

Werk

Label: Article **Jahr:** 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log38

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23,2 (1982)

GENERIC PROPERTIES OF VON KARMÁN EQUATIONS Pavol QUITTNER

Abstract: The operator equation f(w) = p connected with general boundary value problem for von Kármán equations is studied. It is proved that the singular sets $B = \{w; f'(w) \text{ is not surjective}\}$ and f(B) are nowhere dense and that for every $p \notin f(B)$ the number of elements of $f^{-1}(p)$ is finite and odd. Also a generic result for the global structure of the solution set of equation $f(\lambda, w) = p$ /where λ is a bifurcation parameter/ is shown.

<u>Key words</u>: Fredholm map of index p, coercive, analytic, proper, compact.

Classification: 35J65

1. NOTATION AND PRELIMINARIES

We restrict ourselves to consider the domain with infinitely smooth boundary /see Definition 1/, but the main results are available under some assumptions also for an angular domain whose boundary is piecewise of C³ /see [1]/.

We shall use the notation and assumptions from [4] so

'hat we just recall them.

Denote the partial derivatives by w_x , w_y , the outward ormal derivative by $w_n = w_x n_x + w_y n_y$, the tangential deriative by $w_t = -w_x n_y + w_y n_x$.

Denote further

$$\Delta^{2}w = w_{xxxx} + 2w_{xxyy} + w_{yyyy},$$

$$[u,v] = u_{xx}v_{yy} + u_{yy}v_{xx} - 2u_{xy}v_{xy}.$$

The boundary operators M,T are defined by

For $u, v, \varphi \in W^{2,2}(\Omega)$ we define

$$(u,v)_{\frac{N^{2}}{6}^{2}} = \int_{\Omega} (u_{xx}v_{xx}^{+} 2u_{xy}v_{xy}^{+} u_{yy}v_{yy}^{-}) dxdy$$
,
 $\|u\|_{0} = ((u,u)_{\frac{N^{2}}{6}^{2}})^{\frac{1}{2}}$,

$$(u,v)_{V} = (u,v)_{W_{Q}^{2}} + \nu \int_{\Omega} [u,v] dxdy$$
,

$$B(v;u,\varphi) = \int_{\Omega} (v_{xy}u_x\varphi_y + v_{xy}u_y\varphi_x - v_{xx}u_y\varphi_y - v_{yy}u_x\varphi_x) dxdy.$$

If
$$\varphi \in W_0^{2,2}(\Omega)$$
 we obtain $B(v;u,\varphi) = B(v;\varphi,u) = B(\varphi;u,v)$.

<u>Definition 1.</u> Let $\Omega \subset E_2$ be a simply connected bounded domain. Let there exist a one-to-one mapping Θ of $\langle 0, \mathbb{R} \rangle$ onto 2Ω defined by $\Theta: t \longmapsto (\omega_1(t), \omega_2(t))$ with the properties

$$\omega_{i} \in C^{\infty}(\langle 0, \mathbb{R} \rangle), i=1,2,$$

$$\omega_{i+}^{(k)}(0) = \lim_{t \to R_{-}} \omega_{i}^{(k)}(t)$$
, i=1,2, k=0,1,2,...,

 $(-\omega_2'(t), \omega_1'(t)), t \in (0,R)$ is the unit vector of the inner normal to 2Ω .

Then we say that Ω is of the class C^{∞} .

Definition 2. Let $\delta > 0$. Let the mapping

$$(x,y): \langle 0,R \rangle \times \langle 0,\sigma \rangle \longrightarrow E_{2}$$

be defined by $x: (t,s) \longrightarrow \omega_1(t) - s \omega_2'(t)$

y:
$$(t,s) \mapsto \omega_2(t) + s \omega_1'(t)$$
.

Denote by Ω_{δ} the image of $(0,R)\times(0,\delta)$ in this mapping.

Throughout the paper let

 $\Omega \in \mathbb{C}^{\infty}$, $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$, $\Gamma_i = \Theta(\gamma_i)$, i=1,2,3 where Θ is the mapping from Definition 1 and γ_i , i=1,2,3 are pairwise disjoint measurable subsets of $\langle 0, R \rangle$.

By [4] there exists $\sigma_0 > 0$ such that the mapping (x,y) from Definition 2 is a one-to-one mapping of $\langle 0,R\rangle \times \langle 0,\sigma_0\rangle$ onto $\overline{\Omega}_{\sigma_0}$. We shall suppose that

$$s_{xx}(s_y)^2 + s_{yy}(s_x)^2 - 2s_{xy}s_xs_y = 0$$
 on Γ_2 .

Let us denote by V the closure of the set

 $\gamma = \{ u \in C^{\infty}(\overline{\Omega}) ; u = u_n = 0 \text{ on } \Gamma_1, u = 0 \text{ on } \Gamma_2 \}$ in the norm of $W^{2,2}(\Omega)$.

The functions k,m,r,φ,P specifying the boundary problem are supposed to fulfil /with arbitrary real numbers p>1, q>2/:

$$k_2 \in L_p(\Gamma_2)$$
; $k_2 \ge 0$ on Γ_2 ,

$$k_{31} \in L_p(\Gamma_3)$$
; $k_{31} \ge 0$ on Γ_3 ,

$$k_{32} \in L_1(\Gamma_3)$$
; $k_{32} \ge 0$ on Γ_3 ,

$$\mathbf{m_2} \in \mathbf{L_p(\Gamma_2)} \ , \ \mathbf{m_3} \in \mathbf{L_p(\Gamma_3)} \ , \ \mathbf{r_3} \in \mathbf{L_1(\Gamma_3)} \ , \ \mathbf{P} \in \mathbf{L_p(\Omega)} \ ,$$

$$\varphi_1 = \varphi_0 = 0$$
 on Γ_3 .

Then there exists a function $F \in C^2(\overline{\Omega})$ which satisfies the conditions

$$F = \phi_0$$
, $F_n = \phi_1$ on $\partial \Omega$

/see [6]/.

Let us introduce the following bilinear forms:

$$a(w,\varphi) = \int_{\Gamma_2} k_2 w_n \varphi_n \, dS + \int_{\Gamma_3} (k_{32} w \varphi + k_{31} w_n \varphi_n) dS$$

$$((w,\varphi)) = (w,\varphi)_V + a(w,\varphi) .$$

We shall suppose

(1.1)
$$\mathbf{w} \in V$$
, $((\mathbf{w}, \mathbf{w})) = 0$ \Longrightarrow $\mathbf{w} = 0$.

Then $\|\mathbf{w}\| = ((\mathbf{w}, \mathbf{w}))^{\frac{1}{2}}$ is an equivalent norm to $\|\cdot\|_{\mathbf{W}^{2,2}}$ in V/see [3]/.

<u>Definition 3.</u> The couple $(w, \phi) \in V \times W^{2,2}(\Omega)$ is said to be a variational solution of the problem if

(1.2)
$$((\mathbf{w}, \boldsymbol{\varphi})) = \mathbf{B}(\mathbf{w}, \boldsymbol{\phi}, \boldsymbol{\varphi}) + \int_{\Omega} \mathbf{P} \boldsymbol{\varphi} d\mathbf{x} d\mathbf{y} + \int_{\Gamma_3} (\mathbf{r}_3 \boldsymbol{\varphi} + \mathbf{m}_3 \boldsymbol{\varphi}_n) d\mathbf{S} + \int_{\Gamma_2} \mathbf{m}_2 \boldsymbol{\varphi}_n d\mathbf{S}$$
holds for each $\boldsymbol{\varphi} \in \mathbf{V}$,

(1.3)
$$(\phi, \gamma)_{w_0^{2,2}} = -B(w; w, \gamma)$$
 holds for each $\gamma \in W_0^{2,2}(\Omega)$,

(1.4)
$$\phi = \phi_0$$
, $\phi_n = \phi_1$ on $\partial \Omega$ in the sense of traces.

The sufficiently smooth variational solution defined above is the classical solution of the system of equations

$$\Delta^{2} w = [w, \phi] + P$$

$$\Delta^{2} \phi = -[w, w]$$
on Ω

satisfying the boundary conditions

$$w = w_n = 0$$
 on Γ_1 ,
 $w = 0$, $Mw + k_2 w_n = m_2$ on Γ_2 ,

2. REFORMULATION OF THE PROBLEM

Let $w \in W^{2,2}(\Omega)$. Using the Hölder inequality and the continuous imbedding $W^{2,2}(\Omega) \subset W^{1,4}(\Omega)$ we obtain that $B_w: Y \longmapsto B(w; w, Y)$ is a continuous linear functional on $W^{2,2}_o(\Omega)$ so that by the Riesz theorem

(3!
$$R(w) \in W_0^{2,2}(\Omega)$$
) ($\forall \psi \in W_0^{2,2}(\Omega)$) ($R(w), \psi \rangle_{W_0^{2,2}} = B(w; w, \psi)$. Similarly

$$(\exists ! \ \widetilde{F} \in W_0^{2,2}(\Omega)) (\forall \ \forall \in W_0^{2,2}(\Omega)) \qquad (\widetilde{F}, \Upsilon)_{W_0^{2,2}} \ = \ (F, \Upsilon)_{W_0^{2,2}} \ ,$$

$$(\exists ! \ C(w) \in V)(\forall \varphi \in V)$$
 $((C(w),\varphi)) = B(w;R(w),\varphi)$,

$$(\exists! \ L(w) \in V)(\forall \ \varphi \in V) \qquad ((L(w), \varphi)) = B(w; F - \widetilde{F}, \varphi)$$

$$(\exists ! \ p \in V) (\forall \varphi \in V) \quad ((p,\varphi)) = \int_{\Omega} P \varphi dx dy + \int_{3} (r_{3} \varphi + m_{3} \varphi_{n}) dS + \int_{2} m_{2} \varphi_{n} dS.$$

Now we can reformulate the conditions (1.3) and (1.4) as

$$(2.1) \qquad \Phi = -R(w) + F - \widetilde{F} .$$

Substituting from (2.1) into (1.2) we obtain the equation

$$(2.2)$$
 $f(w) = p$

where

$$f: V \longrightarrow V: w \longmapsto f(w) = w + C(w) - L(w)$$
.

The equation (2.2) is obviously equivalent to our problem.

3. PROPERTIES OF OPERATOR f

<u>Lemma 1</u>. The operators $C,L: V \rightarrow V$ are compact.

Proof. Let $\{w^n\} \subset V$ be bounded. We shall prove that $\{C(w^n)\}$ and $\{L(w^n)\}$ are relatively compact in V.

We may assume $w^n \to w$ in V, $w^n_X \to w_1$ and $w^n_y \to w_2$ in $W^{1,2}(\Omega)$ /since $\{w^n_X\}$, $\{w^n_y\}$ are bounded in $W^{1,2}(\Omega)$ /. Using the compact imbeddings $W^{2,2}(\Omega) \subset W^{1,2}(\Omega)$ and $W^{4,2}(\Omega) \subset L^2(\Omega)$ one can easily prove $w_1 = w_X$, $w_2 = w_y$. By the compact imbedding $W^{2,2}(\Omega) \subset W^{1,4}(\Omega)$ and by the compactness of the operator $T: W^{1,2}(\Omega) \to L^2(\partial\Omega): u \mapsto u/\partial\Omega$ we have $w^n \to w$ in $W^{1,4}(\Omega)$, $w^n_X \to w_X/\partial\Omega$, $w^n_Y \to w_X/\partial\Omega$ in $L^2(\partial\Omega)$.

Thus $||R(w^n) - R(w)||_0 = \sup_{\Upsilon \in \mathcal{W}_0^2(\Omega), ||\Upsilon ||_0 \le 1} ||R(w^n) - R(w), \Upsilon||_{W_0^2(\Omega)} || =$

 $= \sup |B(w^n; w^n, Y) - B(w; w, Y)| = \sup |B(Y; w^n, w^n) - B(Y; w, w)| \le$

$$=\sup_{\Omega} \{(2|\mathcal{V}_{xy}||w_{x}^{n}w_{y}^{n}-w_{x}w_{y}|+|\mathcal{V}_{xx}||(w_{y}^{n})^{2}-w_{y}^{2}|+|\mathcal{V}_{yy}||(w_{x}^{n})^{2}-w_{x}^{2}|)\,\mathrm{d}x\mathrm{d}y\to 0,$$

since e.g.

$$\int_{\Omega} |Y_{xy}| |w_x^n w_y^n - w_x w_y| dxdy \leq$$

$$= \int_{\mathcal{A}} |\gamma_{xy}| \left(|w_y^n| |w_x^n - w_x| + |w_x| |w_y^n - w_y| \right) dxdy =$$

$$\leq \| \| Y \|_{O} \left(\| \| w^n \|_{W^{4,+}} \| w^n - w \|_{W^{4,+}} + \| \| w \|_{W^{4,+}} \| w^n - w \|_{W^{4,+}} \right) \ .$$

Similarly $\|C(w^n) - C(w)\| = \sup_{\Psi \in V, \|\Psi\| \le 1} |((C(w^n) - C(w), \Psi))| =$

= sup
$$|B(w^n;R(w^n), \psi) - B(w;R(w), \psi)| \longrightarrow 0$$
.

Finally, $\|L(\mathbf{w}^n) - L(\mathbf{w})\| = \sup_{\mathbf{Y} \in \mathbf{V}, \|\mathbf{Y}\| \le 1} |B(\mathbf{w}^n - \mathbf{w}, \mathbf{F} - \widetilde{\mathbf{F}}, \mathbf{Y})| \le 1$

$$\leq \sup |B(w^n - w; \widetilde{F}, \varphi)| + \sup |B(w^n - w; F, \varphi)|$$
.

Clearly,
$$\sup |B(w^n-w, \tilde{F}, Y)| = \sup |B(\tilde{F}, Y, w^n-w)| \rightarrow 0$$
.

sing the integration by parts we get $\sup |B(w^n-w;F,\psi)| \rightarrow 0$.

Lemma 2. There exists a constant K such that for each $w \in V$ the following estimate holds

$$((C(w), w)) - |((L(w), w))| = -\frac{1}{2}||w||^2 - K$$
.

Proof. There exists a function $f \in C^{\infty}(\overline{\Lambda})$ with the properties:

 $\begin{cases} = 1 \\ \xi_x = \xi_y = 0 \end{cases} \text{ on } \partial \Omega,$

 $|B(w; \xi F, w)| \leq \frac{1}{2}||w||^2$ for each we V

/see [4], Lemma 5/.

Using the Riesz theorem we get

 $(\exists! \ \widetilde{\S}^F \in \mathbb{W}^{2^2}_o(\Omega)) (\forall \ \Upsilon \in \mathbb{W}^{2^2}_o(\Omega)) \qquad (\ \widetilde{\S}^F,\Upsilon)_{\mathbb{W}^{2^2}_o} = (\S F,\Upsilon)_{\mathbb{W}^{2^2}_o} \ .$

Since $F-\widetilde{F} = \xi F - \widetilde{\xi} \widetilde{F}$, we have

 $((C(w), w)) - |((L(w), w))| = B(w; R(w), w) - |B(w; F - \widetilde{F}, w)| \ge$

= B(w; w, R(w)) - |B(w; fF, w)| - |B(w; w, fF)| =

 $\geq \|R(w)\|_{0}^{2} - \frac{1}{2}\|w\|^{2} - \|R(w)\|_{0} \|\widetilde{\xi}F\|_{0} =$

 $= -\frac{1}{2} \|\mathbf{w}\|^2 + \|\mathbf{R}(\mathbf{w})\|_0 (\|\mathbf{R}(\mathbf{w})\|_0 - \|\widetilde{\mathbf{f}}\widetilde{\mathbf{F}}\|_0) \ \triangleq -\frac{1}{2} \|\mathbf{w}\|^2 - \|\widetilde{\mathbf{f}}\widetilde{\mathbf{F}}\|_0^2 \ .$

Corollary. The operator f is coercive.

<u>Definition 4</u>. Let X,Y be Banach spaces, A: $X \to Y$ a continuous linear mapping, f: $X \to Y$ a /nonlinear/ C^1 map.

The mapping A is said to be a Fredholm mapping of index p if Im A is closed, dim Ker $A < \infty$, codim Im $A < \infty$ and p = dim Ker A - codim Im A.

The map f is said to be a Fredholm map of index p if f'(x) is a linear Fredholm mapping of index p for each $x \in X$.

The map f is said to be proper if $f^{-1}(K)$ is compact whenever $K \subset Y$ is compact.

Lemma 3. The operator f is a Fredholm map of index zero.

Proof. Let we V. Since L,C are compact analytic operators, their derivatives L'(w), C'(w) have to be compact mappings. Thus $f'(w) = \mathrm{Id}-L'(w)+C'(w)$ is the compact perturbation of the identity and hence it is a linear Fredholm mapping of index 0.

Lemma 4. The operator f is proper.

Proof. Let KcY be compact, let us choose a sequence $\{w^n\} \subseteq f^{-1}(K)$. Since f is coercive, $\{w^n\}$ is bounded. According to Lemma 1 we may assume $C(w^n) \longrightarrow p^1$, $L(w^n) \longrightarrow p^2$. Further $\{f(w^n)\} \subseteq K$ so that we may assume $f(w^n) \longrightarrow p \in K$. Thus $w^n = f(w^n) - C(w^n) + L(w^n) \longrightarrow p - p^1 + p^2$ and hence $f^{-1}(K)$ is relatively compact. Since f is continuous, $f^{-1}(K)$ is closed.

4. MODIFIED SMALE'S THEOREM

Let X,Y be real Banach spaces, U \subseteq X open, M \subseteq U.

Let $f: U \longrightarrow Y$ be a C^1 map. We shall denote the restriction of f to M by f/M. Further denote

B(f/M) = {x \in M; f'(x) is not surjective}, $\mathcal{O}(f/M) = \{y \in Y; (\forall x \in M \cap f^{-1}(y)) \ f'(x) \text{ is surjective}\} = Y - f(B(f/M)),$ B(f) = B(f/U), $\mathcal{O}(f) = \mathcal{O}(f/U)$.

Then $\mathcal{O}(f/M_1) \supseteq \mathcal{O}(f/M_2)$ for $M_1 \subseteq M_2$ and $y \in \mathcal{O}(f/M)$ for each $y \notin f(M)$.

Theorem 1. Let X,Y be real Banach spaces, $U_1, U_2 \subseteq X$ open subsets, $\overline{U}_1 \subseteq U_2$. Let $f: U_2 \longrightarrow Y$ be a C^k /resp. real analytic/ Fredholm map of index $p \ge 0$, p < k. Let $f^{-1}(K)$ be relatively compact /in X/ whenever $K \subseteq Y$ is compact.

Then the set $\mathcal{O} = \mathcal{O}(f/\overline{U}_1)$ is a dense open subset of Y and for every $y_0 \in \mathcal{O}$ the set $f^{-1}(y_0) \cap U_1$ is a C^k /resp. analytic/manifold of dimension p. If p=0 the set $f^{-1}(y_0) \cap U_1$ is finite /for $y_0 \in \mathcal{O}$ /.

Proof. We shall prove that the set \mathcal{O} is dense and open in Y; all remaining assertions follow from the implicit function theorem.

First we show that f is a closed mapping. Let $Z \subseteq U_2$ be closed /in X/, let $x_n \in Z$, $f(x_n) \longrightarrow y$. Since $\{x_n\}$ is relatively compact, we may assume $x_n \longrightarrow x \in Z$. Then f(x) = y, $y \in f(Z)$. Consequently f(Z) is closed. Since $B(f/\overline{U}_1)$ is closed and f is a closed mapping, the set $\mathcal O$ is open.

Let us choose $y \in Y$. Then $K = f^{-1}(y) \cap \overline{U}_1$ is compact. Let $x \in K$. By [2] /see the proof of Theorem C.1.3./ there exists a neighbourhood U_X of x such that the set $\mathcal{O}(f/U_X)$ is dense. Let us choose $W_X \subset U_X$ a closed neighbourhood of x. Then the set $\mathcal{O}(f/W_X)$ is open /since $B(f/W_X)$ is closed and f is a closed mapping/ and dense /since $\mathcal{O}(f/W_X) \supseteq \mathcal{O}(f/U_X)$ /. Further choose an open set V_X such that $x \in V_X \subset W_X$. Since $K \subseteq \bigcup_{x \in K} V_x$, there exists a finite set $\{x_1, \ldots, x_n\} \subseteq K$ such that $K \subseteq \bigcup_{i=1}^n V_{X_i}$. Let us denote $G = \bigcup_{i=1}^n V_{X_i}$. Since $\mathcal{O}(f/W_{X_i})$, i=1,...,n is dense and open and $\mathcal{O}(f/G) \supseteq \bigcap_{i=1}^n \mathcal{O}(f/W_{X_i})$, the set $\mathcal{O}(f/G)$ is dense in Y. One can easily prove that there exists a neighbourhood \widetilde{U} of Y such that $\widetilde{U} \cap f(\overline{U}_1 - G) = \emptyset$. Then $\widetilde{U} \cap \mathcal{O}(f/G) \subseteq \mathcal{O}$ and hence the set \mathcal{O} is dense.

Lemma 5. Let the assumptions of Theorem 1 be fulfilled. Let $U_1=U_2=X$, p=0. Then card $f^{-1}(y)$ /i.e. the number of elements of the set $f^{-1}(y)$ / is constant on every connected component of O.

Proof. It is sufficient to prove that card $f^{-1}(y)$ is a continuous function on \mathcal{O} .

Choose $y_0 \in \mathcal{O}$; let $f^{-1}(y_0) = \{x_1, \dots, x_N\}$. By the implicit function theorem there exists an open neighbourhood 0_i of x_i /i=1,...,N/ such that $f/0_i$ is a diffeomorphism. Thus card $f^{-1}(y)$ is a lower semicontinuous function and it remains to show that it is also upper semicontinuous.

Let us suppose $z_n \notin \bigcup_{i=1}^N O_i$, $f(z_n) \longrightarrow y_0$. We may assume $z_n \longrightarrow z$. But then $f(z) = y_0$, $z \notin \bigcup_{i=1}^N O_i$, which contradicts the construction of O_i .

5. THE STRUCTURE OF THE SOLUTION SET

Theorem 2. Let $f:V \to V$ be the mapping defined in Section 2. Then $\mathcal{O} = \mathcal{O}(f)$ is a dense open subset of V and card $f^{-1}(p)$ is finite, odd and locally constant for $p \in \mathcal{O}$.

Proof. According to Lemmas 3,4,5 and Theorem 1 it remains to prove that card $f^{*}(p)$ is odd /for $p \in \mathcal{O}$ /.

Let $p \in \mathcal{O}$. For $\mu \in (0,1)$ we define operators

$$f_{\mu}: V \longrightarrow V: w \longmapsto w + \mu(C-L)(w)$$
.

By Lemma 2 there exists a constant K such that for every $w \in V$ and every $\mu \in (0,1)$ the following estimate holds

$$((f_{\mu}(w), w)) \ge \frac{1}{2} ||w||^2 - K$$
.

Consequently, there exists an open bounded set U in V such that $p \in U$, $f^{-1}(p) \subseteq U$ and $p \notin f_{\mu}(\partial U)$ for every μ . By the homotopy invariance property of the Leray-Schauder degree we have

 $\deg(f,U,p)=\deg(f_1,U,p)=\deg(f_0,U,p)=1\ .$ Since $\deg(f,U,p)=\sum_{j=1}^N i(w_j)\ , \ \text{where}\ \{w_1,\ldots,w_N\}=f^{-1}(p)$ and $i(w_j)=\pm 1 \quad /j=1,\ldots,N/, \ \text{we get that} \quad N=\mathrm{card}\ f^{-1}(p)$ is an odd number.

Now let us consider /instead of (1.4)/ the following boundary conditions

(5.1)
$$\phi = \lambda \phi_0$$
, $\phi_n = \lambda \phi_1$

/A being a real number/.

The operator $f = f^2$ connected with the boundary conditions (5.1) can be written in the form $f^3 = Id + C^3 - L^3$, where $C^3 = C$, $L^3 = AL$ and C, L are operators connected with the boundary conditions (1.4).

Let us define the following operator

g:
$$V \times E_1 \longrightarrow V$$
: $(w,\lambda) \longmapsto f^{\lambda}(w) = w + C(w) - \lambda L(w)$.

Theorem 3.

- (i) The set $\mathcal{O}_{M} = \mathcal{O}(g/V \times \langle -M, M \rangle)$ is dense and open for any $M \in E_{1}$. For every $p \in \mathcal{O}_{M}$ the set $g^{-1}(p) \cap (V \times \langle -M, M \rangle)$ is an analytic relatively compact manifold of dimension 1.
- (ii) $\mathcal{O}(g)$ is a residual set. For each $p \in \mathcal{O}(g)$ the set $g^{-1}(p)$ is a 1-dimensional analytic manifold and there exists a discrete set $D=D(p)\subset E_1$ such that the equation $f^{\lambda}(w)=p$ has only a finite number of solutions for any $\lambda \notin D$.

Proof.

(i) g is obviously a Fredholm map of index 1. By Lemma 2 we have

$$((C^{\lambda}(w), w)) - |((L^{\lambda}(w), w))| \ge -\frac{1}{2}||w||^2 - K_{\lambda}$$
.

Thus for | \(\lambda \le M \) we obtain

analytic manifold.

hence $g/V \times \langle -M, M \rangle$ is coercive /i.e. $\lim_{|x| \to \infty} \frac{\langle g(x), x \rangle}{|x|} = +\infty$, $x \in V \times \langle -M, M \rangle$

where (\cdot,\cdot) is a scalar product in $V\times E_1$ and $I\times I=(x,x)^{\frac{1}{2}}$. Now one can easily prove /analogously as in Lemma 4/ that $g/V\times (-M,M)$ is proper. Using Theorem 1 with $U_1=V\times (-M,M)$, $U_2=V\times (-M-\xi,M+\xi)$, $\xi>0$ we get our assertion.

(ii) $\mathcal{O}(g) = \bigcap_{n=1}^{\infty} \mathcal{O}_n$, hence $\mathcal{O}(g)$ is a residuel set. $g^{-1}(p) = \bigcup_{n=1}^{\infty} ((V \times (-n,n)) \cap g^{-1}(p))$, hence $g^{-1}(p)$ is 1-dimensional

Let us consider the projection $\Pi: g^{-1}(p) \to E_1: (w,\lambda) \longmapsto \lambda$. Π is an analytic map, Π is proper. Using [9] for the maps of the form $\Pi \circ \Lambda$ /where $\Lambda: E_1 \to g^{-1}(p)$ is a local description of the manifold $g^{-1}(p)$ / we get that the set $D = E_1 - \mathcal{O}(\Pi)$ is discrete. Our assertion now follows from the implicit function theorem.

Remark 1. The problem $g(w,\lambda) = p$ is often studied in the bifurcation theory. Theorem 3 shows that for generic p there is no bifurcation /cf. [7]/.

Remark 2. Let us choose $p_0 \in V$ and define the operator h: $V \times E_1 \times E_1 \longrightarrow V$: $(w,\lambda,\mu) \longmapsto g(w,\lambda) + \mu p_0$.

- 410 -

Analogously as in Theorem 3 we get that $\mathcal{O}(h)$ is a residual set, for each $p \in \mathcal{O}(h)$ the set $h^{-1}(p)$ is an analytic manifold of dimension 2 and $h^{-1}(p) \cap (V \times K)$ is compact if $K \subset E_1 \times E_1$ is compact. Let us define the projection

 $\Pi: h^{-1}(p) \to E_1: (w,\lambda,\mu) \mapsto \mu.$

Then the set $E_1 - \mathcal{O}(\Pi)$ is discrete and for each $\mathcal{C} \in \mathcal{O}(\Pi)$ the set $g^{-1}(p+\mu_p)$ is an analytic manifold of dimension 1.

Let $p \notin \mathcal{O}(h)$. If there exists $\widetilde{\mu} \in E_1$ such that $p + \widetilde{\mu} p_0 \in \mathcal{O}(h)$, then we can repeat our considerations and we get again that $g^{-1}(p + \mu p_0)$ is an analytic manifold for generic μ .

6. THE SINGULAR SET B

Theorem 4. The set B = B(f) is nowhere dense.

Proof. Since $\mathcal O$ is nonempty and f is surjective, there exists $\mathbf w_0 \not\in \mathbf B$. Choose $\mathbf w \in \mathbf V$ and define /for $\mathbf w \in \mathbf E_1$ /

 $T(3e) = L - C'(w_0 + 3e(w - w_0))$.

Obviously

 $w_0+\partial\ell(w-w_0)\in\mathbb{B}\iff 1$ is an eigenvalue of $T(\partial\ell)$.

T is an analytic mapping of E_1 into the set of compact linear mappings on V and 1 is not an eigenvalue of the operator T(0).

By [5] /Theorem VII.1.9/ the set

 $\{\mathcal{X} \in E_1, 1 \text{ is an eigenvalue of } T(\mathcal{X})\}$ is discrete. Thus B is nowhere dense.

Corollary. The set f (f(B)) is nowhere dense.

Proof. Choose we V and its open neighbourhood U. Since B is nowhere dense, there exists $\mathbf{v} \in \mathbf{U}$ -B. By the implicit function theorem there exists an open neighbourhood $\widetilde{\mathbf{U}}$ of \mathbf{v} / $\widetilde{\mathbf{U}} \subseteq \mathbf{U}$ / such that $\mathbf{f}/\widetilde{\mathbf{U}}$ is a diffeomorphism. Since $\mathbf{f}(\widetilde{\mathbf{U}})$ is open, there exists $\mathbf{p} \in \mathbf{f}(\widecheck{\mathbf{U}}) \wedge \mathcal{O}$. Let $\mathbf{z} \in \mathbf{f}^{-1}(\mathbf{p}) \wedge \widetilde{\mathbf{U}}$. Then $\mathbf{z} \in \mathbf{f}^{-1}(\mathbf{f}(\mathbf{B}))$ and $\mathbf{z} \in \mathbf{U}$.

Remark 3. If the operator (Id-L) is invertible then Theorem 4 can be proved in an elementary way: We have $f'(\lambda\,w) \,=\, \text{Id-L+}\,\lambda^2C'(w) \ ,$ consequently

$$\lambda w \in B \iff (\exists v \neq 0) \quad (\text{Id-L})v + \lambda^2 C'(w)v = 0$$

$$\iff (\exists v \neq 0) \quad v + \lambda^2 (\text{Id-L})^{-1} C'(w)v = 0$$

$$\iff -\frac{1}{\lambda^2} \text{ is an eigenvalue of } (\text{Id-L})^{-1} C'(w) \text{ .}$$
Since $(\text{Id-L})^{-1} C'(w)$ is compact, the set $\{\lambda \in E_1; \lambda w \in B\}$ is discrete.

REFERENCES

- [1] Franců J.: On Signorini problem for von Kármán equations /The case of angular domain/. Aplikace matematiky 24 (1979), 355-371.
- [2] Geba K.: "The Leray Schauder degree and framed bordism" in La théorie des points fixes et ses applications à l'analyse. Séminaire de Mathématiques Supérieures 1973, Presses de l'Université de Montreal 1975.
- [3] Hlaváček I., Naumenn J.: Inhomogeneous boundary value problems for the von Kármán equations, I. Aplikace matematiky 19 (1974), 253-269.
- [4] John O., Nečas J.: On the solvability of von Karman equations. Aplikace matematiky 20 (1975), 48-62.

- [5] Kato T.: Perturbation theory for linear operators. Springer-Verlag, Berlin - Heidelberg - New York, 1980.
- [6] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
- [7] Saut J.C., Temam R.: Generic properties of Navier-Stokes equations: genericity with respect to the boundary values. Indiana Univ. Math. J. 29 (1980), 427-446.
- [8] Smale S.: An infinite dimensional version of Sard's theorem. Amer. J. Math. 87 (1965), 861-866.
- [9] Souček J., Souček V.: The Morse Sard theorem for real analytic functions. Comment. Math. Univ. Carolinae 13 (1972), 45-51.

Author's address: Pavol Quittner, Matematicko-fyzikální fakulta KU, Sokolovská 83, 186 00 Praha 8.

(Oblatum 4.2. 1982)

