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SOLVABILITY OF NONLINEAR PROBLEMS AT RESONANCE
Pavel DRABEK

Abgstract: This paper deals with the solvability of non-
linear operator equations with finite-dimensional kernel of
the linear part and with nonlinearity given by odd real func-
tion g with f"’g(z)dz € Ruit o} and with no restrictions on

0
lim t min gl(2).
t >0,ve(a,t?

Key words: Noncoercive problems at resonance, weakly non-

linear boundary value mroblems, vanishing nonlinearities

Classification: 47H15, 35J40

1. Assumptions. Let £ c RY be a bounded domain, H =
= Lz(_Q_) be the real Hilbert space with usual inner product
{+ 4y+% and with the norm llull = (u,u)l/z. Suppose that

L:D(L)c H—>H

is a symmetric linear operator with dense domain D(L), with
nontrivial finitedimensional nullspace N(L) and closed range
R(L), Let
H = N(L) ® R(L)
and suppose that
K = (LIR(L))™1:R(L)—> R(L)

(so called the right inverse of L) is completely continuous.

We assume that N(L) has "unique continuation property"
in the sense that the only function we N(L) vanishing on a
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set of positive measure in Q is w = 0.

Let G be the Nemytskii operator associated with continu-
ously differentiable odd bounded function g R— R , g+0,
Giu > gou.

Obviously G maps H into H and has bounded range.
Let us suppose that
(1) c =llK|lzs‘upng'(z)|<l,

(2) there exists j;“g(z)dz.

Let us denote I = j:wg(z)dz (we admit I = * o0 ),
In distinction from papers [1] and [2] we assume nothing

about the limit

1 i (z),
t—g'-?wt':: € ?@?&.) . )

This paper also generalizes in some sense the results from [3],

[4] and [6] because we may have dim N(L)>1.

2. Ihecrem. Let fe R(L). Then the operator eauation

(3) Lu + G(u) = ¢
hap at least opme solutiop.
3. Proof of the theorem. We use the global Lyapunov-

Sohmidt method. For this purpose we denote P and Q the ortho-
gonal projections from H onto N(L) and R(L), respectively. It
is easy to see that the solvability of (3) is equivalent to
the solvability of the bifureation system

(3a) v + KQG(w + v) - k£ = 0,

(3b) PG(w + v) = 0,
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weN(L),ve R(L) ,w = Pu,v = Qu.

Step 1. For each we N(L) there exigts exactly one v(w)e
€ R(L) such that
(3a) v(w) + KQG(w + v(w)) - Kf = 0.
Define F(w,.):R(L)—> R(L),
Flw,o):v —> Kf - KQG(w + v),
for each we N(L). Then using Holder inequality we obtain that
NFlw,v,) = Flw,v,) I 21K11Q1 |li11|f>=4l [Q[g(w + ) - glw +

+ vyl] ulé.IlKll“:tﬂ;;1 fnlg(w +v) - glw+ vy)llul

If

21K\ zs\snlelg (z) 1| vy =vyll=c vy - v,

holds for each wsN(L),vl,vze R(L). The Banach contraction the-
orem implies that for each we N(L) there exists exactly one

v(w) € R(L) that

viw) = Flw,viw)).

Step 2. TIhere existg r>0 guch that for each weN(L) it
is
(4) Tw(w)ll 2 r,

The proof follows immediately from the boundedness of G.

Step 3. It is
(5) lim meas {x 6 Q ; Iviw)(x)Iz L %= 0,
£ —>+c0

u rmly with respect to weN(L).

The equality (5) follows from (4).

Step 4. For each k € N we have

lim meas {x e O ; |lw(x)l<kx} = o0.
lurll» 00w e NCL)
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Suppose on the contrary that there exists koe N , w.€ N(L),
lw l— + o such that
meas {x ¢ ;lwn(x)lékoizao>0.
A\
Put W, = w/ I wnll . Then we have
(6) meas {x € 0 ;| (x)|< k/Mlw I} = €

Since dim N(L)<+ o we can suppose that ’v?n———> w, in Lz(_Q_),

i.e. by Jegorov’s theorem for each M > O there exists N'c 0 ’

meas 1< 7 and Gn:; w, (uniformly)on Q ~ Q' . Ir we put

= €./2 and take the limit for n—>+ 0 in (6), we obtain
n o
meas {x € . ilw(x)] =03 > €,/2>0,

which is a contradiction with W€ N(L) and the unique continu-
ation property of N(L).
Step 5. If I € R then it is

lim v(w) = K¢ and lim Lv(w) = g,
N>+ Naw ll 5 + 0o

Using Hélder inequality we obtain
- 2 2 2
lvlw) - xell €2 1k "“(,:ﬁt_x‘sp’1 f_“llg(w + viw)ullc <
£IKIZ (L 1gw + v(w)2);
analogously |ILv(w) - ¢ Ilzé.( fnlg(w * v(w))lz).
Choose € > 0. Then there exists k>0 such that

(7 18(2)12 meas n) < e/2.

(sup
1212 %
According to Steps 3 and 4 we obtain the existence of suech
%€ > 0 that for llwll = 2¢ it is

(8) meas Qy = meas 4x € 0 ;lwix) + v(w)(x)] £k 3 <
< E/(ZZEuIR | g(2)12),
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Using (7) and (8) we obtain
Nvéw) - ke 122 11K 1124 fo,) 8w + v(w)1?) »

N (n{n“lg(w + w1213 £ 1K 12 {(sup 16(2)1% meas D)) +

+ ( su Ig(z)\zmeas.ﬁ.)}<l\K“2€z ;

lz| gb
analogously we obtain [lLv(w) - ¢ N2 <e.

Step 6. Put
(w)
gw) = 1/2 <Luw) ,v(w) > + [ dx AR DL PRAE COR

Then
“w*_i’mwcg(w) = Imeas Q - 1/2<f,Kf), in the case I e R and

= I=%2 .
n«}%EcJ?(W) w0 , if =2

We shall prove the assertion for I e R and I =+ @ (the
case I = - co 1is analogous). Let I € R . According to Step 3

it is "M’H)mwu/z <Lvlw),v(w))> = [, fviw)l = - 1/2< £ ,KE Y

Choose € > O. There exists k>0 such that
the
(9) ]j;— glzldz - Il < &,
Let e > O be such that (see Steps 3, 4)
(10) meas .Q.k < &,

for all weN(L), llwll = s¢ . Then for llwll = 2¢e we obtain us-
ing (9) and (10)
w+ar (w) wa ar (wr)

\j:n_ dx fa g(z)dz - Imeas .Q.lé\nf dx j; glz)dz -

~

wi g (w)
- Imeas (!).\.Q.k)l + | fnhdx ]:: g(z)dz|+ Imeas £, <
< ¢ (meas 2 + f:olg(z)ldz + I), which implies
w+ g (w)
1im fn dx ]: g(z)dz = Imeas QL .

> o0
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Let I =+ 0 . Then for arbitrary £ > 0 there exists
k>0 such that

fon'“g(z)dz > £ .

R
Let 9 > O be auch that meas Ny <min (1/2 fo | g(z)ldz,
1/2 meas 1), for all weN(L), lwll Z %e . Thus for llwil = s
it is

wynr (w) W+, ar ()
j;.,_dx fo g(z)dz :n[n‘,‘dx j; g(z)dz -
w4 v (w)
- l}:nhdx fo g(z)dz | > Lmeas ( O \D.k) -

*
- meas 0, fa 1 8(z)ldz 21/2 Lmeas 0 - 1/2 , which implies

w v (w)

1 d: dz =+ 00 .
.W"_:!;mw_f;1 x f; g(z)dz

This together with Step 2 proves the assertion for I =+00 .

Step 7. The fupction v(.):wi—s v(w) is Fréchet differen-
tiable on N(L). Since c<1 (gee (1)), the Fréchet derivative
of

(V,w) — v = Flv,w)

with respect to the first variable is invertible (lemma of Min-
ty) and the assertion then follows from the implicit function
theorem.

Acecording to Step 6 the function % :N(L) — R pust at-
tain its maximum or minimum in some point w, ¢ N(L), if I e R,
9 attains its maximum for I = = po and minimum for I = + 0o
Then
(11) <q>’(w°),h)= (o]
for each heN(L). On the other hand, it is

4 g"(wo),h >=1/2 <Lv'(w°)h,v(wo)> +1/2 (Lv(wo),v'(wo)h) +
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+ }_;18('0 + v(wo))h + j_‘ng(wo + v(wo))v'(wo)h - f_n_ fv'(wo)h.
Since L is symmetric, it is
1/2 <Lv’(wo)h,v(wo) >+ 1/2<Lvlwy) v (w )h >= <Lvlw,) »v Cw)n>
and (because of v'(wo)heR(L) and (3a) holds)
<Lv(wo),v'(wo)h>+ j_‘agﬁwo + v(wo))v'(wo)h = f.n fv'(wolh
for each he N(L). From (11) we obtain that

Jo8lwy + vlw Dh =0,

for each he N(L), which is nothing else than (3b).
The function u = LA v(wo). is then the solution of (3).

4. Applications. The results of this paper may be ap-
plied, for instance, to the following types of semilinear el-
liptic boundary value problems:

A 2 p ~u? in o
- u - u + ue =f in
(12) { . ’
u=0 on 3,

-
{"-Au— Au + pe™ sinu=f in 2,

(13)
u=0 on 9
Azu-ﬁ.kuaﬁ-&-“?:f in O,
(14) { A
ou
u = =0 on 9N,
on
A% - A u+glu) =¢ in O
(15} { K glu n )
ou
u = =0 on oM,
On

where g is bounded, odd, continuously differentiable function
with compact support in R .
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We put D(L) = wﬁ’z(n), resp. D(L) = wﬁ’z(_ﬂ), in the cases
(12),(13), resp. (14),(15). The operator L is defined by

{(Lu,v)= anu Vv = Ay fn_uv,
in cases (12) and (13);
{Lu,v> = anuAv - -Z—k fn uv,

in the cases (14) and (15). We suppose that Ay is any ei-
genvalue of the Laplace operator A , resp. the biharmonic
operator A 2, with Dirichlet boundary conditions. Then the
operator L satisfies all the assumptions from Section 1. Let
us note that the assumption of "unique continuation proper-
ty" is satisfied according to the result of Sitnikova [7].
The constant [5 > O depends on £} and it must be such that
the assumption (1) is fulfilled.

5. Remarks. As it was pointed out in Section 1, we assu-
me nothing about the limit

(16) lim t min g(z).
t>o eca,t?

It means that this paper generalizes the results of Fultk,
{rbec [1] and Hess [2]. The price we must pay for this gene-
ralization is the assumption (1) which is not very eligible.
This paper generalizes the results of de Figueiredo, Ni
L 3] and Concalves [ 6] because we may have dim N(L) >1 and it
need not be necessarily g(t)t=zo0, t ¢ R .
Following the proof of the theorem it is obvious that the

assumption that g is odd can be replaced by the assumption

f_:’g(z)dz = - fowg(z)dz.

Studying the function ¢ :N(L) —> R and using the
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Brouwer degree theory it is possible to prove the existence of

multiple solutions of (3) with the right hand side
f=fl"‘f21

e R(L) and fy€ N(L) with sufficiently small Ilfzﬂ . The

sketch of the proof is given in [5J.

6. en lem. According to the author’s best knowled-
ge it remains to be an open problem to prove the theorem with-
hout the condition (1) which makes restriction on the deriva-
tive 1g’(2)1, ze R,
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