

Werk

Label: Article **Jahr:** 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log35

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23.2 (1982)

SOLVABILITY OF NONLINEAR PROBLEMS AT RESONANCE Pavel DRÁBEK

Abstract: This paper deals with the solvability of non-linear operator equations with finite-dimensional kernel of the linear part and with nonlinearity given by odd real function g with $\int_0^\infty g(z)dz \in \mathbb{R} \cup \{\pm \infty\}$ and with no restrictions on $\lim_{t\to\infty} \int_0^\infty g(x)dx = \lim_{t\to\infty} \int_0^\infty f(x)dx$

 $\underline{\text{Key words}}\colon$ Noncoercive problems at resonance, weakly non-linear boundary value problems, vanishing nonlinearities

Classification: 47H15, 35J40

1. Assumptions. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, $H = L^2(\Omega)$ be the real Hilbert space with usual inner product

$$\langle \cdot, \cdot \rangle$$
 and with the norm $\|u\| = \langle u, u \rangle^{1/2}$. Suppose that
 $L: D(L) \subset H \longrightarrow H$

is a symmetric linear operator with dense domain D(L), with nontrivial finitedimensional nullspace N(L) and closed range R(L). Let

$$H = N(L) \oplus R(L)$$

and suppose that

$$K = (L|R(L))^{-1}:R(L) \longrightarrow R(L)$$

(so called the right inverse of L) is completely continuous.

We assume that N(L) has "unique continuation property" in the sense that the only function $w \in N(L)$ vanishing on a

set of positive measure in Ω is $\mathbf{w} \equiv 0$.

Let G be the Nemytskii operator associated with continuously differentiable odd bounded function g: $\mathbb{R} \longrightarrow \mathbb{R}$, $g \pm 0$,

Obviously G maps H into H and has bounded range.

Let us suppose that

(1)
$$c = ||K|| \sup_{z \in \mathbb{R}} |g'(z)| < 1$$
,

(2) there exists $\int_0^{+\infty} g(z)dz$.

Let us denote $I = \int_{0}^{+\infty} g(z)dz$ (we admit $I = \pm \infty$).

In distinction from papers [1] and [2] we assume nothing about the limit

$$t \xrightarrow{\lim_{t \to +\infty} t} \min_{\tau \in \langle \alpha, t \rangle} g(\tau).$$

This paper also generalizes in some sense the results from [3], [4] and [6] because we may have dim N(L) > 1.

2. Theorem. Let $f \in R(L)$. Then the operator equation

(3)
$$Lu + G(u) = f$$

has at least one solution.

3. Proof of the theorem. We use the global Lyapunov-Schmidt method. For this purpose we denote P and Q the orthogonal projections from H onto N(L) and R(L), respectively. It is easy to see that the solvability of (3) is equivalent to the solvability of the bifurcation system

$$(3a) \qquad v + KQG(w + v) - Kf = 0.$$

(3b)
$$PG(w + v) = 0,$$

- 360 -

 $w \in N(L), v \in R(L), w = Pu, v = Qu.$

Step 1. For each $w \in N(L)$ there exists exactly one $v(w) \in R(L)$ such that

(3a)
$$v(w) + KQG(w + v(w)) - Kf = 0.$$

Define $F(w,.):R(L) \longrightarrow R(L)$,

$$F(w,.):v \longmapsto Kf - KQG(w + v),$$

for each w \in N(L). Then using Hölder inequality we obtain that $\|F(w,v_1) - F(w,v_2)\| \leq \|K\| \|Q\| \sup_{\|\omega\|_{1}^2 + 1} |\int_{\Omega} [g(w+v_1) - g(w+v_2)] |u| \leq \|K\| \sup_{\|\omega\|_{1}^2 + 1} |\int_{\Omega} |g(w+v_1) - g(w+v_2)| |u| \leq \|K\| \sup_{z \in \mathbb{R}} |g'(z)| \|v_1 - v_2\| = c \|v_1 - v_2\|$

holds for each $w \in N(L)$, v_1 , $v_2 \in R(L)$. The Banach contraction theorem implies that for each $w \in N(L)$ there exists exactly one $v(w) \in R(L)$ that

$$v(w) = F(w, v(w)).$$

Step 2. There exists r > 0 such that for each $w \in N(L)$ it

The proof follows immediately from the boundedness of $\ensuremath{\mathsf{G}}_\bullet$

Step 3. It is

(5) $\lim_{\ell \to +\infty} \max \{x \in \Omega ; |v(w)(x)| \ge \ell \} = 0,$

uniformly with respect to w ∈ N(L).

The equality (5) follows from (4).

Step 4. For each k & N we have

Suppose on the contrary that there exists $\mathbf{k}_0\in\mathbb{N}$, $\mathbf{w}_n\in\mathbf{N}(\mathbf{L})$, $\|\mathbf{w}_n\|\longrightarrow$ + ∞ such that

meas
$$\{x \in \Omega ; |w_n(x)| \le k_0 \} \ge \epsilon_0 > 0.$$

Put $\hat{\mathbf{w}}_n = \mathbf{w}_n / \| \mathbf{w}_n \|$. Then we have

(6) meas
$$\{x \in \Omega; |\widehat{w}_n(x)| \leq k_0 / ||w_n||\} \geq \varepsilon_0$$

Since dim N(L)<+ ∞ we can suppose that $\widehat{w}_n \longrightarrow w_0$ in $L^2(\Omega)$, i.e. by Jegorov's theorem for each $\eta>0$ there exists $\Omega'\subset\Omega$, meas $\Omega'<\eta$ and $\widehat{w}_n\Longrightarrow w_0$ (uniformly) on $\Omega<\Omega'$. If we put $\eta=\varepsilon_0/2$ and take the limit for $n\longrightarrow+\infty$ in (6), we obtain

meas
$$\{x \in \Omega; |w_0(x)| = 0\} \ge \varepsilon_0/2 > 0$$
,

which is a contradiction with $w_0 \in N(L)$ and the unique continuation property of N(L).

Step 5. If $I \in \mathbb{R}$ then it is

$$\lim_{\|w\|\to +\infty} v(w) = K_f^e \text{ and } \lim_{\|w\|\to +\infty} Lv(w) = g.$$

Using Hölder inequality we obtain

analogously $\|Lv(w) - f\|^2 \le (\int_{\Omega} |g(w + v(w))|^2)$. Choose $\varepsilon > 0$. Then there exists k > 0 such that

(7)
$$(\sup_{\|z\| \ge \theta_{\varepsilon}} \|g(z)\|^2 \text{ meas } \Omega) < \varepsilon/2.$$

According to Steps 3 and 4 we obtain the existence of such 9e > 0 that for $||w||| \ge 9e$ it is

(8) meas
$$\Omega_k = \text{meas } \{x \in \Omega; |w(x) + v(w)(x)| \le k \} <$$

$$< \varepsilon/(2 \sup_{x \in \mathbb{R}} |g(x)|^2).$$

Using (7) and (8) we obtain

$$\|v(w) - K_f^2\|^2 \le \|K\|^2 \{(\int_{\Omega_{g_0}} |g(w + v(w))|^2) +$$

+
$$(\int_{\Omega_{k}} |g(w + v(w))|^2) \le ||K||^2 \{ (\sup_{z \in \mathbb{R}} |g(z)|^2 \text{ meas } \Omega_k) +$$

+
$$(\sup_{|z| \ge k} |g(z)|^2 \max \Omega)$$
 $\leq ||K||^2 \in$;

analogously we obtain $\|L_V(w) - f\|^2 < \varepsilon$.

Step 6. Put

$$g(w) = 1/2 \langle Lv(w), v(w) \rangle + \int_{\Omega} dx \int_{0}^{w + v(w)} g(z)dz - \int_{\Omega} fv(w).$$

Then

 $\lim_{\|\mathbf{w}\| \to \infty} \varphi(\mathbf{w}) = \operatorname{Imeas} \Omega - 1/2 \langle \mathbf{f}, \mathbf{K} \mathbf{f} \rangle, \text{ in the case I } \mathbf{e} \mathbb{R} \text{ and}$ $\lim_{\|\mathbf{w}\| \to \infty} \varphi(\mathbf{w}) = \pm \infty \quad , \text{ if I } \mathbf{f} = \pm \infty .$

We shall prove the assertion for I ϵ R and I = + ∞ (the case I = - ∞ is analogous). Let I ϵ R . According to Step 5 it is $\lim_{\|w\| \to \infty} [1/2 < Lv(w), v(w)) > -\int_{\Omega} fv(w)] = -1/2 < f, Kf > .$

Choose & > 0. There exists k > 0 such that

(9)
$$|\int_0^{\pm ik} g(z) dz - I| < \varepsilon.$$

Let 20 > 0 be such that (see Steps 3, 4)

(10) meas
$$\Omega_{k} < \varepsilon$$
,

for all $w \in N(L)$, $||w|| \ge \infty$. Then for $||w|| \ge \infty$ we obtain using (9) and (10)

$$\left| \int_{\Omega} dx \int_{0}^{w+w} g(z)dz - \text{Imeas } \Omega \right| \leq \left| \int_{\Omega \setminus \Omega_{R_{0}}} dx \int_{0}^{w+w} g(z)dz - \frac{1}{2} dx \right|$$

- Imeas
$$(\Omega \setminus \Omega_k)$$
 | + | $\int_{\Omega_k} dx \int_0^{w+\int_0^{w}(w)} g(z)dz$ | + Imeas $\Omega_k < \infty$

$$< \varepsilon \, (\text{meas } \Omega + \int_0^\infty |g(z)| dz + I), \text{ which implies}$$

$$\lim_{\|w\| \to \infty} \int_{\Omega} dx \int_{0}^{w+y^{*}(w)} g(z)dz = \operatorname{Imeas} \Omega.$$

Let I = + ∞ . Then for arbitrary $\ell > 0$ there exists k > 0 such that

$$\int_0^{\pm \frac{1}{2}} g(z) dz > \ell .$$

Let $\varkappa>0$ be such that meas $\Omega_k<\min (1/\ell\int_0^k|g(z)|dz,$ 1/2 meas Ω), for all $w\in N(L)$, $\|w\|\geq \varkappa$. Thus for $\|w\|\geq \varkappa$ it is

$$\int_{\Omega} dx \int_{0}^{w+w(w)} g(z)dz \ge \int_{\Omega \setminus \Omega_{A_{k}}} dx \int_{0}^{w+w(w)} g(z)dz - \int_{\Omega_{A_{k}}} dx \int_{0}^{w+w(w)} g(z)dz = \int_{\Omega_{A_{k}}} dx \int_{0}^{w+w(w)} g(z)dz$$

- meas $\Omega_k \int_0^k |g(z)| dz \ge 1/2 \ \ell \, \text{meas} \ \Omega \ - 1/\ell$, which implies

$$\lim_{\|\mathbf{w}\| \to \infty} \int_{\Omega} d\mathbf{x} \int_{0}^{\mathbf{w}+\mathbf{v}(\mathbf{w})} g(\mathbf{z}) d\mathbf{z} = + \infty.$$

This together with Step 2 proves the assertion for I = $+\infty$.

Step 7. The function $v(\cdot):w\mapsto v(w)$ is Fréchet differentiable on N(L). Since c<1 (see (1)), the Fréchet derivative of

$$(v,w) \mapsto v - F(v,w)$$

with respect to the first variable is invertible (lemma of Minty) and the assertion then follows from the implicit function theorem.

According to Step 6 the function $\varphi: N(L) \longrightarrow \mathbb{R}$ must attain its maximum or minimum in some point $w_o \in N(L)$, if $I \in \mathbb{R}$, φ attains its maximum for $I = -\infty$ and minimum for $I = +\infty$. Then

(11)
$$\langle \varphi'(\mathbf{w}_0), \mathbf{h} \rangle = 0$$

for each $h \in N(L)$. On the other hand, it is

$$\langle g'(w_0), h \rangle = 1/2 \langle Lv'(w_0)h, v(w_0) \rangle + 1/2 \langle Lv(w_0), v'(w_0)h \rangle + -364 -$$

+
$$\int_{\Omega} g(\mathbf{w}_0 + \mathbf{v}(\mathbf{w}_0)) h$$
 + $\int_{\Omega} g(\mathbf{w}_0 + \mathbf{v}(\mathbf{w}_0)) \mathbf{v}'(\mathbf{w}_0) h$ - $\int_{\Omega} f \mathbf{v}'(\mathbf{w}_0) h$.
Since L is symmetric, it is

$$\begin{split} &1/2 < \text{Lv'}(\textbf{w}_{o})\textbf{h}, \textbf{v}(\textbf{w}_{o}) > + \ 1/2 < \text{Lv}(\textbf{w}_{o}), \textbf{v'}(\textbf{w}_{o})\textbf{h} > = < \text{Lv}(\textbf{w}_{o}), \textbf{v'}(\textbf{w}_{o})\textbf{h} > \\ &\text{and (because of v'}(\textbf{w}_{o})\textbf{h} \in \textbf{R}(\textbf{L}) \text{ and (3a) holds)} \end{split}$$

$$\langle Lv(w_0), v'(w_0)h \rangle + \int_{\Omega} g(w_0 + v(w_0))v'(w_0)h = \int_{\Omega} fv'(w_0)h$$

for each $h \in N(L)$. From (11) we obtain that

$$\int_{0}^{\infty} g(w_{0} + v(w_{0}))h = 0,$$

for each $h \in N(L)$, which is nothing else than (3b).

The function $u = w_0 + v(w_0)$ is then the solution of (3).

4. Applications. The results of this paper may be applied, for instance, to the following types of semilinear elliptic boundary value problems:

(12)
$$\begin{cases} -\Delta u - \lambda_k u + \beta u e^{-u^2} = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega; \end{cases}$$

(13)
$$\begin{cases} -\Delta u - \lambda_k u + \beta e^{-u^2} \sin u = f \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega; \end{cases}$$

(14)
$$\begin{cases} \Delta^2 u - \lambda_k u + \frac{\beta u}{1 + u^8} = f & \text{in } \Omega, \\ u = \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega; \end{cases}$$

(15)
$$\begin{cases} \Delta^2 u - \lambda_k u + g(u) = f & \text{in } \Omega, \\ u = \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega, \end{cases}$$

where g is bounded, odd, continuously differentiable function with compact support in $\mathbb R$.

We put $D(L) = W_0^{1,2}(\Omega)$, resp. $D(L) = W_0^{2,2}(\Omega)$, in the cases (12),(13), resp. (14),(15). The operator L is defined by

$$\langle Lu, v \rangle = \int_{\Omega} \nabla u \nabla v - \lambda_k \int_{\Omega} uv,$$

in cases (12) and (13);

$$\langle Lu, v \rangle = \int_{\Omega} \Delta u \, \Delta v - \lambda_k \int_{\Omega} uv,$$

in the cases (14) and (15). We suppose that λ_k is any eigenvalue of the Laplace operator Δ , resp. the biharmonic operator Δ^2 , with Dirichlet boundary conditions. Then the operator L satisfies all the assumptions from Section 1. Let us note that the assumption of "unique continuation property" is satisfied according to the result of Sitnikova [7]. The constant $\beta>0$ depends on Ω and it must be such that the assumption (1) is fulfilled.

5. Remarks. As it was pointed out in Section 1, we assume nothing about the limit

(16)
$$\lim_{t\to\infty,\,\tau\in\langle\alpha,t\rangle} \min g(\tau).$$

It means that this paper generalizes the results of Fučík, Krbec [1] and Hess [2]. The price we must pay for this generalization is the assumption (1) which is not very eligible.

This paper generalizes the results of de Figueiredo, Ni [3] and Concalves [6] because we may have dim N(L) > 1 and it need not be necessarily $g(t) t \ge 0$, $t \in \mathbb{R}$.

Following the proof of the theorem it is obvious that the assumption that g is odd can be replaced by the assumption

$$\int_{-\infty}^{0} g(z)dz = -\int_{0}^{\infty} g(z)dz.$$

Studying the function $\varphi: N(L) \longrightarrow \mathbb{R}$ and using the - 366 -

Brouwer degree theory it is possible to prove the existence of multiple solutions of (3) with the right hand side

$$f = f_1 + f_2,$$

 $f_1 \in R(L)$ and $f_2 \in N(L)$ with sufficiently small $\| f_2 \|$. The sketch of the proof is given in [5].

6. Open problem. According to the author's best knowledge it remains to be an open problem to prove the theorem withhout the condition (1) which makes restriction on the derivative |g'(z)|, $z \in \mathbb{R}$.

References

- [1] FUČÍK S., KRBEC M.: Boundary value problems with bounded nonlinearity and general nullspace of the linear part, Math. Z. 155(1977), 129-138.
- [2] HESS P.: A remark on the preceding paper of Fučík and Krbec, Math. Z. 155(1977), 139-141.
- [3] FIGUEIREDO D.G., WEI-MING NI: Perturbations of second order linear elliptic problems by nonlinearities without Landesman-Lazer condition, Nonlinear Analysis 3(5) (1979), 629-634.
- [4] DRÁBEK P.: Bounded nonlinear perturbations of second order linear elliptic problems, Comment. Math. Univ. Carolinae 22(1981), 215-221.
- [5] DRÁBEK P.: Rešimosť nělinejnych někoercitivnych uravněnij (Russian), in: Proceedings of the VII. Soviet-Cze-choslovakian converence on "Theory of functions and functional analysis in mathematical physics" held in Jerevan, 28.9.-3.10.1981.
- [6] CONCALVES, J.V.A.: On bounded nonlinear perturbations of and elliptic equation at resonance, Nonlinear Analysis 1(5) (1981), 57-60.

[7] SITNIKOVA E.G.: Těorema o silnom nule dlja elliptičeskogo uravněnija vysokogo porjadka, Mat. Sbormik 8(123) (1970), 376-397.

Katedra matematiky VŠSE, Nejedlého sady 14, 30614 Plzeň, Czechoslovakia

(Oblatum 4.2. 1982)