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EXTENSIONS OF k-SUBSETS TO k+1-SUBSETS .
— EXISTENCE VERSUS CONSTRUCTABILITY

S. POLJAK, D. TURZIK, P. PUDLAK

Abstract: Our aim is to look for algorithms which const-
ruct objects whose existence is proved nonconstructively. We
present two algorithms, one that for any given k-subset of a
set X finds a disjoint k-subset of X so that distinct subsets
have distinct images, and one that extends any given k-subset
of a set X to a k+l-subset of X so that distinct k-subsets ha-
ve distinct extensions. We discuss some relations between de-
cision ard construction problems. '
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Int t . Our aim is to look for algorithms which con-
struct objects whose existence is proved nonconstructively. In

§ 1 we consider the following two problems concerning subsets.

1. Let X be a set of cardinality n and k<n/2. For any
given k-subset A find a disjoint k-subset B, denoted by B =
= DIS(A,X), so that distinct subsets have distinct images, i.e.
A4A " implies uIS(A,X)=+DIS(A",X).

2. Let X be a set of cardinality n and k< n/2. Extend
any given k-subset A to a k+l-subset B, denoted by B = EXT(A,X),
so that distinct k-subsets have distinct extensions, i.e. A#A'
implies EXT(A,X)<EXT(A",X).

Using the Konig-Hall theorem one can easily prove the ex-
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istence of such mappings DIS and EXT. We present two algorithms,
DIS and EXT which for a given subset A construct DIS(A,X) and
EXT(A,X) in polynomial time.

In § 3 we specify a class of problems - we call them pure-
1y constructive - for which the decision problem is easy while
the constructive one might be hard. Two problems about Hamilto-
nian cycles discussed in § 2 are examples of purely constructi-

Ve problems.

§ 1. A construction of a mapping @ can be understood in
two ways.
(a) A construction of the list of all pairs (x,¢(x)),

(b) a procedure which for a given x constructs ¢(x).

Ifr we wanted to obtain a list of all pairs (A’? (4)) in
the case when @ is either DIS(-,X) or EXT(-,X), we could do it
well by using the matching algorithm ([5]). But such a list might
be of size exponential in-n, e.g. for k~n/3. The latter approach

will be more convenient in the following case.

Given an input sequence Al’AZ""’Ar of (not necessarily
all) subsets of X we are to construct the sequence Cf(Al),
@(Ay) 4000y @(A,) provided when dealing with A; we do not know
th‘e other members ‘AJ’ Jj>1.

We present two algorithms DIS and EXT which for a given
k-subset A construct DIS(A,X) and EXT(A,X), respectively, in
0(x?) steps. X’

x) We count writing a number, comparing,two numbers etc. as
a 8ingle step as in the model of RAM s.
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Description th lgorithm DIS. Let X be a set of car-
dinality n and A its subset of cardinality k<£n/2. Suppose X =
={0,1,s00,n-1% and A = {al,...,ak}. Suppose the set X forms a
cycle. The image DIS(A,X) of A is constructed as "a shadow" of A..

@ - the elements of A

X - the elemrents of the imepe P

Fig. 1
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Formally, the procedure DIS constructs an output sequenece
(bl’bz""’bk) for an input sequence (al,az,...,ak) as follows.

Procedure DIS(4,X);

Bi= 6 (the empty set);

For j:=1 to k do

Begin

bJ:= aJ;

Do bd:= bj-bl mod n until bJ¢AuB;

B:= Buibyl;

end;

DIS((el,...,ak),X):= (bl,...,bk);

Lemma. Let (ai,...,a;) be a permutation of (By,00yay)
and DIS((ai,...,aé),X) = (bi,...,bé). Then {bi,...,bi} =
= ﬁ_bl,no-,bkso

Proof. As every permutation can be decomposed into trans-—
lations of pairs of consecutive members, it is sufficient to
prove the lemma only for the case when (ai,..-,a;) = (al,...
$0t184.1984411984985,5500058,) for 1 = 1,2,...,k-1,

Clearly, b5 =Dbj for § =1,...,1-1. Then either by = by

and by = by, OT by = by, and bj,1 = bj. Hence {bl,..m

ceesbygl = {bl""'b1+1§' and then again bJ = by for § = 1+2,
eeoyke O

Thus, the output set B does not depend on the ordering orf
the input set A. In the following DIS(A,X) will mean the out-
put set (without ordering).

Theorep 1. The algorithm DIS satisfies
(1) \p1s(a,X)| =k
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(2) ANDIS(A,X) = p
(3) A44"=> DIS(A,X)#+DIS(A",X)

for all k-subsets A, A" of a set X, k«|X[/2. Moreover,
DIS(A,X) is constructed in 0(k%) steps.

Proof. The (1),(2) and the number of steps are easy to
check. We prove (3). Consider a procedure DIS-]‘ defined in the
same way as DIS but by:= by-1 mod n. Clearly DIS and pIS~! are

inverse. O

Description of the glgorithm EXT. Let X be a set of car-

dinality n and A its subset of cardinality k<n/2. Suppose X -
=4{1,2,¢..,n% and A = {al,az,...,ak7; with aj<a,<...<a,.

1. Find an integer t(A) such that

t(A) =max §t| |4 n{1,2,...,2t+1%] = t}.
(It may happen t(A) = 0.)

2. Set Y = {1,2,...,2t(A)+1)} and apply the algorithm
DIS to the input (AnY,Y). Then the set DIS(ANY,Y) is a set
of cardinality t(A) disjoint to An Y. Thus Y \DIS(A nY,Y) is a
set of cardinality t(A)+l containing AnY.

3. Set EXT(A,X) = AU(Y\ DIS(ANY,Y)) which is a set of
cardinality k+l1 containing A.

Procedure EXT(A,X);

ti= k;
(4) while ay> 2t+l do t:i= t-1;

Y:i=41,2,...,2t+1%;

EXT(A,X):= & u(¥Y\ DIS(A NY,Y));

Theorem 2. The algorithm EXT satisfies
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(5} 1EXT(A4,X)|= k+1
(6) &c EXT(aA,X)
(1) A+A"=> EXT(A,X) £ EXT(4",X)

for all k-subsets A, A of a set X, k<|X|/2. Moreover, EXT(A,X)
1s constructed in 0(k%) steps.

Proof. The (5),(6) and the number of steps are easy to
check. Clearly t(A) 1s the integer t constructed by (4). we
prove (7).

Let & and A" be two distinct k-subsets of X. Assume t(A’) <
<t(A). We distinguish two cases.

(1) t(A") = t(a). Put Y = {1,2,...,2t(A)+1%. Then either
ANY+A'NY or 8nY+AA Y. In the former case EXT(A,X) <
+ EXT(A",X) as the added elements belong to Y. In the latter
case DIS(AnY,Y)+DIS(A'n Y,Y) by (3), and hence (7).

(11) t(A") < t(A). Set Y as above.

‘Then

(8) [EXT(A,X)NY]| = t(a)+1,
and

(9) IEXT(A",X)nTYlat(a),
as |1A°AYl<t(A). Thus, by (8) and (9), the sets EXT(A,X) and
EXT(A",X) have distinct intersection with Y, and (7) follows. O

Remark 1. The k+l-subsets B, the extensions of k-subsets
constructed by the algorithm EXT, can be recognized as those
satisfying

1Bn41,2,...,2t41%| = t+1 for some t = Oylyeesy [%LJ.
Remark 2. Put pk(x) = {AcX | |A| = kx}. vefine bipartite
graphs Gl and G2 as follows.
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V(G,) = P_x 10,13,
{(4,0),(B,1)} is an edge of G, if AnB = 6,

V(GZ) = Pk(x)u Pkﬂ(x),
{A,B} is an edge of G, if A § B.

Hence G, is a regular bipartite graph of degree (";k), and
G2 is a bipartite graph with vertices of degree n-k in Pk and
k+l in Pbl' It follows from the Konig-Hall theorem that Gl has
a perfect matching iff k&n/2, and Py can be matched into Pra
in G, iff n-kZk+l (&= k<n/2). (See [2], Chapter 7, Corollary

2 of Theorem 2.)

Remark 3. Let G, and Gz be as above. Using parallel pro-
cessing, the algorithms DIS and EXT construct a maximal match-
ing in G, and G,, in 0(\1032\0:,_\) and 0(10321021) steps, respec-
tively. "

Remark 4. Let n,k,r be positive integers satisfying 2k +
+ r<£n. Define EXT(r) in the same way as EXT but

(4°) while a > 2t+r do ti= t-1;
instead of (4). Then EXT('r) constructs a one-to-one extension

of k-subsets to k+r-subsets.

We were informed that related questions were studied in

(8], which yields another algorithm for the mapping EXT.

§ 2. The approach of the previous section can be charae-
terized as follows. We were able to prove existence easily and
we tried to find an algorithm. The same situation has appeared
also in other problems. For example, Chvétal [4] proved that
any graph G with n vertices and degrees dlé dzé... é.dn satis-
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fying

(x) dy£k<n/2 =>d Z n-k

n-k=
must have a Hamiltonian cycle. An algorithm finding a Hamilto-
nian cycle for graphs satisfying (x) in polynomial time was
given later in [3].

In 1946 C.A.B. Smith proved the following theorem.

In a simple regular graph of degree 3, the number of Ha-

miltonian cycles that contain a given edge is even.

A nonconstructive proof of this theorem, based on counting
modulo 2 the number of cycles, is in (21, Chapter 10, Theorem
2). This theorem suggests the following problem. Given a trip-
le (G,e,C), where G is a 3-regular graph, and C a Hamiltonian
cycle of G containing the edge e, construct another Hamiltoni-
an cycle containing e. We do not know whether there is a poly-
nomial algorithm for this problem. Thomason [T] suggested the
following algorithm, but it is not clear how many steps the

algorithm requires in the worst case.

l, Let C = (xl,...,xn) be the given Hamiltonian cycle
containing the given edge e =;(x1,12). A sequence P ,P, ....

is constructed until Pk forms a Hamiltonian cycle for some k>O0.

P, = (xl,xz,...,xn)

P = (xl""’xi'xn’xn-1’°"'x1+1) where (xn,xi) E(G),
TykX) X .

Ir P;j = (yl,...,yn),

put PJ,,1 = (yl""’yi'yn'yn-l""’yiﬂ) where (’n”i)

is the only edge incident to Y, which belongs neither to
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P .
P‘j nor to 3-1

We have found a family of graphs &GnS for which the algo-
rithm constructs just (n-1)2+2 paths. The graphs G, are defin-
ed by

V(G,) = Ay 9XppeeesXonl

E(G,) = {(xgyx5 9011 = 1,...,2n—1§u{(x2n,xl)5 v

) {(xi,x

2n—i)l i= l,...,n—liul{(xn,x2n)i,

Cc= (xl’x2""’x2n) and e = (xl,x2).

2n-1 2n-2 2n-3 n+2 n+1

L] L L ]
2n /
e [ ] L .
1 2 3 n-2 n-1
Gn
rige. 2

§ 3. In the theory of NP-problems usually only the exis-
tence of decision algorithms is investigated. In practice, how-
ever, it is more important to have an algorithm for a related
construction problem. Namely, each NP-problem can be represen-

ted in the following form:
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Given x determine whether there is y such that R(x,y);
where R(x,y) 418 some polynomial time decidable relation and
such that the size of ¥ is bounded by a polynomial of the size

of x.

Then the construction problem is: Given X, construct y
such that R(x,y) if there exists at least one such y.

It is known [6] that for NP-complete problems the exist-
ence of a polynomial time decision algorithm is equivalent with
the existence of a polynomial time construction algorithm. This
is a reason why most investigations deal only with the simpler
concept of decision problems.

Consider for example Hamiltonian graphs. Then the relati-
on R(x,y) means x is a graph and y is a Hamiltonian cycle in x.
Clearly, R(x,y) can be decided in polynomial time. Suppose a
decision algorithm for Hamiltonian graphs is given. Then in or-
der to construct a Ham. cycle in a Ham. graph we can use the
following simple procedure. Take an edge e in G and use the al-
gorithm to test whether G-e is Hamiltonian. If not, try another
edge. If you find an edge f such that G-f ig Ham., repeat the
procedure with G replaced by G-f until the remaining edges form
a Ham. cycle. For general NP-complete problems the proof is ve-
ry similar, |

The situation is different for the two examples discussed
in the preceding section. The structure of these problems is
the following: We are given a polynomial time decidable predi-

cate S(x) such that for each x
s(x) = 3y R(x,y),

and we need an algorithm which for x such that S(x) constructs
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¥ such that R(x,y). We suggest to call problems of this struc—
ture purely constructive since their decision problems are by
definition easy.

In the first example R(x,y) means y is a Ham. cycle in a
graph x and S(x) is the Chvétal’s condition. This condition can
be tested in polynomial_time and his theorem [4] assures that
each graph satisfying the condition is Hamiltonian. In the se-
cond example R(x,y) means x = (G,e,C), where G is a graph, e
is an edge and C is a Ham. cycle in G containing e, and y is a
Ham. cycle in G distinct from C and containing e.

On the other hand, one cannot show that maximal clique
problem is purely constructive since no polynomial time algo-
rithm is known for decision whether given clique is of maximal
cardinality in a given graph.

There are two extreme possibilities for purely constructi-
ve problems:

I. For each purely constructive problem there is a poly-
nomial time algorithm.

II. There is a purely constructive problem such that each
construction algorithm for it is NP-hard.

We believe that the truth is somewhere inbetween (i.e. nei-
ther I. nor II. is true). Let us note that I. implies NP coNP=
=P, and NP = coNP impliés II. It was shown in [1] that one can-
not prove or disprove P=NP, NP=coNP, NP coNP=P, and scme other
statements using methods that allow relativization. The same is
true about the statements I. and II., thus thkey are probably
very difficult, too. b
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Appendix. It is easy to modify the algorithm DIS so that
it runs in O(k) steps. This gives us an algorithm for EXT which

runs in O(k) steps as well.

Let X = {0,1,...,n-1} and A = 481,85,...,8, 3 cX such that
8)< 8;< ... <y, k£n/2.

Procedure DIS(4,X);
Begin

# (the empty set);

He O e e W
] "
o O
+ -
(=

= ay;
L2: i:= i+l mod n;
if ieA then
begin
p:= pt+lj
Ji= j+1;
go to L2;
end;
if 1€ B then go to L2;
if p>0 then
begin
p:= p-1;
B:= Buii};
go to L2;
end;
if J< k then go to L1;
EXT(a,X):= B;

end of procedure; - 348 -
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