) VxeR™ VteR.

The problem (0.l) has been studied by many authors under
different assumptions on the function U. We refer to Benci [2]

and Thews 15) for a rather complete bibliography. If the pro-
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blem is subquadratic (cf. [2]) multiplicity results for problem
(0.1) have been obtained in the non resonant case (i.e. if O
does not belong to the spectrum of linearized operator at infi-
nity). It is well known that the solutions of (0.1) are the
critical points of the functional of the action in a suitable
function space. In the non resonant case this functional satis-
fies the well known Palais-Smale condition. The interest of the
resonant case lies in the fact that the Palais-Smale condition
is not always satisfied. Recently some techniques have been de-
veloped for studying non linear problems, having a variational
atrucfure, with a "strong resonance” at infinity (cf. [1]).
Our purpose is to use these techniques for solving the problem
(0.1).

We denote by U, (x,t) the Hessian matrix of U(x,t) with

respect to the space variables and we assume that there exists
lim U _ (x,t) = M(t) as \x| — © ¥t elo,T]

where M(t) is an [nxn] symmetric matrix with elements continu-
ous in [o,Tl.
If we set
VU(x,t) = M(t)x - VV(x,t),
the problem (0.1) becomes
=% = M(t)x- UV(x,t)
(0.2) x(0) = x(T)
x(o0) = %(T).
We denote by £ the self-adjoint realization in Lz((o,T),Rn)

of the operator x —» =¥ = M(t)x with periodic conditions. We as-

sume that
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(1;) VVv(o,t) =0 VteR, o0eb(L)

(1,) V(x,t) —> 0 as |x|—> co uniformly in teR

(yv(x,t),x) —> 0 as |x| —> co uniformly in teR.

We observe that if (I,),(I,) hold, the problem (0.2) has '
& "strong resonance” at infinity.

We denote by (.L(t) the smallest eigenvalue of Vn(o,t)/
and we also assume that

(I3) @ =[;’1'1_‘§'J «(t)> o,

(I,) there exists A, e6(¥f) A,<o0 s.t. 4+ > o,

(15) V(x,t) = V(-x,t) V=xeR", VteR,

We consider the operator x — =% - V U(x,t) linearized at
infinity and at origin and we set
Lox = =% = M(t)x
Lix = =% - M(t)x + V_, (o,t)x.
We denote by m,, (resp. mo) the maximal dimension of sub-
spaces where L, (resp. Lo) is negative semidefinite.

The following theorem holds:

Theorem Q.1l. - If (Il),(Iz),(I3),(I‘),(15) hold, then
the problem (0.2) possesses at least m distinect pairs of non-
trivial solutions with

m=mm-—m°.

The proof of Theorem (0.1) is based on the abstract theo-
rem (2.4) in [1],

1. Notations and preliminaries. We set L% = L2((o,T),R™),

u = Hl((o,T),Rn) and denote by
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(+,*), (.’.)LZ, (.,.)Hl

respectively the scalar product on Rn, L2, Hl.
We set H = fueh |ulo) = u(T)} equipped with the scalar
product

(u,v)y = (u,v)Hl.

If X is a real Banach space, we denote by X  its dual and
by (<,+) the pairing between X and X. In the sequel we shal..
use the unique symbol ll*ll for the norms in X and X°. If R>o
we set Bp ={ueX| llull«R} and Sp ={ueX| llull =R},

Ir fecl(X,R), we denote by £ (u) the Fréchet derivative
of £ at ue X,

We recall the following definition [11,[3], which is a we-

aker version of the well-known Palais-Smale condition.

Definition l.1. - We shall say that £ CM(X,R) satisfies

the condition (I) in Jey, eyl (-w£c1< cy£+0), if

(1) every bounded sequence {ydc f.l(Jcl,czi), for
which -if(uk)§ is bounded and f‘(uk)—> 0, pos-
(1) sesses a convergent subsequence
(i1) Vv ce]cl,c2[ d6 R, x>0 s.t.lc-6,c+6lc
clep,c,l and Yuer 1([c-& yer61), llull =z R:
e’ lHullz < -

We shall need the following abstract theorem for a real

functional f on a real Hilbert space M ([11, th. 2.4).

Theorem 1.1. - Suppose that fe CL(N,R) satiseies the fol-
lowing properties:
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£;) f satisfies condition (I) in Jo,+ ol ;
fz‘) there exist two closed subspaces M’, M~ of M, with codim M’<
<+00 , and two constant cm>c°>f(o) such that
+
a) f(u)7co VueSpn M
b) flu)< Cp VueM

f3) £ is even.

Then, if dim M Z codim M’, f possecies at least m = dim M -
-codim M* distinct pairs of critical points whose corresponding

critical values belong to [cg,c ],

2. = Proof of the Theorem. Standard arguments in the cal-
culus of variations show that the classical solutions of (0.2)

correspond to the critical points of the functional

(2.1) e(w =3 [Tla)12ae - [ uCedult) ,u(t))as +
+ [TV, tat

defined on H. Clearly fe CZ(H,R) ard VYueH

(2.2)  <e"(W,h) = fDT(ﬁ,ﬁ)dt - [T (e mat +

+ f:(vv(u,t),h)dt VheH

T T
(2.3) £"(WIh,s] = f (5,8)at - [, (M(t)n,s)dt +
+ f: (Vg (u,t)h,8)dt VY h,seH.

We denote by B(t) the largest eigenvalue of M(t) and by
I, the identity matrix in R", and we set

p= [31\1% pt) M(t) =mMt) + I.

Let alu,v):Hx H—> R be the bilinear form defined by
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T T
ala,v) = [1[(&,9)e(u,)at - [ O (t)u,v0)at +
s pJ7 (uvat.

It 1s easy to verify that a is continuous and coercive
(i.e. alu,u) > const Il u||§) on H. Then by the Lax-Milgram theo-
rem there exists a unique bounded linear operator S:H—> H with

a bounded linear inverse S-l such that

(Su,v)y = alu,v) Vu,ve H,
We set
D(YS) =fueH |Suel?;}

and

=S99

¥ 1s a linear continuous self-adjoint operator with com-
pact resolvent. Then 6(¥ ) consists of a positively divergent
sequence of isolated eigenvalues with finite multiplicities. We
denote by 8,< °1""”<SJ<"" the eigenvalues of & and by
Apg< Aqeeenee <?LJ<..... the eigenvalues of &£ .

Obviously £ = - (1, where 1:1°—» I? i the identity
map, Ay =8y = V,and by (I,) it follows that there exists
k such that =8, ¢ 6(S).

We denote by M;j the sequence of eigenspaces corresponding
to the eigenvalues ﬂo, ﬂ-l,..., aj,.... If mZzo is an integer
number we set

H (m) =—;29mMJ
H*(m) = closure in H of the linear space spanned

by ﬂ[dl jzm

Clesrly B (m)n B (m) = M and H = H (mn) ® H"(m+1). For
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every ueH, we gset
.’. -
u=u +u + U,
where u'e H*(k+1), u™e H (k-1), u e M.
Lempa 2,1. - There exist My T,» >0 such that

W (suuh , - pll u+l\i2 zn a2 Vuen
(11) (Su,u")L2 - (Sllu-llizz—’r |lu-"12{ YueH

(i11) pll u-"i2 - (Su,u-)Lzz » |l u-ﬂi YueH
2
Proof. (1) (Su,u+)L2 -l u"'l\L2 = (Su"',u"')l,2 -
[-2) 0 8.~f3
+12  _ 2 _ 2
- N2, = Fr (sym ) Wagl®y =, s -gJ_ sjlluyl, 2
= Q(Su*,u")LZZ nllu"’“ﬁ

(1) (suu) 5 - {Ellu-niz = (suyu) , - (suu‘lli2 =

S A -1
2 2 -
= ’}éo(sd_(b) “u‘.j“L2 Z (s - @) ,}go Il quiLz == xllu “iz =

-7 ||u-ll}2{

(111) @l u‘Ili2 - (Su,u-)L2 = {&“u‘”iz - (Su',u-)L2 =
Se-1 Jo-1 (5-5

= 2 _ 2 = 5

= ol Bosy) llugl?, = =) TJ-i o5 loylllp Z »isuu) 5 »

zylu |l g.

Lemma 2,2. - If (Il)’(IZ) hold, t4we rfunctional f£(u) de-
fined by (2.1) satisfies the condition (I).
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Proof. The proof is substantially analogous to the proof
of Theorem (3.1) in [1]. It is only necessary to use the Lemma

2.1 and an obvious generalization of Lemma 3.2 in I1l.

Legma 2.3. = Suppose that (Il)’(IJ)’(I4) hold, then the-

re exist @ > o and 7 > o such that
swztlo) + ¥ VYueH(hnSE.
Proof. We have YueH
(2.4) £(w) = £(o) +<£°(0),ud + £%(0} [u,ul + o(Mulf).
By (2.2) and ty (I;) we have YueH
(2.5) (£ (0),u) = 0.

By (2.3), (13),(1‘)' we have YueB'(h)

£(0) Tuyul & (smw) , = Blul’y [}V to,00u,wat=

2 T
=.(su§'“’)1‘2’- {3“\1’“1‘2 + fo (V‘n(o,t)u,u)dtz

+

I uJ|Ii2 - (p-@ lu

0
z. s 12

< 2
= —',gh(’d-ﬁ"“’) ““JHLZ'
There exist t>h and J > o such that
sJ-{3+(.o>JeJ Vy>t,
then

=2 2 s  syfee 2
JZnlegm pred) lugl, =~;§~(JT-) oy llugl7y +

= 2 : 2
+i=%*4 (ay-p+ “) “ud\\LZZcomt —}?'had “qule *

< 2 2 2
+ %’2:_*1 day “uJ“LF z const ig'h'.‘l i\uJ\le.
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Then we have

(2.6) £"(o) [u,ul z const llu"lliz.

Finally, by (2.4),(2.5),(2.6) we have

£(u)z £(0) + ¢ with > o.

Lemps 2.4. - There exists o> o such that

#(u) <0 VueH (X).

Proof. Let

A= V(u,t
22 Timds

then VYueH (k)
- - - T
#(w) = (sa,u) 5 = llu uiz + [, Viu,)atr &
K
2
£.Zo (8 p) lugly + ATLAL

Finally we can prove the Theorem (0.1).

Proof of Theorem O.l. By Lemma 2.2, Lemma 2.3, Lemma 2.4
and by (IS) we have that the functional £, defined by (2.1),
satisties (£,),(£5),(£3) of the Theorem (1.1). Hence, the pro-
blem (0.2) possesses at least
m = dim (%O ecse OIk)
distinct pairs of nontrivial solutions.

Obviously

n = Im- .0'

3. - A particulas case. We denote by M the self-adjoint
realization in Lz of the operator x — -X with periodicity con-
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ditions, and we consider the particular case

M(t) = oy I, oy = (BRT)2) k= 0,1,......
oLy € 6(M) and the problem (0.2) becomes

“X-oux + VV(x,t) = o
(3.1) x(o) = x(T)
x(0) = x(T)

If we assume that

(I4)' there exist o) £ ot s.t. Ly~ Xy + >0

we have that, if (11),(12),(13),(14)',(15) hold, then the pro-

blem (3.1) possesses at least
m = dim H (k) - codim H"(h)

distinct pairs of nontrivial solutions.

If we assume %) = 0, we obtain the case studied by Thews

[5].
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