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ON A CLASS OF MOUFANG LOOPS
Giordano GALLINA

Abstract: Multiplication groups of Moufang loops deriv-
ed from antiassociative rings are studied.

Key wordg: Moufang loop, multiplication group.
Classification: 20NO5

In [1], a class of Moufang loops is constructed. In the
present note, several properties of these loops are investi-
gated. A speclal attention is paid to the corresponding mul-
tiplication groups.

1. Prelipjnaries. Throughout this paper, let R be a ring

(possibly non-associative) such that x°

YE€R.

= 0 = x.xy for all x,

l.1. Lepma. (i) xy = -yx and x.yz = -xy.z for all x,y,
zeR,

(11) xy.uv = x(y.uv) = x(yu.v) = -xyeuv = (xy.u)v.=
= (x.yu)v for all x,y,u,veR,

Proof. (i) We have (x + y)2 = 0, and hence xy = -yx.
Moreover, (x + y)((x + y)z) = 0, x.yz = -y.xz. From this,
X e YZ = =XeZY = ZeXy = =XY°*Ze

(11) This is an easy consequence of (i).
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Put R? = {xy;x,ye R}, RS = ix.yz;x,y,z€ R} and R4 =
= {xy.uv;x,y,u,ve R}. Then R*s R3€ R? and, according to 1.1,
RS = fxy.z;x,y,z€ R}, R* = {x(yeuv)$ ={x(yu.v)¥ = {(xy.u)v} =
= {(x.yu)v} and 2r* = 0. Further, let I = fa€eR;2a.xy = 0 for
all x,ye R} and K = {ae R;2ax = O for every xe R}, Then both
I and K are ideals of R, KEI, R3c K and R°c I.
Now, we shall define a new binary operation o on R by

Xoy =x + y + xy for all x,yeR,

1.2. Proposition. R(e ) is a Moufang loop, the nucleus
N(R(e)) of R(°) 1is equal to I and the centre C(R( o)) of
R(e ) is equal to K.

Proof. All the assertions can be checked easily.

1.3. Lemms. x-l=-x,xo(yoz) =X+y+2z+xy+xz+

+yz+x-yzand (Xoyloz =x+y+2z+xy+xz+yz+xy2
for all x,y,zeR.

Proof. Obvious.

1.4. Proposition. R(e)/C(R(e)) is a group. In parti-
cular, R(o) is associatrally nilpotent of class at most 2.

Proof. Let x,y,z€R and a = xo(yoz), b =(x0y)oz,
By 1.1 and 1.3, aob ¥ = 3x-yze RIEK = G(R( )).
Consequently, R(o )/C(R(o)) is a group.

1.5. Propogition. R(eo )/N(R(e )) is an abelian group.

Proof. By l.4, the factorloop is a group. On the other
hand, (xoy) e (yox)™! = 2xye I = N(R(2)) for all x,yeR.

1.6. Proposition. The second centre Cy(R(2)) of R(o )
is equal to the set of all aeR such that 4a.xy = 0 for all
x,y6 R. In particular, N(R(e ))e CZ(R( ©)) and R(o ) is cent-

- 320 -



rally nilpotent of class at most 3.
Proof. aeCy(R(e)) iff (aox)ol(xoa)te C(R(e)) for

every xe R and the rest is clear (use 1.4 and 1.5).

1.7. Proposition. R(e) is a group irf 28> = O.
Proof. Apply l.2.

For every ac< R, define three permutations La' Ra and V&

of R by La(x) = aox, Ra(x) =Xoa and V, = R;l

_ =1 =1 ;-1 S §
put sa,b = Lb Le Laob and Ta,b = Ra

Clearly, all these permutations belong to the multiplication

L,. Further,

-1
Rb Raob for a,beR.

group M(R(o)) of the loop R(°).

1.8. Proposition. For all a,beR, the permutations Sa b
1
and T_  are automorphisms of R(e ).
’
Proof. We have S, p(X) = x = 2a-bx for every xeR and it
’
is easy to verify that S_ , is an automorphism of R(o ). Simi-
?

larly for Ta,b‘

1.9. Propogition. Let aeR. Then \Va is an automorphism
of R(o) iff 6a.xy = C for all x,ye€R.
Proof. We have Va(x) = x + 2ax and the rest is clear.
1.10. Proposition. The loop R(e ) is an A-loop if 6R3 = O.
Proof. An A-loop is a loop such that every of its inner
permutations is an automorphism. Now, the statement is clear
from 1.8, 1.9 and from the well known fact that the inner map-

ping group is generated by the permutations S A and V_.
a,b a,b a

2. The multiplication group M(R(o)). Let nzl be an in-
teger, I, ={1,2,...,n% and let £ be a mapping of I, into the
set T = {L_,R_;aecR3 We have f(i) eiL_,R_} and put

a''a 8y’ ay
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A ={ie Ie(4) = Laii and B = I N4,
Further, let us designate p(f) = f(n)f(n - 1) ...

f(2)f(1)eM(R(o)), g, (£) =,Z ayy gz(f) =

= %,}s; _-i.ezbv)szl 2385 83(f) =
7<1, <4

= 15 "A hlzl ei(edak) - &ZA égz"b g.,;zl ai(ajak) +
d<i M<y F<+ <y

+

%654‘23 . ai(eJak) - msb«}s%&, L ai(a a,) and
<4 *<? 3<4 &<?

= . Z4.
gy(f) z E""‘mailu eim for every m> 4

2:1. Lemma. P00 = ((0) + 2 g (e))x+ B gy(e)

x for every x¢ R, where h(f) = Eaay - v Zp 8

=
AEA 3TA a8y + &4 ;%B %1% T iTw ,f-,%.; B0 *
<4 i<~ 4<4

+

1 %8 5%/\ 8385°
3< 4

Proof. Some tedious calculations and induction on ne
Now, let m= 1. Define a mapping f(m) of I into T by
£ ) 2wy, $ ™) = p2),... 0™ (0 - f(n),...,
£ (n(m - 1) + 1) =£(1), £ (n( - 1) +2) = #02),...,
£ (nm) = £(n).

2.2. Lemma. For every mz1l and every ie I, gi(f(m)) =
= mbi,m' where b:l,m is a sum of products of the elements
8)1eceyap.

Proof. The proof is purely of technical character, and

hence omitted.

2.3. Lemmg. For every m>1, h(f(m) = mh(f),
Proof. By induction on m. The assertion is obvious for
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m = 1. Further, h(z{™1)) = n(e) + n(e{™) -

-m .2 .3 +

-m Z > aiadﬁm_z ‘VGB%,GB 8153

i€A 5 TA iEA j‘:’_B 939

+m %E'B gz;A aj8;.
H°we"er'4,5z¢A agay = 1',,§,A agay + 4,§E¢A agay,
a<4 >1
while the last sum is equal to - ‘L,:f:sA ajay.
4< 4

Consequently, ; Z‘A aja; = O. Similarly for B and we can wri-
L 4

te h(£8*1)) = n(e) + n(£'®)) = h(£) + mh(g) = (m + L)n(e).

2.4. Lepma. Let m>1. Then gk(f(m)) = mg, (£) and
gi(f(m)) =) mgi(f) for every 1> 4,
Proof. Easy.

2.5. Theorem. Suppose that the abelian group R(+) con-
tains no elements of infinite order. Then the order of p(f)
(in M(R(e))) is a divisor of the least common multiple of the
orders of the elements a;,...,a; (in R(+)),

Proof. We have p(£)(x) = p(e{™)(x) = (n(£'®) +

*4,.33 gi(f(m)))x +4_':Z"4 gi(f(m)) + x for all m>1 and xeR
(teke into sccount 2.1 and the fact that gi(f(m)) = 0 for each
1Zn + 1). By 2.2, 2.3 and 2.4, p(£)™(x) = max + mb + x, where
both the elements a and b are sums of products of the aj. The-
refore, if m is the least common multiple of the orders of the
elements a;, then ma = mb =0 and p(£)® = idg. The result is

now clear.
2.6, Lemma. For all aeR and m21, L': = Lma'

Proof. By induction on m.
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2.7. Lemmg. Let a,b,ceR and m=1. Then (L&Lb)m =L iff
m
2m(a-bx) = 0 for every x€R., In that case, (LaLb) = Lo (aob)®

Proof. We have (LaLb)m(x) =mla +b - ab)x + m(a + b +
4+ ab)x + x = m(boa)x + m(aob) + x. Since boa = aob - 2ab,
(LaLb)m(x) = m(aob)x + m(a ob) - 2m(ab)x. Hence (LaLb)m =L,
iff m(ao b)x + m(aob) + x - 2m(ab)x = ¢ + x + cx for every

xe R. In particular, ¢ = m(aob).

2.8. Proposition. Suppose that R(+) is a p-group. Then
M(R(o )) is a p-group of the same exponent.
Proof. Apply 2.5 and 2.6.
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