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PRERADICALS AND GEN.ERAI.IZATIONS OF QF-3' MODULES II.
Josef JIRASKO

Abgtract: The concept of dQF-3 " modules is dual to that

of QF-3"’ which was introduced in [18] and generalizes the con-
cept of pseudoprojective module,in the literature (see [1],[4],
[14]) also denoted as the dQF-3 " module. In the following

d9F-3"" modules are characterized in terms of preradicals. So-
me results on dQF-3 " modules and preradicals connected with
dQF-3"" modules are obtained.

Ke rds:, G-cohereditary preradicals, G-hereditary pre-
radicals, 3QF—3 modules. ’

Classification: 16463, 16A50

All the rings considered below will be associative with
unit and R-mod will denote the category of all unitary left
R-modules.

A preradical r for R-mod is any subfunctor of the identi-
ty functor. For the basic notions from the theory of preradi-
cals we refer to the first part of this article (see [18]).

The class of all r-torsion (r-torsionfree) modules will
be denoted by ¥, (F.).

We say that a preradical r
= 1s superhereditary if it is hereditary and Tr is closed

under direct products,

- has FCgSP if r(M) is a direct summand in M for every fini-

- 269 -



tely cogenerated module M.
The identity functor will be denoted by id. For a module
Q let us define an idempotent preradical Py bY p{Q}(M) =
= Z Im f, where f runs over all fe Homg(Q,M), McR-mod. The
idempotent core (radical closure) of a preradical r will be
denoted by T, (¥). £C?1ri (,Z [ ry) denotes the intersection
(sum) of a family of preradicals iry;ieIf.
For a submodule A of a module B and a preradical r let
us define C,(A:B) by C,(A:B)/A = r(B/A). If r, s are preradi-
cals then (rAs) is a preradical defined by (ras)(M) =
= Cg(r(M):M), Me R-mod; r<s means r(M)cs(M) for every M e
< R-mod.
The socle will be denoted by Soc, the injective hull
(projective cover) of a module Q by E(Q) (C(Q)).
A module M is called
= finitely coembedded if there is a finitely cogenerated mo-
dqule N and an epimorphism f:N— M,

= cocyclic if it is an essential extension of a simple modu-
le,

= cofaithful if every injective module is p{y3-torsion.

A ring R is called
= left perfect if every left R-module has a projective cover,
= 1left V-ring if every simple left R-module is injective.

A preradical r is said to be
- an l-radical if M/r(M) e F, for every finitely cogenerated

module M,
- & 2-radical if M/r(M) e ¥, for every finitely coembedded

module M,
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- G-cohereditary if r(B/A) = (r(B) + A)/A, whenever AGB, B
finitely cogenerated,

- Gj-cohereditary if for every Q ¢ Ty, there 1s a projective
presentation 0 — K< P—»Q—> 0 of Q such that for e-
very XSP with P/X finitely cogenerated K + C.(X:P) =P,

- G-hereditary if r(M) = N C,(X:M), where X runs over all
submodules X of M with M/X finitely cogenerated, Me€&R-mod.

For a preradical r let us define preradicals (Geh) (1)
and (Gh)(r) as follows:

(Gen) (r) (Q) = (@) N( N g(C (X:P))), where 0—> K «> P &>

2 Q—0

is a projective presentation of Q, X runs over all submodules

of P with P/X finitely cogenerated, Q € R-mod, (Gh)(r)(Q) =

=N Cr(X:Q), where X runs over all submodules of Q with /X

finitely cogenerated, Q& R-mod.

Proposition 1

(i) Every G-cohereditary preradical is Gl—cohereditary.

(11) Every G;-cohereditary idempotent preradicel is G-
cohereditary.

(ii1) (Geh)(r) is a preradical and (Geh)(r) &r. Moreo-
ver if R is left perfect then (Geh)(r) is G,-cohereditary.

(1v) 1If s<r, s G-cohereditary then s £(Geh)(r).

(v) (Geh) (r) (Q) does not depend on particular choice of
a projective presentation of Q.

{vi) (Geh)(r) is the largest G-cohereditary idempotent
preradical contained in r provided that R is left perfect.

(vii) (Gh)ir) is a G-hereditary preradical and r £
< (Gh)(r).
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(viii) If r<s, s G-hereditary then (Gh)(r)<s.

(ix) (Gh)(r) 1s the least G-hereditary preradical con-
taining r.

(x) (Gh)(r)(Q) = r(Q) for every finitely cogenerated
module Q.

(xi) (Geh)(r)(Q) = r(Q) for every projective module Q.

(xii) Every cohereditary and every superhereditary pre-
radical is G-hereditary.

{xiii) Ir{ry;ieI} is a family of G-cohereditary pre-
radicals then &%?I ry 1s G-cohereditary.

(xiv) If r is a preradical then S {s;s<r, s G-cohe-
reditary (idempotent) preradical} is the largest G-coheredi-
tary (idempotent) preradical contained in r.

(xv) If{r;;161% is a family of G-hereditary preradi-
cals then ,,:eri is G-hereditary.

(xvi) If r is a preradical then MN{ s;r<s, s G-here-
ditary (pre)-radical} is the least G-hereditary (pre)-radical
containing r.

(xvii) If r is G-cohereditary then T is so provided that
R is left perfect.

(xviii) If r is G-cohereditary then ¥ is so.

Proof. (i) Let 0—> K< P—>Q—> 0 be a projective
presentation of an r-torsion module Q. If r is G-coheredita-
ry, X< P such that P/X is finitely cogenerated then
r((P/X)/((k+X)/X)) = (r(P/X) + ((K+X)/X))/CK+X)/X) and hence
K + C.(X:P) = P since Q ¢ Tp.

(i1) Let r be a G,-cohereditary idempotent preradical,
B be a finitely cogenerated module and O —» K = P2, r(B/A)

—> 0 be a projective nresentation of r(B/A) with the desired
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property. Consider the following commutative diagram

0—> Ke—>P-¥, r(B/A) — 0

X
£

Cr(A:B),
where o¢ is the natural epimorphism. Then P/Ker f is finite-
1y cogenerated and hence K + Cr(Ker £:P) = P since r is idem-
potent. Thus r(B/A) = g(P) = g(K+Cr(Ker P e (r(£(P))) <
e w(r(B)) = (r(B)+A)/A.

The remaining assertions are clear.

Propogition 2. Let r be an idempotent preradicsl. Then
the following are equivalent:

(1) r is an l-radical (2-radical),

(ii) if 0—» A—> B—> C—> 0 is exact, B finitely coge-
nerated (coembedded), A,C € I, then B € T,

Proof. (i) implies (ii). It follows from the fact that
for an idempotent l-radical (2-radical) and finitely cogene-
rated (coembedded) module T T € ?; if and cnly if HomR(T,F)=
= 0 for every F € ..

(ii) implies (i). Consider the exact sequence
0 — r(B) <> (rpr)(B)—> (rar)(B)/r(B)—> 0, where B is fi-
nitely cogenerated (coembedded). Then (rar)(B) e 7, and con-
sequently B/r(B) ¢ ¥ .

Proposition 3. #for a preradical r the fnllowing are e-
quivalent:

(1) r is G-cohereditary,

(i1) r(B/A) = (r(B) + A)/A, whenever ASB, B finitely

coembedded,
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(1ii) if B/r(B)—> & is an epimorphism / A cocyclic /,
and B finitely cogenerated (coembedded) then A e 3},
(iv) a) r is a l-radical (2-radical) and
b) whenever ASB, B & #, / B/A cocyclic /, B fini-
tely coembedded then B/A € .
Proof. Easy.

Propogition 4. The following are equivalent for a pre-
radical r

(1) r is Gy-cohereditary,

(ii) for every Q e ?; there is a projective presentation
0—>K<—>P—>Q—>0 of Q such that for every X P with P/X
finitely coembedded K + Cr(X:P) = P

Proof. Obvious.

Proposition 5. Let r be a preradical. Then

(1) r is G-cohereditary if and only if (Gh)(r) is G-co-
hereditary,

(i1) T is G-cohereditary if and only if (Gh)(z) is G-co-
hereditary,

(i1i) 4if (Gh)(r) is cohereditary then r is G-coheredi-
tary,

(iv) if r is idempotent and (Gh)(r) is cohereditary then
r is G-cohereditary,

(v) if R is a left perfect ring and r is G-cohereditary
then m is cohereditary.

Proof. (i)-(iv) are obvious.

(v) Let R be a left perfect ring and r be a G-coheredi-
tary preradical. If QeR-mod, Q € f(Gh)(r)' 0—>Kc>a»P—
—>»Q2—>0 is a mrojective cover of Q and XEP with P/X fini-
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tely cogenerated then P = C(Gh)(r)((XOK):P) = C(Gh)(r)(xzp) +
+K = Cr(X:P) + K since (Gh)(r) is G-cohereditary. Hence
Cr(X:P) = P and consequently (Gh)(r)(P) = P which yields
IEET?;T is cohereditary.

Corollary 6. An idempotent G-hereditary preradical in
a left perfect ring is G-cohereditary if and only if it is co-
hereditary.

Proposition 7. Let r be an idempotent G-cohereditary
preradical for a left perfect ring R. Then there is a projec-
tive (Gh)(r)-torsion module P such that r(N) = p{PG(N) for e-
very finitely coembedded module N.

Proof. From Proposition 5 and {31, Theorem 4.7 it fol-
lows that there is a projective (Gh)(r)-torsion module P such
that (Gh)(r) = P{p}* Hence r(N) = p{Pi(N) for every finitely

coembedded module N.

A left R-module Q is called
- dQF—3" if the idempotent preradical p{Q} is G-coheredita-
Ty,

- 1 dQF-3" if the idempotent radicsal 6;5; is G-cohereditary.

Proposition 8. Let Q&€R-mod. Then the following are e-
quivalent:

(1) Q is dge-3"7,

(ii) there is a projective presentation 0—» K <> P —>
—> Q—> 0 of Q such that K + Cpms(X:P) = P for every X€P
with P/X finitely cogenerated (coembedded),

(i1i) a) HomR(GgX/p{Q}(X)) = 0 for every finitely coge-

nerated (coembedded) module X and
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b) if AeB, Homp (Q,B) = O / B/A cocyclic / and B fi-
nitely coembedded then Homp(Q,B/A) = O,
(iv) a) if 0—> A—» B—> C—> O is exact, B finitely
cogenerated (coembedded), A < 7 and C e'Ip{ then B e

Piq3 Q}
e T and

p
e b) 1if AcB, Homp(Q,B) = 0 / B/A cocylic / and B
finitely coembedded then Homp(Q,B/A) = 0,

(v) for every epimorphism h:B—s A, where B is finitely
cogenerated (coembedded), for every non-zero homomorphism f:
:Q—> A there are homomorphisms k:Q — Q/Ker f and g:Q— B
with O+heg = Fok / ¥ is induced by ¢ /,

(vi) for every epimorphism h:B —»> C, where C is cocylic,
B is finitely cogenerated (coembedded), for every nonzero ho-
momorphism £:Q —> C there are homomorphisms k:Q —»> Q/Ker £ and
8:Q—>B with O%hog = Fok / ¥ is induced by £ /,

(vii) if £:B—» A is an epimorphism / A is cocylic /, B
is finitely cogenerated (coembedded) and Homp (Q,4)4 0 then
there 1s a homomorphism g:Q—> B with Im g¢Ker f.

Moreover, if Q has a projective cover then the conditions (i)-
(vii) are equivalent to

(viii) p{Qi(c(Q)/x) = C(Q)/X for every X=C(Q) with
€(Q)/X finitely cogenerated (coembedded),

(ix) if X Cc(Q) such that C(Q)/X is finitely cogenera-
ted (coembedded) then C(Q)/X is isomorphic to a factormodule
of a direct sum of copies of Q,

(x) (en)(pygd = Pyo(oi »

(x1) (Gh)(p‘;# is cohereditary,

(x1i1) p{Q!(X) = Pee(Q)} (X) for every finitely cogenera-
ted (coembedded) module X,
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(x1ii) (Gh)(p{Qg)(C(Q)) = ¢(Q),
(xiv) for every finitely cogenerated (coembedded) modu-
le X Pio(Q)} (X) =X implies p{Q,‘(X) =X,
(xv) a) if O—» A—> B—> C—> O is exact, B finitely
cogenerated (coembedded), A e :T'p{ and C € Tp then B €
o}

{Q}

c 7 nd

Piqy
b) for every finitely coembedded module X

Homp (Q,X) = 0 if and only if Homp(€(Q),X) = O.

Proof. (ii) implies (i), Let QU denote the class of all
N € R-mod for which there is a projective presentation
0O— Le> M—>N—> 0 with L + cp d (X:M) = M for every XeM
with M/X finitely cogenerated (coembedded). Then Q €@  and
Q. is a cohereditary class closed under direct sums and con-
sequently Tp{q_g c QL . Now it suffices to use Proposition 1
(i1).
(ii) implies (v). Consider the following commutative dia-

gram

p q

P
Q
h l £
B > A —» 0 with exact row,

where B is finitely cogenerated, £#£0 and 0—> K <> P-i'> Q—>
—> 0 is a projective presentation of Q such that

K + CP{Q}(X:P) = P for every XE€P with P/X finitely cogenera-
ted.

Then P/ker p is finitely cogenerated and hence

K + Cp{Q‘(Ker p:P) : P. If for every homomorphism t:Q —>

—> P/Ker p qlar " (Im t))SKer £, where sv:P—> P/Ker p is
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the natural epimorphism then q(Cp (Ker p:P)) = QeKer £ -
a contradiction since £#+0. Hence there is g homomorphism
u:éﬂ P/Ker p with q( ﬂ’-l(Im u))¢Ker f. Put k = qou, whe-
re T is induced by q and g = Pou, where F is induced by p.
Then Ofheg= Fok,

(vii) implies (ii). If there is a projective presentati-
on0—>K<e<s> P—>Q—> 0 of Q and a submodule XcP with ‘P/X
finitely cogenerated such that K + Cp{ }(X:P) #*P and £:P/X—
—>P/(K + Cp{Q,,‘X‘P)) is the natural epimorphism then there
is a homomorphism 8:Q—>P/X with Im g#Ker fy, a contradicti-
on. Hence for every projective presentation 0 — K< p—»
—>Q—>0 of Q and every submodule X€P with P/X finitely co-
generated K + Cp{Qi(X:P) =P,

The rest is either clear or follows from Propositions 1(4), 2,
3(iv) and 4,

Propogit o Let QeR-mod. Then the following are equi-
valent:

(1) Q is r dQF-3"",

(11) there is g projective presentation O—>K<—s P—>
—> 3—> 0 of Q such that K + cﬁ-V(X:P) = P for every XcP
with P/X finitely cogenerated (coembedded),

(1ii) whenever A<B, (B/A cocyclie) B finitely coembed-
ded and Homp(Q,B) = O then Homp (Q,B/4) = o.
Moreover, if Q has a projective cover then (1)-(iii) are equi-
valent to

(iv) Homp (Q,Y)#+ 0 for every finitely coembedded nonzero
factormodule Y of C(3Q),

(V) (Em(E%) = pigiam s
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(vi) (Gh)(ﬁ:&%) is cohereditary,

(vii) piai(X) = p{C(Q)i(X) for every finitely cogenerat-
ed (coembedded) module X,

(vi11) (Gh)(prg)(c(Q)) = c(Q),

(ix) for every finitely cogenerated (coembedded) module
X p{C(Q)R(X) = X implies HomR(Q,Y)1=0 whenever Y is a nonzero
factormodule of X,

(x) for every finitely coembedded module X HomR(Q,X) =
= 0 if and only if Homg(C(Q),X) = O.

Proof. It can be led similarly as in Proposition 8.

Propogition 10. Let QeR-mod. If p&Q} has FCgSP then Q
is dQF-3"" if and only if it is r dQF-3"".

Proof. It suffices to prove only the "only if" part. If
Q is r dQF-3"" and there is a projective presentation
0—> K<> P—>Q—> 0 of Q, a submodule X of P with P/X fini-
tely cogenerated and K + cp{q§(X:P):#P then
Homp (Q,P/ (K + cpm}(x:P)))*o and hence HomR(Q,P/Cp{QQ(X:P))#O
by Proposition 9(iii). Thus there is a nonzero homomorphism
g:Q-—ovP/Cp{Q}(X:P) which can be factorized through a homomor-
phism h:Q—> P/X, a contradiction. Thus Q is dQF-3 " by Propo-

sition 8.

Propositi 1l. Let S be a simple R-module possessing a
projective cover. Then S is dQF—3" if and only if it is pro-
Jjective.

Proof. Let O#S be a simple R-module with a projective
cover 0—> K= P—>S—> 0, If Xil’ with P/X finitely coge-
nerated then XcK since K is 2 maximal submodule of P and K

is small in P. Further p{s§(P/X) = P/X by Proposition 8. Hen-
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ce there is a homomorphism £:S—> B/X such that Im T 3K/X,
Thus Im £ = P/X and hence f is an isomorphism. Therefore X =
= K. Hence K = 0 and consequently S is projective. The con-
verse is clear.

& module Q is called strongly dqQe-3°"~ (strongly
r dQF-3"") 1f there is a projective module P such that
(Gh)(p‘qi) = Pypy ((Gh)(ﬁzai) = p{P‘).

Propogit 2.

(1) Every strongly dqQf-3"° (strongly r dQ#-3"") module
is dQF-3"" (r daQr-3°7).

(11) If a module Q has a projective cover then Q is
strongly dQF-3"" (strongly r d3s-3°") 1f and only if it is
dQr-3""(r dar-3"").

(1ii) A module Q is strongly d¥-3"" (strongly r dr-3°")
if and only if there is a projective representation 0 — Ke—»
<> P—> Q—> 0 of Q such that (Gh)(P{QE) = Pepy ((Gh)(ﬁzai)=
= p{P§).

Proof. Obvious.

A module Q is said to be a G-generator if p{QE(N) =N for

every finitely cogenerated (coembedded) module N.

Rempark 13. Let JeR-mod. Then Q is a G-generator if and
only if (Gh)(p{QS) = id.

Propositjon 14. Let Qe R-mod. Then the following are e-
quivalent:

(i) Q1is a G-generator,

(11) Q is strongly d/~3"" and every simple R-module is

isomorphic to a factormodule of PN
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(111) Q is dQF-3” and every simple R-module is isomor-
phic to a factormodule of Q.

Moreover, if Q has a projective cover (C(Q), 3&) then (i)-(iii)
are equivalent to

(iv) Q is dQ@-3"" and C(Q) is a generator.

Proof. (iii) implies (i). Suppose there is a finitely co-
generated module X with p{Q‘(X)4=X.- Then there is a cocyclic
modute C such that 0FC € géial since PsQ3 is G-cohereditary,

s contradiction.

The rest is clear.

Remgrk 15. A projective module Q is a G-generator if and
only if it is a generator.

Proposit 16. Let 2 = st?f S, where & 1is the repre-
sentative set of simple left R-modules. Then the following are
equivalent:

(1) Q is dQF-3"",

(1i) Soc is G-cohereditary.

(4i1) Q is a G-generator,

(iv) R is a left V-ring.

Proof. It follows immediately from Proposition 14 and the
fact that Soc = pri'

Let us Y denote a preradical defined by Y(M) = NN, where
N runs through all submodules of M with M/N cocyelic and small
in E(M/N).

Proposition 17. Y is a G-hereditary radical.
Proof. Obvious.
Proposition 18. Let Q be a cofaithful dQF-3"7 with Y(Q) =

= Q. Then (Gh)(p{Q‘) = Y,
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Proof. Y(Q) = Q implies P4y < ¥ and hence (Gh)(p{Q;)é Y
by Proposition 17.
On the other hand if r(N) = 0, where r = PiqQy N finitely co-
embedded and Y(N)#+ O then there is a cocyelic factormodule C
of N with Y(C)+ 0. Thus C is not small in E(C) and hence the-
Te is a proper submodule K of E(C) with C + K = E(C). Now r
is G-cohereditary, r(N) = 0, N finitely coembedded. Hence
r(E(C)/K) = O by Proposition 3(iv) since E(C)/K is isomorph-
ic to a factormodule of N. Further Q is cofaithful and hence
E(C) e J} and consequently r(E(C)/K) = E(C)/K, a contradicti-
on. Thus Y(N) = 0. Therefore Y(N)Z r(N) for every finitely co-
embedded module N and hence Ybé(Gh)(p{Qi).

Proposition 19. Let R be g left perfect ring and Q be a
cofaithful module. Then the following are equivalent:

(1) (Gh)(p{Qi) =Y,

(11) Q is dQF-3"" and Y(Q) = g,

(111) T}Gh)(p{qk) = Ty

Broof. (iii) implies (ii). Y(Q) = Q vy (iii). Ir X =c(Q)
such that €(Q)/X is finitely cogenerated then Y(C(/X) =
= C()/X since Y is cohereditary for a left perfect ring and
hence p{Q}(C(Q)/X) = C(Q)/X.

(i1) implies (i). By Proposition 18.

The rest is clear.

Proposition 20. Every direct sum of (strongly) dQeF-3°°
modules is (strongly) dQe-3"".

Proof. Obvious.

oposition 2]. Let A,Be R-mod. If p{M(B) = B then the
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following are equivalent:

(1) A@® B is aQr-3"",

(11) A is aQr-37".
Proof. Obvious.

Propogition 22. Let QeR-mod. If every cocyclic factor-

module of Q is dQF-3 "’ then Q is aQm-3"",

{11
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