

Werk

Label: Article **Jahr:** 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log34

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23,2 (1982)

A NOTE ON CLOSED N-CELLS IN R

Abstract: In the paper the cohomological property of immersion of closed n-cells is given.

Key words: Closed n-cell, Čech cohomology theory, Alexander duality.

Clasification: 55NO5

§ 1. <u>Introduction</u>. In this paper some homological properties of closed n-cells will be discussed.

Let U and V be domains in \mathbb{R}^N , $U \subset V$, such that \overline{U} and \overline{V} are closed N-cells (i.e. sets homeomorphic to \overline{B}^N , see [3]). One can show that in this situation \overline{U} is a deformation retract of \overline{V} . It is an easy consequence of the fact that \overline{U} and \overline{V} are absolute retracts. But there is the second natural problem: Is the set ∂U a deformation retract of \overline{V} -U? In the polyhedral case there is a simplicial deformation. But in general case it seems to be a difficult problem.

The following statement is closely related with our question. We will prove it making use of the usual methods of algebraic topology.

Theorem. Let U and V be domains in \mathbb{R}^N as above. Let $M \subset \overline{U}$ be

a set which contains ∂U_{\bullet} Let us denote $R=\overline{V}$ - U and J = $R\cup M_{\bullet}$ Then

$$\check{H}^*(J) = \check{H}^*(M)$$

 $H^*(X)$ denotes here the Čech cohomology group of X with integral coefficients (for Čech cohomology see [1], [3]).

§ 2. Proof of the Theorem. Let us put
$$B^{N} = B = \{x = (x_{1}, \dots, x_{n}) \in |\mathbb{R}^{N}| x_{1}^{2} + \dots + x_{N}^{2} < 1\}$$

$$S^{N-1} = S = \partial B$$

and assume V = B.

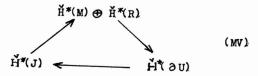
We can transform the general case to a special one using the homeomorphism of \overline{B} with \overline{V}_{\bullet}

i) It is easy to see $\mathbb{R}^N-\mathbb{R}\cong B\ \dot{\cup}\ (\mathbb{R}^N-\overline{B})$ ($\dot{\cup}$ - the topological sum). We get from the Alexander Duality Theorem (see [1])

$$\breve{\mathtt{H}}^{n-q-1}(\mathtt{R}) \cong \widetilde{\mathtt{H}}_q(\mathtt{B} \ \dot{\cup} \ (\ \mathtt{IR}^{\overline{N}} - \overline{\mathtt{B}})) \cong \widetilde{\mathtt{H}}_q(\ \mathtt{IR}^{\overline{N}} - \mathtt{S}) \cong \breve{\mathtt{H}}^{n-q-1}(\mathtt{S})$$

Hence R is a cohomological (N-1)-sphere.

ii) The couple (R,M) is excisive in the Čech cohomology theory (see [3] and [1]). Hence there is the Mayer-Vietoris exact triangle



because $R \cap M = \partial U$ and $R \cup M = J$ by the definition. The Theorem can be obtained, if we use in (MV) the results of i).

Q.E.D.

Note that the Theorem can be proved for N=2 without the explicit use of Alexander Duality Theorem.

Let R_i be the sequence (maybe finite) of components of $R - \partial U$. It is possible to show that \overline{R}_i are Jordan domains and, by Schönflies Theorem, closed 2-cells. We can prove $J = M \smile \overline{R}_i$ and our Theorem follows by the continuity of the Čech cohomology theory.

Referen ces

- [1] SPANIER E.H.: Algebraic topology, McGraw-Hill, Inc. 1966.
- [2] EILENBERG S., STEENROD N.: Foundations of Algebraic Topology, Princeton University Press 1952.
- [3] DOLD A.: Lectures on Algebraic Topology, Springer Verlag 1972.

Matematicko-fyzikální fakulta, Universita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia

(Oblatum 19.2. 1982)