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GENERIC PROPERTIES OF VON KARMAN EQUATIONS
Pavol QUITTNER

Abstract: The operator équation f(w)= p connected with
general boundary value problem for von Kérmén equations is
studied. It is proved that the singular sets B= {w; £(w) is
not surjective} end f(B) are nowhere dense and that for
every pé¢ f(B) the number of elements of fr?p) is finite
and odd. Also a generic result for the global structure of
the solution set of equation f(A,w)= p /where A is a bi-

furcation pesremeter/ is shown.

Key words: Fredholm map of index p, coercive, analytic,

proper, compact.

Classification: 35J65

1. NOTATION AND PRELIMINARIES

We restrict ourselves to consider the domain with infi-
nitely smooth boundary /see Definition 1/, but the main
results are aveilable under some assumptions also for en
anguler domain whose boundery is piecewise of C3 /see [1)/.

We shall use the notation end sssumptions from [4) so
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‘1at we just recall them.
Denote the partial derivatives by L wy, the outward

srmel derivative by WnS Wen o+ wyny' the tangential deri-

ative by Wy = —wxny+ wynx.

Denote further

Aw

Woso * waxyy + wyyyy "

[u,v] = L ooy = 2uxyvxy .

The boundary operators M,T are defined by

MW = YAw + (1-v)(wxxn; +2w_ n.on_ +w

2
xy"xy * Wyyny)

(@w)  + (1-v)( aexlylly = Wy (0} ny) Wy Dy Yo

Tw
where the Poisson constant ve(o,%) .

For u,v,pe W**(Q) we define
(u,v)vfg,_ = _}{‘(uxxvxx* 2uxyvxy+ uyyvyy) dxdy ,
1
” 2
hally = ((w,u)y22)? ,
(ur")v = (U,V)WZZ * Vf[u,v]dxdy ’
° o

) dxdy .

B(viu,f) = .b.[ ("xyux?y+"xyuyvx"’xx“y“°y°vyyu

If tpewé"m_)' we obtain B(v;u,¥) = B(v;f,u) = B(¥;u,v) .

Definition 1. Let .Qc E2 be a simply connected bounded

domain. Let there exist a one-to-one mapping 6 of <0,R)
onto 20 defined by 6 : t+> (w1(t),‘0 (t))

with the properties

w; € C(Ko,R)), i=1,2,

wl0) = 1im witty, i=1,2, x=0,1,2,...,
t->R-
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(-loé(t), w;(t)), t €<0,R) is the unit vector of the
inner normsl toc 2.

Then we say that L1 is of the class C%,

Definition 2. Let d >0. Let the mepping
(x,y): <0,R)%xK0,d> —> E,
be defined by x: (1,8) > W, (t)- s wWJ(t)

¥ (t,s)l——)uz(t)+ s(«){(t) .
Denote by s the imege of <O,R)*(0,d) in this mepping.

Throughout the paper let

' Nec®, oan=nRuhofy , r; = e(;;-i) , 1=1,2,3
where 6 is the mepping from Definition 1 &nd iy 1=1,2,3
are pairwise disjoint measursble subsets of <0,R).

By [4] there exists Jd,> 0 such that the mepping (x,y)
from Definition 2 is & one-to-one mepping of <0,R)x(0,d'o>
onto Ed;' We shall suppose that

sxx(sy)2 + syy(sx)z - zsxysxsy =0 on 3.

Let us denote by V the closure of the set

v ={uec™aq); u=u =0 on R, u=0 onf }
in the norm of W¥%*(Q),

The functions k,m,r,¢,P specifying the boundery problem are
supposed to fulfil /with arbitrary reel numbers p>1, gq>2/:

kzeLp(q) : k, 20 on 0,

k:“eLp(r'g) s kqyq®2 0 on M3,

kp€ L, ([3) ;  ky=>0 on I3,

m, € Lp(l“z) , my€ Lp((‘s) y TR€ L,(r's’) , Pe me.) ,

=4 -4
cboe w3 i'q(a_n_) , b, e w? ‘l'q‘(aa) ,
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b= ¢°= 0 on I3.
Then there exists a function FeCz( 1) which satisfies the
conditionms
F=0¢, , B = ¢1 on 20
/see [6]/.

Let us introduce the followimg bilinear forms:

awe) = [ k,w ¢, dS + f (kyyw + koW p )asS ’
A r

3
(0, @) = (w, ), + a(w,®) .

We shall suppose
(1.1 wev , ((w,w) =0 - w=0 .

Then |iwll = ((w,w))t is an equivalent norm to || llg22 inV
/see [3]/.

Refimition 3. The eouple (w,d) € vxw22(q) is ssid to be
a variational solution of the problem if

(1:2)  (w.9) = Blwoe) + [Ppaxay + [(ro+ myg)as + [, as
a o B
holds for each eV,
(1.3) (¢,1r)':|1 = - B(ww,Y) holds for each Ye W:‘z(ﬂ),

(1.4) ¢=0¢,, o- ¢, on 9L in the sense of traces.

The sufficiently smooth variational solution defined above

is the classical solution of the system of equations

2
Aw = [V’¢] + P
N on {0
AP = -[w,w]
setisfying the boundary eonditions
w=w =0 on [},

w=0, Mw+kw =m onl,
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Mw + k,w =m, , Tw+ (wx¢y1:' 'yd)xr)"' kW = Ty on [3,

o=0, , ¢n=¢)4 on 9L,

2. REFORMULATION OF THE PROBLEM

Let wewz‘z(_ﬂ.) . Using the HbBlder inequality and the
continuous imbedding W2X)ec W' (Q) we obtain thet
B,: Y~ B(w;jw,¥) is & continuous lineer functiomel on w¥0)

so that by the Riesz theorem

(3 RWEWZHQ)) (Y ¥ eWer(@))  (R(W),Y)gaz = Blwgw,Y) .
o
Similarly

(3t Fewd®an vewe ) (F,¥)ya = (F,¥y2

(3t cW eV )Y pe V) ((C W),

B(wjR(w),¥) ,

(3 LW eVXV e V) ((LW),e) = B(wsF-F,¢)

(3t peV)V¥ ¥e V) (0,90 = [Praxdy + [(ne+msp)as + [ m € as.
2 i P}
Now we cen reformulate the conditions (1.3) end (1.4) as

(2.1) b=-RW+F-F .
Substituting from (2.1) into (1.2) we obtain the equation

(2.2) f(w) =p
where

f: V— V: W £(W) = w + C(W) = L(w) .

The equation (2.2) is obviously equivelent to our problem.
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3. PROPERTIES OF OPERATOR f

Lemma 1. The operators C,L: V=V are compact.

Proof. Let {w'}<V be bounded. We shall prove that
{C(wM} and {L(w™} are relatively compact in V.

We may sssume w"'—w in v, we—w, and w; —w, in W'%a)
/since (w:}, {w;} ere bounded in W'¥Q2)/, Using the compact
imbeddings W*%Q)c w"zm.) and W) cLXQ) one can eesily prove
Wy Wyy Wp= Wo. By the compact imbedding W2A2)cW'%(a) end
by the compactness of the operator T:W X - L(o) ;ur— Y%a

we have w"— w in Wb, w:l/an.—’ w,%n s w;“/an—, w_,/an in LX2s).

Thus IRCW™) = R(w)I| | = su IRW™) = RW) ;W) onl =
e Ye wg"(.a.g 121 & P IWE
= sup |B(w™;wh,v)- B(w;w,Y)| = sup |Bly;w",w")- B(Yw,w)| =

1N

2 ng o
sup [(21¥, |wwl-w_w |+ |¥ IO w2 [+ Y| (D)~ |)dxday =0
al o Ty Myl e g Y =w [+ 1Yo Ky )~ ’

since e.g. n
Y. wiwow_w dxd =
r,fl xy” Xy x yl 4

1}

n n <
Tl IR IR g+ lwy-wyl) axdy =

LN

WY O™l 007wl g+ Il WPl g )

Similerly llc(w™) - C(w)ll = sup j((C(w™) =~ Clw),¢))| =
eV, i <1

= sup IB(w"sR(W"),¥)- B(w;R(W),¥)| — 0 .

Finelly,  |ILGwW") = L(w)ll = sup [B(w"-w;F-F,¥)| =
YeV, N§N<€1

£ sup IB(w"-w;i",?")l + sup IB(wn-w;F,‘r)l .
Cleerly, sup IB(wn-w;ﬁ,?)l = sup IB(F;¢,w"~w)] — 0 .

sing the integration by parts we 8et  sup lB(wn-WgF,V)l — 0.
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’

Lemma 2., There exists a constant K such that for each

weV the following estimate holds

«ctwm ,w) = 1L, wHl = - Spwi® -k .

Proof. There exists a function feC%(fL) with the '

=1
! }on an

|B(w;§F,w)| = %Mz for each weaV
/see (4], Lemma 5/.

properties:

Using the Riesz theorem we get
(3 {Fews™aN ve W)  (fF,¥)yaa = (EF, Vs .
Since F-F = §F- §F y We have

(Cw) W) = [(L(W) ,w)| = B(wsR(wW) ,w) = |B(w;§F-£F,w)l =
B(wyw,R(w)) - |[B(w;§F,w)| - [B(wsw(F)l =

|14

v

l ~
IRl = Fiwll* = AR I IEFI, =

1 2 P 1,2 2
- S+ NRGON (IR - 1§71 2 - Jiwi® - 5602 .
Corollary. The operator f is coercive.

Definition 4. Let X,Y be Basnach spaces, A: X—= Y a conti-
nuous lineer mapping, f: X—Y & /nonlinear/ c! mep.

The mapping A is said to be a Fredholm mepping of index p
if Im A is eclosed, dim Ker A<oco, codim Im A<oo @and
p= dim Ker A - codim Im A.

The map f is seid to be a Fredholm map of index p if £x)
is & linear Fredholm mepping of index p for each xe€ X,

The mep £ is said to be proper if f (K) is co;npact

whenever Kc Y is compact.
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Lemma 3. The operator f is a Fredholm map of index zero.

Proof. Let weV. Since L,C are compact enalytic operators,
their derivatives L'(\v), ctw) heve to be compact mappings.
Thus f£w)= Id-Lw) +C(w) is the compact perturbation of the

identity end hence it is a linear Fredholm mapping of index 0.

Lemma 4. The operator f is proper.
Lemma 4 P

Proof. Let KcY be compact, let us choose a sequence
{w"} < £'(K). Since f is coercive, {w"} is bounded. According
to Lemma 1 we may assume C(w')—>p', L(w")—>p*. Further
{£(vM} <K so that we may assume f(w")—» pe K. Thus
wh = £(w") -C(W) +L(wW")—> p - p'+ p? end hence fK) is rela-

tively compact. Since f is continuous, f.,(K) is closed.

4. MODIFIED SMALE’S THEOREM

Let X,Y be real Banach spaces, Us X open, M< U.
Let f: U—Y beac' map. We shall denote the restriction
of £ to M by f/M. Further denote
B(f/M)= {xe M; f'®) is not surjective} ,
o(t/M)= {ye Y; (Vxe Mnf y) f£ix)is surjective } = Y-£(B(f/M)),
B(f) = B(£/U), O(f) = O(£/U) .
Then U(f/M,) 2 U(f/Mz) for M;sM, &and ye O(f/M) for
each y¢ f£(M).

Theorem 1. Let X,Y be real Banach spaces, U1,U2;x open
subsets, U ¢ Uys Let f:U,-»Y be s ck /resp. reel analytic/
Fredholm mep of index p=0, p<k. Let £ YK) ve reletively

compect /in X/ whenever KcY is compact.
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Then the set @ = 0(f/U1) is a dense open subset of Y and for
every y, e the set f"(yo)n U, is = c¥ /resp. enalytic/
manifold of dimension p. If p=0 the set 1’.1(y0)nU1 is
finite /for y,eUO/.

Proof. We shall prove that the set O is dense and open
in Y¥; all remeining assertions follow from the implicit
function theorem. A

First we show that f is a closed mapping.

Let Z<U, be closed /in X/, 1let X €Z, f(xn)—b y-
Since {xn] is relatively compact, we may assume X —»X€ Z.
Then f(x)=y, ye€ £(Z). Consequently f(2Z) is closed.

Since B(f£/U,) is closed end f is a closed mapping, the set
@ 1is open.

Let us choose y€Y. Then K = f-’(y)nU‘ is compect.
Let xe€ K. By [2] /see the'proof of Theorem C.1.3./ there
exists a neighbourhood Ux of x such that the set O(f/Ux) is
dense. Let us choose ch Ux a closed neighbourhood of x.
Then the set O(f/wx) is open /since B(f/wx) is closed and f
is @ closed mapping/ end dense /since (/W )2 U(f/Ux) Lo

Further choose an open set Vx such that xevxc Wx. Since

Ke UV_ , there exists a finite set {x“...,x 1<K such that
xek X X
n n

KsUV, . Let us denote G =UV_ . Since (O(f
1'% “ =X ¢ /lei) ’

i=t,...,n is dense and open and VU (f/G)=2 if:\‘(ﬂ(f/WXi) .

the set @(f/G) is dense in Y.

One can eesily prove that there exists a neighbourhood U of y
such that Un £(U,-G) = #. Then TnU(£/G) SO end hence the

cset O is dense.
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Lemma 5. Let the assumptions of Thearem 1| be fulfilled.
Let Uy=U,=X, p=0. Then card £ y) /i.e. the number of
elements of the set f'“(y)/ is constent on every connected

component of O,

Proof. It is sufficient to prove that card £y s
& continuous function on @,
Choose y €0O; 1let f-‘(y°)= {x’,...,xN}. By the implicit
function theorem there exists an open neighbourhood Oi of x4
/i=1,...,N/ such that £/0; is a diffeomorphism. Thus
card £ (y) is a lower semicontinuous function and it remains
to show that it is also upper semicontinuous.

N
Let us suppose zn¢ O,

&0 » f(zn)—> Yo+ We may assume

2,~>2z. But then f(2)= Yos z ¢ 'L“)10i ; Which contradicts
i=

the construction of Oi'

5. THE STRUCTURE OF THE SOLUTION SET

Theorem 2, Let f:V—»V be the mapping defined in Section 2.

Then U= O(f) is a dense open subset of V and card £ Xp) is
finite, odd and locelly constant for pe@ .
Proof. ' According to Lemmas 3,4,5 and Theorem 1 it remains
to prove that card £'i{p) is odd /for pe@ /.
Let pg®© . For se €0,1) we define operators
f(‘: Vo V: W>w +[L(C-L)(W) .

7

By Lerma 2 there exists & constent K such that for every weV

end every (u.e <0, the following estimate holds

W), w)) > Jpwi®- s .
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Consequently, there existq,'}én open bounded set U in V such
that pelU, f‘(p)s-U and pé¢ fd‘(aU) for every .

By the homotopy invariance property of the Leray-Schauder

degree we have vy
deg(f,U,p)= deg(f,,U,p)= deg(fy,U,p)=1 .
N -
Since deg(f,U,p) =3§,i(wj) , Wwhere {w.‘,...,wN} = £ (p)

end i(wy)= 1 /3=1,...,N/, we get that N = cerd £ (p)

is an odd number.

Now let us consider /instead of (1.4)/ the following

boundary conditions

(5.1) b=2¢, , $.=2¢,
/A being & real number/.

The operstor f = £2

connected with the boundsry
conditions (|5.!) cen be written in the form = 1a+ ¢*- 1} .
where C2= C, ?=2aL and C,L are opersators connected with
the boundary conditions (1.4) .

Let us define the following operator

g: VXE,—>V: (w,Mo—»f*(w) = w+ C(w)-AL(w) .

Theorem 3.
(i) The set O= O(g/Vx{-M,M») is dense end open for any
Me E,. For every peUy the cet gl(p)n(Vx(-1,11) is
sn onslytic relatively compact menifold of dimension 1.
(ii) (‘j(g) is & residusl set. For esch peU(g) the sect glp) is
& 1-dimensionel antlytic menifold end there exicts &
discrete set D=D(p)cE, such that the equetion A= p
has only & finite nunber of ssiutions fox"any A& D.
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Proof.
(i) g is obviously a Fredholm map of index 1. By Lemma 2 we

have
((cHn) Wy - 1 W)l = - Liwai®- x,

Thus for IAl€ M we obtain
cw) ,w)) = IAlALw),wdl = (Cw),w) - M| ((Lew) ,w) =
G IR TS ORI TOT N

hence g/VX<-M,M) is coercive /i.e., 1lim -BG.X) _, o .
xX{ = co x| .
Xg Vx <-M,M)

where (.,.) is a scalar product in VxE, and le=(x,x)i /e

Now one can easily prove /analogously as in Lemms 4/ that

8/VX{-M,M) is proper. Using Theorem 1 with Uy= VX (M,M) ,

U= Vx(-M-€,M+€) , €>0 we get our assertion.

(ii) V(g)= ﬁ@n s hence (U(g) is a residuel set.

-3
gp)= L)i((VK(—n,n))ng“(p)), hence g Yp) ic 1-dimensional
n= ]

analytic manifold.

Let us consider the projection I: g"(p)—bE,:(vl,?\) — A,
M is an enelytic map, [1is proper. Using [9] for the meps
of the form [T°A /where A: E,— g™%p) is a locel
description of the manifold g¥p)/ we get that the set
D = E,- (9(1"1) is discrete. Our assertion now follows from

the implicit function theorem.

Remerk 1. The problem g(w,A)= p is often studied in the
bifurcetion theory. Theorem 3 shows that for generic p there

is no bifurcation /cf. [7)/.-

Remark 2. Let ue choose P,€V and define the operator

h: VXE X E —>V: (w,a,g)o—vg(w,;\)+(4po 5
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Anslogously as in Theorem 3 we get that ()(h) is e residusl
set, for each pe O(h) the set h'(p) is an enselytic menifold
of dimension 2 end H'(p)n(VxK) is compact if K< EXE, is
compact. Let us define the projection
M: n'p)— Ey: (W,A ) = G

Then the set E,-(O(lT) is discrete and for each € o)
the set g“(p+[1p°) is en enalytic menifold of dimension 1.

Let p¢ ¢(h). If there exists (&'e E, such that p?'l'poe o),
then we can repeat our considerations and we get again that

8—4(p+(up°) is an analytic menifold for generic [L .

6. THE SINGULAR SET B

Theorem 4. The set B = B(f) is nowhere dense.

Proof. Since (? is nonempty end f is surjective, there

exists wo¢ B. Choose W&V eand define /for ae€ E;/
T(%) = L- Clw +aetw-w)) .

Obviously

w rRw-w ) € B > 1 is en eigenvalue of T(3€).
T is &an analytic mepping of E1 into the set of compact lineer
mappings on V and 1 is not an eigenvelue of the operator T(0).
By (5] /Theorem VII.1.9/ the set

{ageE'; 1 is an eigenvelue of T(a(’)}

is discrete. Thus B is nowhere dense.

Corollary. The set f‘(f(B)) is nowhere dense.
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Proof., Choose w¢V and its open neighbourhood U,
Since B is nowhere dense, there exists veU-B. By the impli-
cit function theorem there exists an open neighbqurhood ]
of v /UcU/ such that £/0 is = diffeomorphism. Since
£(7) is open, there exists pe £(U)A0 . Let zZ€ f_f(p)nﬁ .
Then zgf (£(B) end zeU.

Remark 3. If the operator (Id-L) is invertible then
Theorem 4 csn be proved in an elementary way:
We have £(aw) = Id- L+ F'c'(w) ,
consequently
Awe B &= (3v#0) (Id-L)v + }\zC/(w)v =0
&= (IvA0) v + FEa-L'Cwlv = o

-1
PR - 7%2 is an eigenvslue of (1d-1) c'w) .

o
Since (Id-L) CYw) is compact, the set {d€E,; Awe B} is

discrete,
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