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ON THE MONOIDS OF HOMOMORPHISMS OF SEMIGROUPS
WITH UNITY

Ludék KUCERA

Abstrget: It is proved that

- any semigroup with unity and zero element is isomorph-
ic to a semigroup of endomorphisms of some monoid (i.e.
semigroup with unity),

- any small category with zero morphisms is isomorphie
to a small full subcategory of the category of monoids
and their homomorphisms,

- any concrete category with zero morphisms is isomorph-
ic to a full subcategory of the category of monoids
and their homomorphisms, provided the non-existence of
measurable cardinals is supposed.

Key words: Category theory, full embedding, homomorph-
isms of monoids, zero morphisms.

Classification: 18Bl1%

The aim of the present paper is to characterize monoids
which can be represented as the monoids of homomorphism of
semigroups with unity.

Let M be a monoid of homomorphism of a semigroup S with the
unity element 1. M necessarily contains the unity and zero
elements corresponding to the identity mapping of S and to
the constant mapping to the element 1 of S. We are going to
show that there is no other restriction to monoids in ques-
tion. More generally, we prove that every concrete category
K with O-mérphiams is isomorphic to a full subcategory of the

category of monoids (semigroups with unity) and their homo-
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morphisms, provided (M) there exists a cardinal number o
such that every o« =-additive two-valued measure is trivial.

In some cases (e.g. if K has a set of objects only or K
is a category of universal algebras of a given type and their
homomorphisms) the axiom (M) is not necessary, on the other
hand the existence of a full embedding (i.e. a full and faith-
ful functor) of e.g. the category orf compact abelian groups
into the category of monoids would imply (M) [ 73. )

The proof is based on the fact that every concrete cate-
gory K can be fully embedded into the category of oriented
graphs and compatible mappings [1, 6] (see also [81), Some
special cases of this theorem sare proved in 13, 4, 51. Using
this result we shall prove that a concrete category with O-
morphism can be fully embedded into a special subcategory of
the category of oriented graphs with one loop. (O-morphisme
will correspond to constant mapping to the loops.)

The category of one-loop graphs will be fully embedded
into the category of monoids by a modification of the method
used in the paper [2).

O. Prelipipary definitions. An oriented graph is a coup-

le G = (X,R), where X is a set snd RcXxX. X (R, resp.)is cal-
led the underlying set (the relation, resp.) of G. A loop of

G is an element xe X such that (x,x) € Re A mapping £:X —> Y

is a compatible mapping from (X,R) into (Y,S) if (x,y)eR im
plies (f£(x),f(y)) esS. Note that a constant mapping to a loop

is compatible.

GRA is a category of all oriented graphs and their com—
patible mappings.
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GOL is a full subcategory of GRA determined by graphs:
G = (X,R) such that G has exactly one loop Xgs

(xo,x),(x,xo)eR implies x = x,
if x+x_ and either (x,xo)eR or (xo,x)eR, then it is

(x,y)e R irf (y,x) e R

GOL(I), where I is a set, is a category defined as fol-
lows:

objects are triples (x’(Ri)ieI’xo)’ where X is a set,
Rjc XxX for all ieI, x, € X, such that for every ieI it is
(x,x) eRy 1iff x = Xg

morphisms from (X,(Ri),xo) into (Y,(Si),yo) are mappings
£:X—>Y such that for every 1eI, (x,y)eR, implies (f(x),

f(y))esi. (Note that in this case it is £lx,) = y..)

0*
A set &T;rx Xy is considered as the set of all mappings
q from I into ;Y X; such that qli)e Xy
MON is the category of monoids (semigroups with unity)
and their homomorphisms. We shall say that a category K has
O-morphisms if for any two objects A, B of K there is a mor-
phism ZA B:A—> B such that for every morphism f:A— B, g:
’
tB— C it is ZB,C°f = g°zA,B = ZA,C'

l. Embedding into GOL

Theorem 1: If a category K has O-morphisms and if it can
be fully embedded into GRA then there exists a full embedding

of K into GOL (I) for some nonempty set I.

Proof: Without loss of generality we can suppose that K
is a full category of GRA and that there exists an object O
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of K such that Zo o is the identity morphism of O. The object
’
0 is uniquely determined as an image of any O-morphism in K.

Denote an underlying set of an object (i.e. a graph) G
of K by X; and its relation by Rge
Given xeX_, denote Z—l ofx) =X, ,x*Zo, glx) = 8g,x* We have
XGan =@ for x4=y, aneXG’x, 8,x =% X % =ix} D
=¥‘x XG ,x* If £:G — H is a morphism of K then f maps XG =
into XH x and f(eG ) = 8y x

A full embedding F of K into GOL (Xou Ro) can be defined
a8 follows:

F(G) = ("Il;‘o G,x? (Rg), ), where relations RG j are
defined in the following way:

(ql,qz)sng,i for 1 =xeX , q(x) = qy(x),

(q]_,qz)ezRG for i = (x,y)eRo, (q; (x), qz(x))eRGv

F(£)(q) = Poq.

Ir (x,y)eRo then (‘zo,G(X)"zo,G(y))“RG which implies
(zo,G'zo G)‘RG (x,y)+ Conversely, ir (q,q)ER y) for e-
very (x,y)e R then q: X,—> ¥; is a mapping such that (x,y)e
€ R, implies (q(x),q(y))sRG. Hence q:0—> G is a morphism of

K and q = qolo = q,oZ’o’o = ZO,G'

Now, it is easy to see that F is a faithful faotor. We
shall prove that F is full:

Let h:F(G) —> F(H) be a compatible mepping of GOL(X U Ro)
and ac X-. There exists a unique xex such that aeX, ,x and
there 1s q ¢ T, XG x 8uch that q(x) = a. Put £(a) = (h(q))(x).
This does not depend on the choice of q, because q eg;rxb xG,x’

ql(q) = a implies (q,ql)e Ry x» (n(q) h(ql)eR xr (h(g))(x) =

= (h(qy))(x). We have obtained &8 mapping f:X; — Xy such that
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h(q) = £oq. Let us suppose that (a,b)e Ry, There exist x,ye

€ Xo such that aeltG'x,bexG,y and Qy19p ey‘l‘Txo XG,x such

that q,(x) = a,qz(y) = b. We have (x,y) = (ZG’O(a),ZG,o(b)lé

€R, (ql'qa)eRG,(x,y)’ (hlq,), h(qZ)eRH,(x,y)’ (£(a) ,£(b))=
= (fql(x), fqz(y)) = (h(qll(x), (h(ql)(y))eRG. Thus, £:G—H
is a morphism of K and F(f) = h.

Theorem 2. If K is a category with O-morphisms and if
there exists a full embedding of K into GRA then there exists
a full embedding of K into GOL.

Proof: In view of Theorem 1 it suffices to construct a
full embedding GOL (I) —> GOL for every set I. For the sake of

simplicity we shall divide the construction into two parts:

1. A full embedding GOL (I)—> GOL (3)

According to [ 9], there exists an oriented graph T = (I,U)
which has the parameter set I as an underlying set such that
the only compatible mapping of I into itself is the identity
mapping.

Define F as follows:

FUK, (R 1axp) = (X = £x 3)x D Udxpd, (rgdyog 1 20%),
where (a,b)er, iff
either i =0, a

(x,p), b =(x,y)»

or i=1, a=(x,p), b=(x,q),(p,q)e U
or i=2, a=(x,p), b=(y,p),(x,y)e Rp,
or i=2, a=(x,p), b =xo,(x,y°)e Rp’
or 1i=2,a=x,0b= (y,p),(xo,x)e Rp-.
or 1=0,1,2, a=b=x

0’
for some x,ye X - { xoi, p,qel,
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(£(x),1) 1r £(x) is not a loop
F£)((x,1)) = & ’ ’

£(x) if £(x) 15 a loop,
F(f)(xo) = f(xo).

It is easy to see that F is a faitheul functor. Let h:
:F((X,(Ri),xo))ﬁ F((Y,(Sil,yo)) be a compatible mapping. We
have h(xo) = Yoe r, is an equivalence with the equivalence
classes ixlelI, xeX, x#xo and '{xo}; similarly for 8, The
mapping h preserves these partitions, According to the defi-
nition of T1+8; and the properties of T = (I,U), there exists
& mapping £:X—> Y guch that
n(x,1) = — (£(x),1) 1r r(x)+y°,

¥, if £(x) = Yo
h(xo) o )

In view of the definition of T538, and the properties of
the mapping £ we know that (x,y)e Rp implies (£(x),#(y)) e Sp.

Therefore f:(X, (Ri),xo)——> (Y(Si) ,yo) is a morphism of
GOL (I) such that F(f) = n,

A full embedding GOL (3) — coL

F((X,(vy) 1 = 0,1,2,x ) = (((X - {x°§)x{1,2,3,4}x{1,2,3,4;)u
u{xol »R), where (a,b)e R 1if there exist x,yeX - Tx.3 such
that either a = (x,1,p),b = (x,4,p),p = 1,3 and

either 1 = 1, J=2,

or 1=2,45=3, 1

or 1i=3, 3=1, /\

or i=2, =4, 3 <—— >

or i=4,3=3, \/
4
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or a = (x,i,p),b = (x,1,q), 1 =1,2,3,4 end
either p=1l,3, gq=p+1,

or p=2,4,q=p-1,
or a = (x,1,1), b = (x,1,3},
or a = (x,i +2,2), b =(y,1+3,4), (x,yer, 1=D0,1,2,
or a = (x,i +2,2), b =x, (x,x Jery 1=0,1,2,
or a = x, b= (y,1 + 2,4) (xo,y)c ry, 1=0,1,2
or a=b=x_.
(£(x),i,p) if £(x) is not a leop,

F(£)((x,1,p)) = .

™ £(x) 1r £(x) is a leep,
F(£)(x,) = £lx,).

It is easy to see that F is a faithful functor from
GOL (3) into GOL. We shall prove that F is full:

Let h:F((X,(ry) ,xo))——> F( (-.Y,(Si),qo)) be a compatible
mapping, )
Given x€X, p = 1,3, the points (x,1,p), (x,2,p), (x,3,p)
form a cycle and therefore there is y&Y, q = 1,3, u =0,1,2
such that either

h((x,i,p)) =y, for 1 = 1,2,3,
or 1((x,4,p)) =/(y,i 4+ u,q) if 1 + u<3,

N(y,i +u-=-3,x) iri+u>3 fori 1,2,3.

Considering the arrows ((x,2,p),(x,4,p)) ard ((x,4,p),
{x,3,p)), we can show that

h((x,i,p)) = y, for i = 1,2,3,4 in the first case,

n((x,1,p)) = (y,i,q) for 1 = 1,2,3,4 in the second case.

In view of the existence of an arrow ((x,1,1),(x,1,3)) there
is y Y such that h((x,1i,p)) = (y,1,p) for 1 =1,2,3,4, p =
= 1,3. Since we have ((x,i,p),(x,i,p *+ 1)), ((x,i,p + 1),
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(x,4,p))eR por 1 = 1,2,3,4, p = 1,3, necessarily h((x,1,q))=
- (yli!q)) for i = 1,2,3,4, q = 2,4,
Therefore there is a mapping £:X —> ¥ guch that

/// (£(x),i,p) 1p f(x)4=y°,
h((x,i,p)) =
Ny, 1 £(x) =y,
h(xo) =¥,
Now, it can be easily seen that f 1s a compatible mapping
from (X,(ri),xo) into (Y,(si),yo) end that h = §(p),

2. Emggddigg into MON. The next three theorems consti-

tute the main results of the paper:

Theorep 3. Assuming (M), 4 category K is isomorphic to

phisms.

Theorem 4. If K is elther a small category or g catego-
Ty of universgal algebras of g given type and their homomorph-~
isms then K 1s isomorphic to a full subcategory of the cate-
gory of monoide and theip homomorphisms if ang only if K has
O-morphisms.

Iheorem 5. Every multiplicative semigroup with the unity
and zero elements is isomorphic to a semigroup of endomorph-~

isms of some monoid.

Proof of Theorems 3 - 5. The theorem 5 is gan immediate
consequence of the theorem 4. The "only if" part of the theo-
Tems 3, 4 follows from the fact that any full subcategory of
MON is g concrete catego?y withro-morphisma.
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Now, we are going to prove the "if" part of Theorems 3,
4. It follows from the assumption of the theorems and from
[3, 4, 6) (see also [8]) that K can be fully embedded into
GRA.

Since K has O-morphisms, the theorem 2 gives a full em~
bedding K —> GOL. Therefore it is sufficient to construct a
full embedding of GOL into MON. It can be defined as follows.

Given a graph G = (X,R), which is an object of GOL, let
M (G) be a free monoid over X =X -1 x,}, where x, is the
loop of G, i.e. M’(G) be a set of all finite (possibly emp—
ty ) sequences of elements of X, the composition in M (G) is
given by concatenation and the unity is the empty sequence.

Let = be the smallest congruence on M (G) such that

(1a) x 2° y 2 z=x32 yz x° 7z whenever x,y,z€X and
(x,y),(y,z) e R (note that it is x<+y and z24x),

(1b) x ¥y x2= x y2 xz, whenever x,ye X  and (x,y),
(y,xo)e R (note that x+y),

(1) 22 y z= 2° y° z whenever y,z€X’, and (x55¥)y
(y,z) < R (note that y+32).

Put F(G) =M (CV/ = .

A) Tt is evident that xPs x3 for xe X, p4q (especially

x# 1) and that x,ye Xx’, x = y implies x = y.

B) Let a = Xj....X, be a word over X . Define C(a) to be
the number of indices i = 1,2,...,k-1 such that x34 X4, It
is easy to see that a= b implies C(a) = C(b). Moreover,
cla b )< C(a b2 ¢) and the equality holds iff b = xk, xeX’,
with s nonnegative integer k. Especially, if a c2 b 82 c =

= a c®v2a%c then b = xk, xeX', kz0.

- 371 -



C) Let u,v,weX’, P,q,T be natural numbers and ome of
the following equalities hold:

(2a) uPWPTy 2Py = uPW TR URP T s

(2b) uPvIy?P = uPv23,2P,

(2¢) wTyo' = W2Ty2q,F-

We have to transform the right side or (2) by subaequent
applications of the equations (1 a;b,c) into the left side
> (2). During the application of (1) which changes the expo-
nent of v for the first time necessarily v = Yy 2942, which
implies q = 1.

D) Suppose that u,v,wcX’ and one of the following equ~
alities holds:

(38) uwfy wlw=u wov2ulw.

(3b) uvul= uvzuz,

(3e) w2y w =wir w.

We have to transform the left hand side of (3) into its
right hand side by means of the equations (1 a,b,c). (1 b) is
the only equation which can be applied to (3 b). Thus, u = x,

=y and hence (u,v),(v,x )€ R. Similarly in the case (3 e
we have (x oV (v,WeR, Ir (1 q) 1is applied to (3 a) then u x,
V=Y, w=2z and (u,v),(v,w)eR,

Ir (1 b) is applied to the left hand side of (3 a), then

either u = vew, u w?v uzw =u '2113' which could be e-
quivalent to u w udw 1f (u,w), (w,x Je R, but no other word is
equivalent to u wzv u w which is a contradiction, or u = w =
=x, v=y, (uv) (v,x JeR and according to the properties
of G we have (v,w) = (v,u)e R,

Analogously, if (1 ¢) is applied to (3 a) then u = w = z,
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v =y, on,v),(v,w) e R which implies (u,v) = (w,v)eR.

We have proved that

(3 a) implies (u,v){v,w)eR,

(3 b) implies fu,v),(v,x )eR,

(3 ¢) implies (x ,v),(v,w)eR.
F can be defined equivalently as a factorization of a free
monoid M(G) over X by the smallest equivalence ~ defined by

(4a) x zzxzz ~ xzzyzxzz whenever x,y,z€X, (x,y) (y,z)e
cR,

(4v) L 1.

We can reformulate the above results as follows:

A°) given x,ye X, x~ ¥y implies x =¥,

B’) given words a,b,c over X, a czb 32(: ~ aczbzage im-
plies that there exists x<X and a natural number p such that
b= xp,

¢’) given u,weX, ve X', p,q,r natural, WPweTvu2Py® ~

upd?r'ZQuZp'r’ then q = 1,

D’) given u,weX, v ex’, u w2y ulw ~u w?v?ulw, then
(u,v),(v,weR.

A compatible mapping £:G — H can be uniquely extended
to & homomorphism from M(G) into M(H). The extended homomor-
phism preserves congruence and therefore gives rise to a ho—
momorphism F(£):F(G) —> F(H). It 1s easy to see that F is a
punctor from GPL into MON. F is faithful in view of [

To prove that F is full, let us consider a homomorphism
h:F(G) —> F(H).

Given y X, there are X,z <X such that (x,y),(y,z)eR, which
implies h(x)(h(z))2 h(y)(n(x))? nlz) ~ n(x) (néz))? (n(y)?
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(h(x))2 h(z). In view of 8, there exists ve X and a natu-
ral number q such that h(y) = ¢2, Similarly, we can show that
there exists u,ve X and natural numbers Py T such that b(x) =
= P, h(y) = v, Thus it 1s either v = y  and h(y) =3~y
or v*yo eand q =1, .

Therefore there exists g mapping £:X — Y such that
h(x) ~ £(x) for xeX.
Given (a,b)e R, then either £(a) = £(b) = ¥, and r(a),r(b)) e
€ S, or there are u,v,we X such that (u,v),(v,w)€R and either
u=a, v=">b, (ble Yo OT V = a, w=p, f(a):i:yo. Because
u uzv uZ'nu u wzvzuzw, we have
£00) (£(w))2 £(9) (£(u))2 £() £6w) (£(w))2(£(9))32(£(u) 2p(w)
and it follows from D that (£(a),P(b))es. Thus, £:@ —H is
a morphism and h = F(¢),
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