

Werk

Label: Article Jahr: 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log26

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23.2 (1982)

PRERADICALS AND GENERALIZATIONS OF QF-3' MODULES II. Josef JIRÁSKO

Abstract: The concept of dQF-3 modules is dual to that of QF-3 which was introduced in [18] and generalizes the concept of pseudoprojective module in the literature (see [1],[4], [14]) also denoted as the dQF-3 module. In the following dQF-3 modules are characterized in terms of preradicals. Some results on dQF-3 modules and preradicals connected with dQF-3 modules are obtained.

 $\underline{\text{Key words}}\colon \text{,G-cohereditary preradicals, G-hereditary preradicals, dQF-3 modules.}$

Classification: 16A63, 16A50

All the rings considered below will be associative with unit and R-mod will denote the category of all unitary left R-modules.

A preradical r for R-mod is any subfunctor of the identity functor. For the basic notions from the theory of preradicals we refer to the first part of this article (see [18]).

The class of all r-torsion (r-torsionfree) modules will be denoted by $\mathcal{T}_{\mathbf{r}}$ ($\mathcal{F}_{\mathbf{r}}$).

We say that a preradical r

- is superhereditary if it is hereditary and $\mathcal{T}_{\mathbf{r}}$ is closed under direct products,
- has FCgSP if r(M) is a direct summand in M for every fini-

tely cogenerated module M.

The identity functor will be denoted by id. For a module Q let us define an idempotent prevadical $P_{\{Q\}}$ by $P_{\{Q\}}(M) = \sum Im \ f$, where f runs over all $f \in Hom_R(Q,M)$, $M \in R-mod$. The idempotent core (radical closure) of a prevadical r will be denoted by \overline{r} , (\widetilde{r}) . $\bigcap_{i \in I} r_i$ ($i \succeq_{i} r_i$) denotes the intersection (sum) of a family of prevadicals $\{r_i; i \in I\}$.

For a submodule A of a module B and a preradical r let us define $C_r(A:B)$ by $C_r(A:B)/A = r(B/A)$. If r, s are preradicals then $(r\triangle s)$ is a preradical defined by $(r\triangle s)(M) = C_s(r(M):M)$, $M \in R$ -mod; $r \le s$ means $r(M) \subseteq s(M)$ for every $M \in R$ -mod.

The socle will be denoted by Soc, the injective hull (projective cover) of a module Q by E(Q) (C(Q)).

A module M is called

- finitely coembedded if there is a finitely cogenerated module N and an epimorphism f:N -> M,
- cocyclic if it is an essential extension of a simple modu-
- cofaithful if every injective module is p_{M} -torsion. A ring R is called
- left perfect if every left R-module has a projective cover,
- left V-ring if every simple left R-module is injective.

 A preradical r is said to be
- an 1-radical if $\mathrm{M/r(M)} \in \mathcal{F}_{\mathbf{r}}$ for every finitely cogenerated module M,
- a 2-radical if M/r(M) e % for every finitely coembedded module M,

- G-cohereditary if r(B/A) = (r(B) + A)/A, whenever ASB, B finitely cogenerated,
- G_1 -cohereditary if for every $Q \in \mathcal{T}_r$ there is a projective presentation $0 \to K \longleftrightarrow P \to Q \to 0$ of Q such that for every $X \subseteq P$ with P/X finitely cogenerated $K + C_r(X:P) = P$,
- G-hereditary if $r(M) = \bigcap C_r(X:M)$, where X runs over all submodules X of M with M/X finitely cogenerated, $M \in R$ -mod.

For a preradical r let us define preradicals (Gch)(r) and (Gh)(r) as follows:

$$(G_{ch})(r)(Q) = r(Q) \cap (\bigcap g(C_r(X:P))), \text{ where } 0 \to K \longleftrightarrow P \xrightarrow{q} Q \to 0$$

is a projective presentation of Q, X runs over all submodules of P with P/X finitely cogenerated, $Q \in R$ -mod, $(Gh)(r)(Q) = \bigcap C_r(X:Q)$, where X runs over all submodules of Q with Q/X finitely cogenerated, $Q \in R$ -mod.

Proposition 1

- (i) Every G-cohereditary preradical is G1-cohereditary.
- (ii) Every G₁-cohereditary idempotent preradical is G-cohereditary.
- (iii) (Gch)(r) is a preradical and (Gch)(r) $\not\leftarrow$ r. Moreover if R is left perfect then (Gch)(r) is G_1 -cohereditary.
 - (iv) If $s \leq r$, s G-cohereditary then $s \leq (G_{ch})(r)$.
- (v)(Gch)(r)(Q) does not depend on particular choice of a projective presentation of Q_{\bullet}
- (vi) (Gch)(r) is the largest G-cohereditary idempotent preradical contained in r provided that R is left perfect.
- (vii) (Gh)(r) is a G-hereditary preradical and $r \le (Gh)(r)$.

- (viii) If r≤s, s G-hereditary then (Gh)(r) ≤s.
- (ix) (Gh)(r) is the least G-hereditary preradical containing r.
- (x) (Gh)(r)(Q) = r(Q) for every finitely cogenerated module Q.
 - (xi) (Gch)(r)(Q) = r(Q) for every projective module Q.
- (xii) Every cohereditary and every superhereditary preradical is G-hereditary.
- (xiii) If $\{r_i; i \in I\}$ is a family of G-cohereditary preradicals then $\sum_{i \in I} r_i$ is G-cohereditary.
- (xiv) If r is a prevadical then ∑{s;s≤r, s G-cohereditary (idempotent) prevadical; is the largest G-cohereditary (idempotent) prevadical contained in r.
- (xv) If $\{r_i; i \in I\}$ is a family of G-hereditary preradicals then $\{c_i\}_{i=1}^n r_i$ is G-hereditary.
- (xvi) If r is a preradical then $\bigcap \{s; r \leq s, s \text{ G-hereditary (pre)-radical containing r.}$
- (xvii) If r is G-cohereditary then \overline{r} is so provided that R is left perfect.
 - (xviii) If r is G-cohereditary then r is so.
- Proof. (i) Let $0 \longrightarrow K \longrightarrow P \longrightarrow Q \longrightarrow 0$ be a projective presentation of an r-torsion module Q. If r is G-cohereditary, $X \subseteq P$ such that P/X is finitely cogenerated then r((P/X)/((K+X)/X)) = (r(P/X) + ((K+X)/X))/((K+X)/X) and hence $K + C_r(X:P) = P$ since $Q \in \mathcal{T}_{r^*}$
- (ii) Let r be a G_1 -cohereditary idempotent preradical, B be a finitely cogenerated module and $0 \to K \longleftrightarrow P \xrightarrow{\bullet} r(B/A) \to 0$ be a projective presentation of r(B/A) with the desired

property. Consider the following commutative diagram

where π is the natural epimorphism. Then P/Ker f is finitely cogenerated and hence K + $C_{\mathbf{r}}(\text{Ker }f:P) = P$ since r is idempotent. Thus $\mathbf{r}(B/A) = g(P) = g(K+C_{\mathbf{r}}(\text{Ker }f:P)) \subseteq \pi(\mathbf{r}(f(P))) \subseteq g(F(B)) = (\mathbf{r}(B)+A)/A$.

The remaining assertions are clear.

<u>Proposition 2</u>. Let r be an idempotent preradical. Then the following are equivalent:

- (i) r is an 1-radical (2-radical),
- (ii) if $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ is exact, B finitely cogenerated (coembedded), A,C $\in \mathcal{F}_{\mathbf{r}}$ then B $\in \mathcal{F}_{\mathbf{r}}$.

<u>Proof.</u> (i) implies (ii). It follows from the fact that for an idempotent 1-radical (2-radical) and finitely cogenerated (coembedded) module T T ϵ $\mathcal{T}_{\mathbf{r}}$ if and only if $\operatorname{Hom}_{\mathbb{R}}(T,F) = 0$ for every $F \in \mathcal{F}_{\mathbf{r}}$.

(ii) implies (i). Consider the exact sequence $0 \longrightarrow \mathbf{r}(B) \longleftrightarrow (\mathbf{r} \triangle \mathbf{r})(B) \longrightarrow (\mathbf{r} \triangle \mathbf{r})(B)/\mathbf{r}(B) \longrightarrow 0, \text{ where B is finitely cogenerated (coembedded). Then } (\mathbf{r} \triangle \mathbf{r})(B) \in \mathcal{T}_{\mathbf{r}} \text{ and consequently } B/\mathbf{r}(B) \in \mathcal{T}_{\mathbf{r}}.$

<u>Proposition 3.</u> For a preradical r the following are equivalent:

- (i) r is G-cohereditary,
- (ii) r(B/A) = (r(B) + A)/A, whenever $A \subseteq B$, B finitely coembedded,

- (iii) if $B/r(B) \longrightarrow A$ is an epimorphism / A cocyclic /, and B finitely cogenerated (coembedded) then $A \in \mathcal{F}_r$,
 - (iv) a) r is a 1-radical (2-radical) and
- b) whenever A \subseteq B, B \in \mathcal{F}_{r} / B/A cocyclic /, B finitely coembedded then B/A \in \mathcal{F}_{r} .

Proof. Easy.

- (i) r is G₁-cohereditary,
- (ii) for every $Q \in \mathcal{T}_r$ there is a projective presentation $0 \longrightarrow K \longrightarrow P \longrightarrow Q \longrightarrow 0$ of Q such that for every $X \subseteq P$ with P/X finitely coembedded $K + C_n(X:P) = P$.

Proof. Obvious.

Proposition 5. Let r be a preradical. Then

- (i) r is G-cohereditary if and only if (Gh)(r) is G-cohereditary,
- (ii) \overline{r} is G-cohereditary if and only if $\overline{(Gh)(r)}$ is G-cohereditary,
- (iii) if (Gh)(r) is cohereditary then r is G-cohereditary,
- (iv) if r is idempotent and $(\overline{Gh})(r)$ is cohereditary then r is G-cohereditary.
- (v) if R is a left perfect ring and r is G-cohereditary then $\overline{(Gh)(r)}$ is cohereditary.

Proof. (i)-(iv) are obvious.

(v) Let R be a left perfect ring and r be a G-cohereditary preradical. If $Q \in R$ -mod, $Q \in \mathcal{T}_{(Gh)(r)}$, $0 \longrightarrow K \longrightarrow P \longrightarrow Q \longrightarrow 0$ is a projective cover of Q and $X \subseteq P$ with P/X fini-

tely cogenerated then $P = C_{(Gh)(r)}((X+K):P) = C_{(Gh)(r)}(X:P) + K = C_r(X:P) + K$ since (Gh)(r) is G-cohereditary. Hence $C_r(X:P) = P$ and consequently (Gh)(r)(P) = P which yields $\overline{(Gh)(r)}$ is cohereditary.

<u>Corollary 6</u>. An idempotent G-hereditary preradical in a left perfect ring is G-cohereditary if and only if it is cohereditary.

<u>Proposition 7.</u> Let r be an idempotent G-cohereditary preradical for a left perfect ring R. Then there is a projective (Gh)(r)-torsion module P such that $r(N) = p_{\{P\}}(N)$ for every finitely coembedded module N.

<u>Proof.</u> From Proposition 5 and [3], Theorem 4.7 it follows that there is a projective (Gh)(r)-torsion module P such that $\overline{(Gh)(r)} = p_{\{P\}}$. Hence $r(N) = p_{\{P\}}(N)$ for every finitely coembedded module N.

A left R-module Q is called

- dQF-3' if the idempotent preradical p_{iQ3} is G-cohereditary,
- r dQF-3 $\acute{}$ if the idempotent radical $\widetilde{p_{\{Q\}}}$ is G-cohereditary,

<u>Proposition 8.</u> Let $Q \in R$ -mod. Then the following are equivalent:

- (i) Q is dQF-3',
- (ii) there is a projective presentation $0 \longrightarrow K \longleftrightarrow P \longrightarrow Q \longrightarrow 0$ of Q such that $K + C_{p_{\{Q\}}}(X:P) = P$ for every $X \subseteq P$ with P/X finitely cogenerated (coembedded),
- (iii) a) $\operatorname{Hom}_{\mathbb{R}}(Q,X/p_{\{Q\}}(X)) = 0$ for every finitely cogenerated (coembedded) module X and

- b) if $A \subseteq B$, $Hom_R(Q,B) = 0$ / B/A cocyclic / and B finitely coembedded then $Hom_R(Q,B/A) = 0$,
- (iv) a) if $0 \to A \to B \to C \to 0$ is exact, B finitely cogenerated (coembedded), $A \in \mathcal{T}_{p_{\{Q\}}}$ and $C \in \mathcal{T}_{p_{\{Q\}}}$ then $B \in \mathcal{T}_{p_{\{Q\}}}$ and
 - b) if $A \subseteq B$, $Hom_R(Q,B) = O / B/A$ cocylic / and B finitely coembedded then $Hom_R(Q,B/A) = O$,
- (v) for every epimorphism $h:B\longrightarrow A$, where B is finitely cogenerated (coembedded), for every non-zero homomorphism $f: \mathbb{Q} \longrightarrow A$ there are homomorphisms $k:\mathbb{Q} \longrightarrow \mathbb{Q}/\ker f$ and $g:\mathbb{Q} \longrightarrow B$ with $0 \neq h \circ g = \overline{f} \circ k / \overline{f}$ is induced by f/,
- (vi) for every epimorphism h:B \longrightarrow C, where C is cocylic, B is finitely cogenerated (coembedded), for every nonzero homomorphism f:Q \longrightarrow C there are homomorphisms k:Q \longrightarrow Q/Ker f and g:Q \longrightarrow B with $0 \Rightarrow h \circ g = \overline{f} \circ k / \overline{f}$ is induced by f /,
- (vii) if $f:B \longrightarrow A$ is an epimorphism / A is cocylic /, B is finitely cogenerated (coembedded) and $\operatorname{Hom}_R(\mathbb{Q},A) \neq 0$ then there is a homomorphism $g:\mathbb{Q} \longrightarrow B$ with Im $g \not= \operatorname{Ker} f$.

 Moreover, if \mathbb{Q} has a projective cover then the conditions (i)-(vii) are equivalent to
- (viii) $p_{\{Q\}}(C(Q)/X) = C(Q)/X$ for every $X \subseteq C(Q)$ with C(Q)/X finitely cogenerated (coembedded),
- (ix) if $X \subseteq C(Q)$ such that C(Q)/X is finitely cogenerated (coembedded) then C(Q)/X is isomorphic to a factormodule of a direct sum of copies of Q,
 - (x) $(Gh)(p_{\{Q\}}) = p_{\{C(Q)\}},$
 - (xi) (Gh)(p() is cohereditary,
- (xii) $p_{Q}(X) = p_{C(Q)}(X)$ for every finitely cogenerated (coembedded) module X,

 $(xiii) (Gh)(p_{QQ})(C(Q)) = C(Q),$

(xiv) for every finitely cogenerated (coembedded) module X $p_{\mathbf{fC}(Q)}(X) = X$ implies $p_{\mathbf{fQ}}(X) = X$,

(xv) a) if $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ is exact, B finitely cogenerated (coembedded), $A \in \mathcal{T}_{p_{\{Q\}}}$ and $C \in \mathcal{T}_{p_{\{Q\}}}$ then $B \in \mathcal{T}_{p_{\{Q\}}}$ and

b) for every finitely coembedded module X $\operatorname{Hom}_R(\mathbb{Q},X)=0$ if and only if $\operatorname{Hom}_R(\mathbb{C}(\mathbb{Q}),X)=0$.

<u>Proof.</u> (ii) implies (i). Let $\mathcal Q$ denote the class of all $\mathbb N\in\mathbb R$ -mod for which there is a projective presentation $0\longrightarrow L \longrightarrow \mathbb M \longrightarrow \mathbb N \longrightarrow 0$ with $L+C_{\mathbb P_{\mathbb Q_{\mathbb Q}^2}}(X:\mathbb M)=\mathbb M$ for every $X\subseteq \mathbb M$ with $\mathbb M/\mathbb X$ finitely cogenerated (coembedded). Then $\mathbb Q\in\mathcal Q$ and $\mathcal Q$ is a cohereditary class closed under direct sums and consequently $\mathcal T_{\mathbb P_{\mathbb Q_{\mathbb Q}^2}}\subseteq \mathcal Q$. Now it suffices to use Proposition 1 (ii).

(ii) implies (v). Consider the following commutative diagram

where B is finitely cogenerated, $f \neq 0$ and $0 \longrightarrow K \longleftrightarrow P \xrightarrow{\mathcal{Q}} Q \longrightarrow 0$ is a projective presentation of Q such that $K + C_{p_{\{Q\}}}(X:P) = P$ for every $X \subseteq P$ with P/X finitely cogenerated.

Then P/ker p is finitely cogenerated and hence

K + $C_{p\{Q\}}(Ker p:P) = P$. If for every homomorphism $t:Q \longrightarrow P/Ker p = q(\pi^{-1}(Im t)) \subseteq Ker f$, where $\pi:P \longrightarrow P/Ker p$ is

the natural epimorphism then $q(C_{p_{\{Q\}}}(Ker p:P)) = Q \subseteq Ker f - a_{\{Q\}}(C_{p_{\{Q\}}}(Ker p:P)) = Q \subseteq Ker f - a_{\{Q\}}(C_{p_{\{Q\}}}(C_{p_{\{Q\}}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}(E_{p_{\{Q\}}(E_{p_{$

(vii) implies (ii). If there is a projective presentation $0 \to K \longleftrightarrow P \to Q \to 0$ of Q and a submodule $X \subseteq P$ with P/X finitely cogenerated such that $K + C_{PQ}(X:P) \neq P$ and $f:P/X \to P/(K + C_{PQ}(X:P))$ is the natural epimorphism then there is a homomorphism $g:Q \to P/X$ with Im $g \not\in Ker$ f, a contradiction. Hence for every projective presentation $0 \to K \longleftrightarrow P \to Q \to 0$ of Q and every submodule $X \subseteq P$ with P/X finitely cogenerated $K + C_{PQ}(X:P) = P$.

The rest is either clear or follows from Propositions 1(i), 2, 3(iv) and 4.

<u>Proposition 9.</u> Let $Q \in R$ -mod. Then the following are equivalent:

- (i) Q is r dQF-3",
- (ii) there is a projective presentation $0 \longrightarrow K \longleftrightarrow P \longrightarrow Q \longrightarrow 0$ of Q such that $K + C_{P \in Q_1^2}(X:P) = P$ for every $X \subseteq P$ with P/X finitely cogenerated (coembedded).
- (iii) whenever $A \subseteq B$, (B/A cocyclic) B finitely coembedded and $\operatorname{Hom}_R(\mathbb{Q},B)=0$ then $\operatorname{Hom}_R(\mathbb{Q},B/A)=0$. Moreover, if \mathbb{Q} has a projective cover then (i)-(iii) are equivalent to
- (iv) $\operatorname{Hom}_R(\mathfrak{Q},Y) \neq 0$ for every finitely coembedded nonzero factormodule Y of $C(\mathfrak{Q})$,

$$(v)$$
 $(Gh)(\widetilde{p_{\{Q\}}}) = p_{\{C(Q)\}}$,

- (vi) $(Gh)(\widetilde{p}_{QQ})$ is cohereditary,
- (vii) $p_{\{Q\}}(X) = p_{\{C(Q)\}}(X)$ for every finitely cogenerated (coembedded) module X,
 - (viii) $(Gh)(\widetilde{p_{4Qk}})(C(Q)) = C(Q),$
- (ix) for every finitely cogenerated (coembedded) module $X \quad p_{\{C(Q)\}}(X) = X \text{ implies } \operatorname{Hom}_R(Q,Y) \neq 0 \text{ whenever } Y \text{ is a nonzero factor module of } X,$
- (x) for every finitely coembedded module X $\operatorname{Hom}_R(Q,X) = 0$ if and only if $\operatorname{Hom}_R(C(Q),X) = 0$.

Proof. It can be led similarly as in Proposition 8.

<u>Proposition 10</u>. Let $Q \in R-mod$. If $p_{\{Q\}}$ has FCgSP then Q is dQF-3 if and only if it is r dQF-3.

<u>Proof.</u> It suffices to prove only the "only if" part. If Q is r dQF-3' and there is a projective presentation $0 \to K \hookrightarrow P \to Q \to 0$ of Q, a submodule X of P with P/X finitely cogenerated and $K + C_{p_{\{Q\}}}(X:P) \neq P$ then $Hom_R(Q,P/C_{p_{\{Q\}}}(X:P)) \neq 0$ and hence $Hom_R(Q,P/C_{p_{\{Q\}}}(X:P)) \neq 0$ by Proposition 9(iii). Thus there is a nonzero homomorphism $g:Q \to P/C_{p_{\{Q\}}}(X:P)$ which can be factorized through a homomorphism $h:Q \to P/X$, a contradiction. Thus Q is dQF-3' by Proposition 8.

<u>Proposition 11</u>. Let S be a simple R-module possessing a projective cover. Then S is dQF-3 " if and only if it is projective.

<u>Proof.</u> Let $0 \neq S$ be a simple R-module with a projective cover $0 \longrightarrow K \longrightarrow P \longrightarrow S \longrightarrow 0$. If $X \subseteq P$ with P/X finitely cogenerated then $X \subseteq K$ since K is a maximal submodule of P and K is small in P. Further $p_{\{S\}}(P/X) = P/X$ by Proposition 8. Hen-

ce there is a homomorphism $f:S \longrightarrow P/X$ such that Im $f \not= K/X$. Thus Im f = P/X and hence f is an isomorphism. Therefore X = K. Hence K = 0 and consequently S is projective. The converse is clear.

A module Q is called strongly dQF-3'' (strongly r dQF-3'') if there is a projective module P such that $(Gh)(p_{\{Q\}}) = p_{\{P\}} ((Gh)(\widetilde{p_{\{Q\}}}) = p_{\{P\}}).$

Proposition 12.

- (i) Every strongly dQF-3' (strongly r dQF-3') module is dQF-3' (r dQF-3').
- (ii) If a module Q has a projective cover then Q is strongly dQF-3 (strongly r dQF-3) if and only if it is dQF-3 (r dQF-3).
- (iii) A module Q is strongly dQF-3'' (strongly r dQF-3'') if and only if there is a projective representation $0 \longrightarrow K \longrightarrow P \longrightarrow Q \longrightarrow 0$ of Q such that $(Gh)(p_{\{Q\}}) = p_{\{P\}}((Gh)(\widetilde{p_{\{Q\}}}) = p_{\{P\}})$.

Proof. Obvious.

A module Q is said to be a G-generator if $p_{\{Q_i^2\}}(N) = N$ for every finitely cogenerated (coembedded) module N.

Remark 13. Let $Q \in \mathbb{R}$ -mod. Then Q is a G-generator if and only if $(Gh)(p_{QQ}) = id$.

<u>Proposition 14.</u> Let $Q \in R$ -mod. Then the following are equivalent:

- (i) Q is a G-generator,
- (ii) Q is strongly dQF-3 and every simple R-module is isomorphic to a factormodule of Q,

- (iii) Q is dQF-3 and every simple R-module is isomorphic to a factormodule of Q.
- Moreover, if Q has a projective cover (C(Q), $\mathcal{G}_{\mathbb{Q}}$) then (i)-(iii) are equivalent to
 - (iv) Q is $dQ_{\vec{r}}-3$ and C(Q) is a generator.

<u>Proof.</u> (iii) implies (i). Suppose there is a finitely cogenerated module X with $p_{\{Q\}}(X) \neq X$. Then there is a cocyclic module C such that $0 \neq C \in \mathcal{F}_{p_{\{Q\}}}$ since $p_{\{Q\}}$ is G-cohereditary, a contradiction.

The rest is clear.

Remark 15. A projective module Q is a G-generator if and only if it is a generator.

<u>Proposition 16.</u> Let $Q = \sum_{G=G}^{\infty} S$, where \mathcal{G} is the representative set of simple left R-modules. Then the following are equivalent:

- (i) Q is dQF-3',
- (ii) Soc is G-cohereditary.
- (iii) Q is a G-generator,
- (iv) R is a left V-ring.

<u>Proof.</u> It follows immediately from Proposition 14 and the fact that Soc = $p_{\{Q\}}$.

Let us Y denote a preradical defined by $Y(M) = \bigcap N$, where N runs through all submodules of M with M/N cocyclic and small in E(M/N).

Proposition 17. Y is a G-hereditary radical.

Proof. Obvious.

Proposition 18. Let Q be a cofaithful dQF-3' with Y(Q) = = Q. Then $(Gh)(p_{\{Q\}}) = Y$. - 281 -

<u>Proof.</u> Y(Q) = Q implies $p_{\{Q\}} \le Y$ and hence $(Gh)(p_{\{Q\}}) \le Y$ by Proposition 17.

On the other hand if r(N) = 0, where $r = p_{\{Q\}}$, N finitely coembedded and $Y(N) \neq 0$ then there is a cocyclic factormodule C of N with $Y(C) \neq 0$. Thus C is not small in E(C) and hence there is a proper submodule K of E(C) with C + K = E(C). Now r is G-cohereditary, r(N) = 0, N finitely coembedded. Hence r(E(C)/K) = 0 by Proposition 3(iv) since E(C)/K is isomorphic to a factormodule of N. Further Q is cofaithful and hence $E(C) \in \mathcal{T}_{\mathbf{r}}$ and consequently r(E(C)/K) = E(C)/K, a contradiction. Thus Y(N) = 0. Therefore $Y(N) \subseteq r(N)$ for every finitely coembedded module N and hence $Y \neq (Gh)(p_{\{Q\}})$.

<u>Proposition 19.</u> Let R be a left perfect ring and $\mathbb Q$ be a cofaithful module. Then the following are equivalent:

- (i) $(Gh)(p_{QQ}) = Y$,
- (ii) Q is dQF-3" and Y(Q) = Q,
- (iii) $\mathcal{T}_{(Gh)(p_{\{Q\}})} = \mathcal{T}_{Y}$.

<u>Proof.</u> (iii) implies (ii). Y(Q) = Q by (iii). If $X \subseteq C(Q)$ such that C(Q)/X is finitely cogenerated then Y(C(Q)/X) = C(Q)/X since Y is cohereditary for a left perfect ring and hence $p_{\{Q\}}(C(Q)/X) = C(Q)/X$.

(ii) implies (i). By Proposition 18. The rest is clear.

Proposition 20. Every direct sum of (strongly) dQF-3" modules is (strongly) dQF-3".

Proof. Obvious.

<u>Proposition 21</u>. Let A,B ϵ R-mod. If p_{A} (B) = B then the

following are equivalent:

- (i) A ⊕ B is dQF-3''.
- (ii) A is dQF-3'.

Proof. Obvious.

Proposition 22. Let QeR-mod. If every cocyclic factor-module of Q is dQF-3 "then Q is dQF-3".

References

- [1] L. BICAN: Corational extensions and pseudo-projective modules, Acta Math. Acad. Sci. Hungar. 28(1976), 5-11.
- [2] L. BICAN: QF-3' modules and rings, Comment. Math. Univ. Carolinae 14(1973), 295-303.
- [3] L. BICAN, P. JAMBOR, T. KEPKA, P. NĚMEC: Hereditary and cohereditary preradicals, Czech. Math. J. 26(1976), 192-206.
- [4] L. BICAN, P. JAMBOR, T. KEPKA, P. NĚMEC: Pseudoprojective modules, Math. Slovaca 29(1979), 106-115.
- [5] R.R. COLBY, E.A. RUTTER Jr.: Semiprimary QF-3 rings, Nagoya Math. J. 32(1968), 253-258.
- [6] G.M. CUKERMAN: O psevdoinjektivnych moduljach i samopsevdoinjektivnych kolcach, Mat. Zametki 7(1970), 369-380.
- [7] J.P. JANS: Torsion associated with duality, Tohoku Math. J. 24(1972), 449-452.
- [8] J.P. JANS, H.Y. MCCHIZUKI, L.E.T. WU: A characterization of QF-3 rings, Nagoya Math. J. 27(1966), 7-13.
- [9] J. JIRÁSKO: Pseudohereditary and pseudocohereditary preradicals, Comment. Math. Univ. Carolinae 20(1979), 317-327.
- [10] A.I. KAŠU: Kogda radikal associrovannyj modulju javljaetsja kručenijem, Mat. Zametki 16(1974), 41-48.

- [11] A.I. KAŠU: Radikaly i koobrazujuščije v moduljach, Mat. Issled. 11(1974), 53-68.
- [12] Y. KURATA, H. KATAYAMA: On a generalization of QF-3' rings, Osaka J. Math. 13(1976), 407-418.
- [13] K. MASAIKE: On quotient rings and torsionless modules, Sci. Rept. Tokyo Kyoiku Daigaku, Sect. A 11 (1971), 26-30.
- [15] K. OHTAKE: Commutative rings of which all radicals are left exact, Comm. Algebra 8(1980), 1505-1512.
- [16] T. SUMIOKA: On QF-3 and 1-Gorenstein rings, Osaka J. Math. 16(1979), 395-403.
- [17] C. VINSONHALER: A note on two generalizations of QF-3, Pacif. J. Math. 40(1972), 229-233.
- [18] J. JIRÁSKO: Preradicals and generalizations of QF-3 modules I, Comment. Math. Univ. Carolinae 23 (1982), 25-40.

Bělohorská 137, 169 CO Praha 6, Czechoslovakia

(Oblatum 5.6. 1981)