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THE EPIS OF POS (Z)
A. PASZTOR

t ¢ In [4)and [5) J. Meseguer conjectured that
in POS(w ) epis are exactly the dense maps. In [3) D. Lehmann
and A. Pasztor gave an example of an epi which is not dense.
This gapar provides the exact characterization of all epis of
POS(Z), for arbitrary Z.
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Classification: 06410, 18A20, 18B99, 68A05

1. Introduction. For an arbitrary subset system Z (see
[1]) let POS(Z) be the category of Z-complete posets (i.e. po-
sets in which any Z-set has a sup) and Z-continuous maps (i.e.
maps preserving the sups of Z-sets). If XSP and Pe |POS(2))
then cl(X) is the least subset Y of P which contains X and in
which every Z-set has its sup (which has to exist in P) in Y.
A map £:P —> Q eMor POS(Z) is dense if Q = cl (£(P). In [4]
and [5] J. Meseguer conjectured that in POS(w ) epis are ex-
actly the dense maps (and hence extremal monos coincide with
full monos). In [3) D. Lehmann and myself gave a counterexamp-
le to this conjecture by constructing an epi which is not e-
ven dense. What makes it to be an epi?
In order to answer this question let us consider the follow-
ing domain D of figure 1, described in Meseguer [4]. Then let

B:={bn:n € @} . Meseguer proved that for any
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@y D —> PeMorPOS(w), if @t B = y } B, then glagy) =
= y(ay) (since e.g. glay,)z ¢(by) = ¥ (b)) z y(ap)
Vn e€w and hence by v(ay) = su].u(1|r(¢'.an))mm we get
?(ay, ) Z y(a, ) But notice that a,&cl (B).

o

figure 1: domain D

This leads to the counterexample, which is an embedding i1 of
B:= {(w,b):w € "} into the domain E of figure 2. Since eve-
ry element of E-B plays the role of the a,, of figure 1, we
get that for any ¢,y:E—>P, ¢'B = B implies ¢= v,
which makes i to be an epi in PCS(w), although it is not

dense!
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figure 2: domain E

My eim is to generalize the properties of i in order to get an
exact characterization of all epis of P0S(Z), for arbitrary
subset system Z. Note throughout the paper that the presence
of a 'bottom 1 would not change any of the results. Thus eve-

ry result holds for POS_L(Z), too. Here I would like to thank
J.Reiterman for helpful converszaé;%ons on the topic of thia paper.



2. A new closure operator
Notation: O©rd denotes the class of all ordinals.

Definition 1: Let Pe|P0S(2)l, XSP, a,beP and « ¢ Ord
be arbitrary. Then "a 18 «=connected with b through X" - in
symbols a b‘—"—'—x— b - 1if

1) For =0

3Y,<P:becl(Y) & VyeY, BX’eX:ezx’?_J, and
2) For >0

3Y,sP:becliY) & VyeY, Bb’eP Je¢yeord:

X
& & a S :
y by&ccy<oc ay—§—by

Remark: Note that in the case of the counterexample in

{3] for every ac (E\B) a ;_0'_3. a holds!

For the illustration of Definition 1 see the figure 3 at the
end of this paragraph.

The following Lemmas 1-5 give some of the most important
propertiea of the relation "to be connected through X" defin-
ed in Definition 1.

Lemmg 1: For any Pe|P0S(2)|, XsP, a,beP and «,f €
€Ord, if o« < then a X b implies a -3:X b,

Proof: If 3= 0 then evident.

Let (3> O. Then let ¥, = {b}. Since becl () and

VyeY, 3p =a <@ 3Ib, =beP:ib,zy & a ByX b,
y Y y ¥

avlal b,
Lemma 2: For any P € |POS(Z)l, X,Y<SP, e Ord and

a,b€P, if XSY then a v*2X b implies a 52’ b,

Broof: by transfinite induction.

- 288 -



If o= O then a)ﬂ‘-'—)s-b means 3Y cP:becl (1) &

& VyeY, 3x eXcY: azx =y. Hence a pa ¥ g,

Let o> O and suppose that V3 < o~ the Lemma holds.

Then a)f‘—’—x—b means 3Y, cP:becl (Y] & Vye¥, 3 b,eP
3y etrdict < &b Zy & a 1y X by. Since by the induc-

tion hypothesis Vye!b: a 1Sy by, we get by Definition 1

arYp, a

Lemma 3: For any P elPOS(2)l, X&P, a,b,ceP and « €

€ Ord, if a=b and b 1%X ¢ then a X ¢

Progf: by transfinite induction on o« .

If ¢ = 0 then b }ﬁic means that 3Y¥ cPicecl (Yc) &

VyeY, 3xyeX:bzxyZy. Since a=b, Verc:a?_xyZy,
hence a pﬁ’—é—c.

Let o> 0O and suppose that V(3 < o the Lemma holds. Then

b 122X ¢ means that 3Y cP:icecl (Yc) & VyeY, aecyeo:'d
3byeP: w < & bZYED s X b,e Then by induction hy-
pothesis VyeY :a t-fa-r&—by hence by Definition 1 a #‘J—c.
]

Lemmn 4: For any P elPos(z)l, XeP, a,b,ceP and
« € Ord, if a 12X b and bze, then a XxhX o,

Proof: Let Y, ={c}. Then cecl (Yc) & VyeY,
3¢y=a¢£0rd .E!by=beP: acy<oc+1&byzy&-
& a;i‘.pl‘-by. Hence by Definition 1 8 i XthX 2

Lemma 5: For any P |POS(Z)|, for any XS P and for any

aecl (X): al-o—‘)—(-a.

Proof: Let Ya:={xex:azxf. Then aecl (Ya) &
& VyeY, 13 xy(=y)e X:azxyz y. Hence by Definition 1
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Remember that our aim essentially is to find the co-congruen-
ce relation of maps of POS(Z). In the following we will see
how the relation "To be connected through X" leads to this

aim,

Proposition 1: gor any Pe|Pos(z)|, xep, a,beP,
< € Ord and 9 ¥ :P —>Q e Mor POS(Z), 1f g X b and ¢MXx=
¥ X, then ¢(a) 2 y(b) and y(a) 2 ¢ (b),
Proof: by transfinite induction on o .

n

If & = 0 then a +%:X b peans 3T,ePibecl (v,) &
& Vchb Bxye X:anyzy. Then Vchb g:(a)zga(xy) =
= -qf(xy)Z y(y) resp. 'qr(a)Z‘lr(xy) = <‘f(xy)z ¢ (y). Since
becl (V) implies w(b)e c1 (¥ () resp. @ (b) e cl (g (¥))
(since ¢ and ¥ are Z-continuous), we get @ (a)z 3 (b) resp.
y(a) 2 @(b),
Let « > 0 and Suppose that V(3 < oo the pProposition is trye.
Then a 22Xy, means that Y ePibecl (Yb) & Verb

: oy, X

3°¢y50rd ElbysP ocy<nc& byzy & ab—\h——-by. By
the induction hypothesis

VyeYy: @(a) z (b ) resp. yf(a)ng(by).

y
Then Verb: q(a)Z‘:((bylZW(y) resp. v(a)Z?(by)Zq:(y)
and since ¥ (b)€ ¢l (lr(Yb)) resp. ¢(b) € cl (?(Yb)), we get

¢(a) 2 y(b) resp. v(a) Z (b)),

Corollary 1: For any P e|Pos(z)], XEP, a,beP and o e
€ ord, a %Xy ynniiee azb.

Proof: Letcy:xr:idp., 0
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or ry 2: For any P ¢|P0S(Z)l, X€P, aeP, « € Ord
and @, ¥ :P —>QeMor POS(Z), if a;ﬁ‘-'i aand @htX = ylX
then @(a) = y(a) !

Defipition 2: Let P e|POS(Z)| and XS P be arbitrary.
Then CL(X):={a€P| 3« € Ord: a \—‘5'-)—(— at.

Having arrived at this point we know that CL(X) is con-
tained in the co-congruence relation of any map of POS(2)
with image X (see Cor. 3 of Prop. 2).

Now let us prove some properties of CL(X).

Lepma 6: For any P e |P0S(Z)]| and XEP, cl(X)e& CL(X).

Proof: by Lemma 5. O

Corollary: For any Pe|POS(Z)| and XEP, X&CL(X).

Proposition 2: For any Pe|P0S(Z)l, XEP, a,beP and
x € Ord, avi'—c—L—(sz:B{& e Ord: ab—Mb.
Proof: by transfinite induction on <.

Let o« = 0. Then becl (Yb) & Verb 3 xyecL(X)zaZx >y

Y

Since x € CL(X) Bocye ord: x, b—E‘—-’Pl(-xy. Then by Lemma 3
X

o .
8 = Xy Now b € cl (Yb) & Vye’rb BxyeP Bd,yeOrd.

= = ( & x.zy & ars L -
oy, <3 yeY, ocy+1) XyZy & a ¥¥2x . Then by Defini

tion 1 aﬁ-’i'—& b.

y

Let o« > 0 and suppose that for any &< tne proposi-
tion holds. Then 2 y%:CEX) b neans thet 3y, eP:becl (V) &
a Y E . < o, CL(X)
VyeY, SbyeP JcCyGOrd o < &byZy&a»—w———-by
but then by induction hypothesis Vye€Y, 3{3y60rd:

:a}-—fs—w—&-by.
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Then by Definition 1 for Bi= = ([Sy +1) N__B,X b. o

Corpllory 1: For any P e|P0S(Z)| and XeP:CL(CL(X)) =

Proof: by Corollary of Lemma 6 and by Proposition 2 for

Corollary 2: For any Pe|P0S(Z)| the operator CL: P(P)—»
—> P(P), which assigns to each XSP CL(X), is a closure o-
perator.

Proof: By Corollary of Lemma 6 XECL(X), by Lemma 2 if
XETY then CL(X) < CL(Y) and by the above Corollary 1
CL(CL(X)) = CL(X).

Corollary J: For any Pe|POS(Z)|, XSP and @, y:P—>Qec
€ Mor POS(Z), if @}X = y}X then @MCL(X) =  MCL(X).
Proof: by Corollary 2 of Propoaitionnl.

For o = 0 ard for Z = @

a a

b

T |
o . *10

——x x x, or ! )
. / A T S
l RO I
y1 _'yo 'yq
| Xoq \qu

Yy

lo /\’u.‘

etc.
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Further on we shall symbolize becl (Y.) by

i.e. for <= 0 the figure looks like that: 8
b \
x
‘/ y

For &« > O we illustrate then Definition 1 by:

figure 3: Illustration of Definition 1.

3. The epis of POS(Z). Now we are ready to give the ex-
act characterization of epis in POS(Z):

Theorem: Any f£:P—>Q eMor POS(2) is an epi iff

cL(r(P)) = Q.

Proof: If CL(£(P)) = Q then f epi follows immediately
from Corollary 3 of Proposition 2.

Let £:P —>Q e Mor PPS(Z) be an epi in POS(Z). Denote
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CL(fr(P)) = Q, and suppose Q - Q¥+ p. Then we construct
§,¥:9—> RelMor POS(Z) with §-7 = ¥ . ¢ but § + ¥ which
contradicts the epiness of f. First we define the maps 9 and
Y, Namely ¢ := idy and yi= idQnO‘@ » where @:Q - Q <»>imp
is a bijection (Q - Q *0) with im ® M(Q-Q)) = 0. Let the
set R:= QU im @ -
We are going to define on R the relation 4Rt Let a,beR,then
A: a&q b if a,beQ,
oy baze)” ga:i(a) 407 (0) 1f a,betnp,

C: @ 77(b) F>—2 4 for an xe Ord if a€eQ,be im o,

G,
D: b }._r——go l(a) for an o€ Ord if asimga, beQ.

In the following we shall prove that £p is a partial or-
der,

1) reflexive: VaeR:neQ = a £4 a=>a £p a and
acim@e =5 @ “La) £ "QSO (a)=a‘R a.

2) antisymmetric: let a g b and b £p a. Then

a) a,b eq?a =b

b) abeimg = So-l(a) = go-l(b) =a=b

e) aeQ,beimso=>§> l(b)i’—ﬁ—(;li?— a and

a;_&___e ® l(b)ﬁ@ l(b) Q= a and a QZ P-l(b)g
-l be
=@ “(b) = a
a€eQ-Q . But a = Sv'l(b) L&ﬁl a implies

ae CL(éao)_i_go which 1s a contradiction. Thig means:
aeQq,beimpe => T(agy b & b4y al.
d) For acimp , beQ we get the same.
3) trensitive: 1let a £gp b£gp c. Then:

a) a,b,ceQ ?a £p c-
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b) a,b,ceim@E =3-;> aép ¢

= G,
c) aeQ,bceim@ﬁ@ (b) 2% "¢~ g and

(o_l(b) £q @-l(c) L-==%’3(0—1(c) &lﬂc’— a => a<y ¢

d) For aeime,b,ceQ dually by D and A.

e) a,ceimp,beQ == b }E(—i‘i’—Q—op_l(a) and

D.C
e e 2ol T rad @ “Ha) 24 b 2 e e) =>azg o

Prot, 4
£) For a,c €Q, beime dually by C,D and A.
gl a,b,eQ, ceim§D=A=—-E>a£Qband

) P"—"——Qg—bz::fgb eyt o o _sazy e

h) For a,bcimp, ce€Q dually by B and D.

Next we shall prove that @ and 3 are Z-continuous. For
this let Y be an arbitrary Z-set in Q with a = S‘}:pR Y.
First we show that cy(a) = su%ch(Y). By A (of the definition
of éR). it is clear that a =y ¥yeY and that YbeQ, if
y£g b Y yeY, then also a£p b holds. Let beimp with
y4£g b YyeY. Then by C So-l(b) }4'33—1—0’9— y VyeY, which

by Definition 1 implies @ 1(b) 1% 8o o where

=R
Now we are going to prove that w(a) = sup w(Y).
=R

o= = (oty + 1). Again by C we get a<p b.
yeVY -

1. Suppose ae€Q, (and hence w(a)=a). By A y#4pa
Vye¥NQ  and by D @(y)«ga vy €YN(Q-Q ) since for these
y-s a\——Q—'-g—‘*y.Hence zépa Vz e y(Y).Let z £gb Vz ey (Y).

a) if beQ thenby A z£,4Db Vzeqr(Y)ﬂQo and by D
and Corollary 1 of Proposition 1 go-l(z) 4b Yz e y(N)Nin@.
This means y £Qb VyeY, hence a éQb and hence by A & £pb.
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b) Suppose beimp . Then by B §° 1(z) ‘QS° L)
Vze Y(Y)ﬂimg and by C and Corollary 1 of Proposition 1
_.ng L(v) Vzeqr(Y)ﬂQo, i.e. zquo L(v) Yy eY. This im-
plies a.‘.QgD Lb). Since 8€Q, we can write ( “L(p) 122 Qe a,

hence by C a<pb.

2. Let acQ-q, (and hence y(a) = @(a)). By B

z<p ela) Vze ¥(¥)Nime and by C also z < Zpela) Vz'ey(YIN
Qo

NQ, since for these z-s & P ls o Now let z <pb Vzey(Y)
@) If beQ then by D b1%22 %0 0-1(3) v, ¢4y

Nime and by A and the above remark b 102 8o z YAz e y(Y)N

NQy+ Applying Definition 1 we get b re<, Qo a, where

=Z (< ,+1), which by D means go(a) £pd.

zeV(Yiznmg:

b) If beimp then by B “12) 2, 0" L(b)

¢ v ®© Q¢
Vze qf(Y) ﬂimgu and by C and Corollary 1 of Proposition 1
yéqgo Lewy VernQ y lees y < ng vy Yye Y, hence
<4 e Liv). By B this means @(a) < <pb.

By Banaschewski-Nelson [2]or Meseguer [6] POS(Z) is (full-mono)-
reflective in ZPOS - the category of posets and Z=-continuous maps.
Let 7p denote the (Z-continuous) POS(2)-reflection of R:=(R, £p)

andletw’-'vzntr endty Mg'FP . Then fr#é since @ + ¥

and 'qr faqa-fsince Yer=q-r,

4. Some congequences
Corollery 1: An m:P —>QeMor POS(Z) is an extremal mong

1ff it is full (d.e. m(a) = m(b) ier a=Zpb Va,beP) and
CL(m(P)) = m(P).
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Proof: 1) Let m be an extremal mono and let m=f.e, with
e:F—>R, Ri= CL(n(P)), £pi= £oNR% and ei=m and £:R —>Q,
f:= idg. Since by Lemma 6 cl (R) = ¢l (CL(m(P))) = CL(m(P)) =
=R, Re|P0S(Z)|, thus e,fe Mor POS(Z). By the Theorem e is an
epi, hence e is an isomorphism. This implies m(P)=e(P)=R=
=CL(n(P)) and w2 (4p) = 6® (4p) = 4 = £NR% = 44 N
N(m(p))2.

2) Let m be full and let CL(m(P)) = m(P). Suppose m =
= f.e with e:P —>R, f:R—>Qe Mor POS(Z) and e epi. We have
to show that e is an isomorphism.

By the Theorem we know that CL(e(P)) = R. Then £(R) =
= p(CL(e(P))). By the Corollary of the following Lemma 7
£(CL(e(P))) e cL(f(e(P))) = CL(m(P)) = m(P).

Before going on let us prove the

Lemmg 7: For any f£:P —> Q eMor P0S(Z), X£P, «xe Ord and

a,be?, 17 a 2% b then £(a) rXe FX) o(y),

Proof: By transfinite induction.

For =0 3Y cP:becl (Y ) & VYyely Bxyex:eryZy
hence f(a)z £(x )= £(y). Since £(b) e cl (£(Yy)) we get by De-
pinition 1 £(a) —22FCX) £(p),

Let « > O and suppose that for any (3 < o« the Lemma holds.

Then a F'ﬁ'—-)s—b means that 3 Y SPibecl (Yb) & Vye¥y BbyeP

ot yelrdict < & b Zy & ap‘l‘—y-x—x—by hence

b g
f(by)Z £(y) & £(a) Pg—y& f(by). Again, since £(b) e
ecl (£(Y))), we then get f(a) (_gc_,_f_QQ £(b).

[ Lemma 7.
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Corollary: For any f:P—->QeMor POS(Z) and Xcp,
£(CL(X))c cL(r(X)),

Let us continue the proof. We have got that £(CL(e(P)))<c m(P).
Then if we knew that e-m L.fec Mor POS(Z) then we would get
that CL(e(P)) = e(P), i.e. that e is surjective, since

e-m-l- f=idR (since e is epi and e-m-l-f-e = eom—l-m = e-:ldP =
= idp-e) and so Va e CL(e(P)) e(m(r(a))) = a, i.e. ace(P).
But even m L. £e¢ Mor POS(2) since for any Z-set ASR with

a = sup (A), £(A) is a Z-set and f(a) = su%&f(A) and since

£(R)S m(P) and m is full n L (e(a)) is a Z-set in P, so it
must have a supremum and this is m *(f(a)). Since Va,beP
e(a)<e(b) =y fe(a)) 2 r(e(b)) = m(a) < m(b) = a<b e is
also full. Thus e is full and surjective, i.e. an isomorphism
and hence m is an extremal mono.

3 Corollary 1.

Corollary 2: ©POS(Z) is co-(well-powered).
Proof: It is enough to prove the following

Lemma 8: For any Pe |POS(Z)| and Xc P, CL(X) =X, where
X is the join-closure of X in P, i.e. X = {sup S:SeXi.

Proof: We are going to prove by transfinite induction
on o« that ap%:X o implies a = sup X,y where X, ={xeX:azx3.
Therefore let b>x Vxe X, for some beP. If o« = 0 then
BYaE P:iaecl (Ya) & Vera 3xye X:azxyzy, which immedia-
tely implies b= a,
Now suppose o > 0O and that for any (3 < o« the statement holds.
Then 3Y cP:iaecl (Y ) & VyeY, 30(, < % Qb € P: byZy &

X

&al——y-l——b.S:lncebyCor.lofProp.l Ver xb_C_X,
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by induction hypothesis we- get that Vera bz by. Then byz y

and aecl (Ya) imply bZ a.

(13

{23

3]

[4]

[5]

f6]

JO

B.

D.

J.

Je

O Lemma 8 and Corollary 2
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