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ON THE EQUATION x* = f (t, x) IN BANACH SPACES
Jozef BANA§, Andrzej HAJNOSZ and Stanistaw WEDRYCHOWICZ

Abstract: In thig paper, we deal with the existence theo-
rem for the equationx =f t,x), where the values of a functi-
on £(t,x) lie in an arbitrary Banach space. In order to obtain
the existence of solutions of this equation we assume that the
function £(t,x) is uniformly continuous and satisfies some com-
parison condition involving the notion of a measure of noncom-
pactness which is defined in an axiomatic way.

dg: Ordinery differential equation in Banach spa-
ce, measure of noncompactness, fixed point theorem of Darbo

type.
Classification: 47HO9, 34G20

1. Introduction. The purpose of this paper is to prove
asome existence theorems for an ordinary differential equation
in Banach space. We assume that the right hand side of that e-
quation satisfies a compagison condition of Lipschitz type
translated in terms of a so-called measure of noncompactness.
The notion of a measure of noncompactness which we will use,
was defined in an axiomatic way in the work [3] (ce. also [2]).
This axiomatics is not so general as that of Sadovskii [12] but
it seems to be very convenient in a lot of applications becau-
se it admits many natural realizations [3).

It is worth to mention that the notion of a measure of

noncompactness was very intensively examined in the last years
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and it was used in many branches of nonlinear functional ana-
lysis ([3],051,[7],[11),[12]1). The application of measures of
noncompactness in the theory of ordinary differential equati-
ons in Banach spaces, was at first initiated by Ambrosetti [ 11].
After Ambrosetti’s paper, there have appeared many papers in-
volving differential equations together with messures of non—-
compactness ([81,[41,[141,012),[7]). In almost &ll of the men-
tioned papers there has been used the measure of noncompactness
defined by Kuratowski [9]. Notice that Kuratowski’s measure is
very convenient but in several Banach spaces we do not know any
convenient necessary and suff}cient criteria of compactness and
therefore the application of Kuratowski s measure is very dif-
ficult and even impossible. With regard to this we use measures
defined in an exiomatic way, which allows us to omit the menti-

oned difficulties.

2. ic notstions gnd defin « Let E be an arbitrary
Bmach space with the norm Il - || and the zero element ® and let
K(x,r) denote the closed ball centered at x and with radius r.
Denote by ZﬂE the family of all bounded and nonempty subsets
of E and by 313 its subfamily which contains relatively comp-
act sets. For X,YCE the closure, convex closure and linear
combination of these sets will be denoted by X, Conv X, ocX +
+ (Y, respectively.

Definition [3]. A function w: Wy, —><0,+ @) will be
called a measure of noncompactness if it satisfies the follow-
ing conditions:

1° the family P =[x € ’M«E: X) = 01 is nonempty and
Pe %
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2° XCY==>(U,(X)_4. (1,
3° w(X) = wlConv X) = «(X),
4° (a,(lx + (1= £ A w(x) + (1-2A) @(Y), for Ae
e 0,17,
5° 1f X € Wy, X =X, X
o0
]/#Emdp(xn) = 0 then X, =mf__'\1 X #+0.

n+1 € X, n= 1,2,... and if

The family 7 defined in 1° 15 said to be the kernel of
the measure w and it is denoted by ker &t . It may be shown
that the family (kercb)c =[Xexeru:X = X1 forms a closed
subspace of the space mg =[x e mE:X = X1 with respect to
the topology generated by Hausdorff metric [31.

In the sequel, we will use the following modified version
of the fixed point theorem of Darbo type ([2],[3]1, cf. also
[61).

Theorem 1. Let Ce& @iy, Conv C = C and let T:C—>C be a
continuous transformation such that TX € WZE for eny X € @ .
If there exists a constant k €<0,1) such that

@(TX) £k @X),
then T has at least one fixed point which belongs to ker gt -
Moreover, the set FixT = [x €C:Tx = x] belongs to ker a »

Further, for any measure defined in the space E, we
will denote
E’u,= [xe E:{x} € ker (u.:l -

Obviously E‘u, is a closed and convex subset of the space E. In
the case when w is a sublinear measure, i.e. if it satisfies,
in addition; the following two conditions

@X + )£ wx) + p(Y),
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©Ax) = M\(a(x), A e R,
then E(,, forms a closed linear subspace of E.

Next, by ¢({0,T>,E) or shortly by C we will denote the spa-
ce of all continuous functions acting from the interval <0,T)»
into E, with the usual maximum norm.

For an arbitrary X ¢ @‘lc and &> 0 we put:
o (X,e) = xsg%({sup[llx(t) - x(s)llE:t,se(O,T),lt-sléa]},
Do) = 1n w(x,e), '
X(t) =[x(t):xe xI,
M(X) = sup [ wp(X(t)):te<0,m>] .

Finally, let us define
@) = o (X) + M(x).

This function is the measure of noncompactness in C with the
kernel ff’c consisting of all equicontinuous sets X such that
X(t) € ker (Wg for any t e<0,T)> [3],

Notice that the function M(X) is the measure of noncompactneas

on the family mgq of equicontinuous sets.

3. Mﬁmmmmmm Let w

be an arbitrary measure of nonecompactness in the space E. Ffor
X e ’)ﬂE let us denote

Nxl=sup [Hxll :xex].

Now we prove a few lemmas describing some properties of
a measure W ., These lemmas generalize some results given in
[31,[21.

Lempa 1. If NXN <1, then

X+ 2 @)+ Xl wkr,1)),

where
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Y = U .
x(Y,1) :”eYK(y’l)
For the proof see [2].
Lemma 2. Let {XO}E ker @ . Then
@(x, + )£t @(x, +X)
for te<0,1.
Proof. Using the axiomatics of a measure we have

lx + tX) = @w(tx + (1-t)x  + tX) = @((Q-t)x  + tlx, + X))
£(1-t) @ x3) + t @wix, + X) =t @lx, *X),

which proves our lemma.

Lemmg 3. Let tl’tZ’“”tn be given nonnegative reals such
v
<
that .=, t; €1 and let ix} € ker @ . Then

%2«: i1
@lxg +52y ty%y) £ 30 4y @wlxg + Xy
"
Proof. If 4-‘54 ty = 0, then the inequality is obvious. Let

"y
=i, t;> 0. Denoting A; = t;/, > t,, with respect to Lemma 2
4 "1 i 1/2e= 4 °k? iy

1 =

and our definition and using the fact that ;=i 4, =1, we have
n n
@lx, +, 2 64Xg) = @lx, + Gy £) (A% + AKX, +...

mw "
cee + A X NE G ) @ xg +: 3 AyXy) =

" "
G ty) @B Ayl + 30 £
n ™ " ’
£ G2 6g) Ty Dy @lxg + Xy) = Ty by ¢txg + Xy,

4=
and the proof is complete.
Lemma 4 [3]. Each measure of noncompactness is locally

Lipschitzian (hence continuous) with respect to the Hausdorff

metric.

Now, let us fix a measure of noncompactness in the space
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E and let {x }€ kerw . For X € 7 5 we denote

t 1
fD X(g)ds = [f") x(s)ds:x ex].
We prove some generalization of Goebel and Rzymowski - Lemmal8].

Lemma 5. If Xe Wl then for any te€<0,min {1,T3) the
following inequality holds:

t t
((L(xo + j; X(g)ds) = f& (L(xo + X(g))ds.
Eroof. Notice first that in view of Lemma 4 the function
t —>(u.(x° + X(t)) is contimous,also integrable. Further, let
us take an arbitrary e €(0,1). In virtue of equicontinuity we
can choose points 0 =t £ £ £t) £f,<... € &t =t so den-
sely in <0,t> that for all xeX

ﬂj:x(s)de -,;%, x(Et-t,_Jlze.
Thus we get
x, + j: X(s)ds c [f:x(e)da -{gd x(E ) (ty=ty_)ixeXxT+
*[xy + ;3 x(§ ) (ty=t,_Dixex]= 4 + B,
Hence in view of Lemma 1 we obtain
@A + B) £ w(B) + &l w(K(B,1)) £ € u(K(B,1)) +
0(«.[ x, +;=§4 x( §1)(t1-t1_1) :xeXxl.
Further, applying Lemma 3 we have
@ixy + [} X(0)an) & qulx, + ;B %05 ety 1)) o
+ & «(x(B,1)) ﬁ‘.’§4 (ti-ti-l) ""'(xo + X(§,)) +8«(k(B,1)).

Finally, densifying the partition of the interval <0,t> end
taking into account that the number ¢ is arbitrary, we obtain
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t t
@iz, + [ X(a)as) = [Tulxy + X(a))ds,

which completes the proof.

4. E tenc u rdipnary d 1 ti-
ons. Let us consider the ordinary differential equation

(1) x’ = £(t,x)

with the initial condition
(23} x(0) = x

o
We shall assume that £ is defined on {0, Ty K(xo,r), uniformly
continuous and bounded, ll £(t,x)# £ A. Moreover, we will assume

that for all X € %L, the following inequality holds:
(3) f/.(xo + £(t,X))£ p(t) w(X), for almost all te<0,T),

where w is a given measure of noncompactness in the space E
such that {xo'i € ker & and p(t) is a Lebesgue integrable func-
tion on <0,T).

Notice that if we denote g(t,x) = x, * £(t,x) then for any
xeEw in view of (3) we obtain

‘u(g(t,x)) = wlx  + £(t,x)) £p(t) «dx}) =0

for almost all te<0,T), so that in virtue of continulty of f

we have that g: <0,T)xE, —> E, . Particulary, x, * f(O,xo) e

€ E‘w and in view of Lemma 2 we can easily deduce that the tan-

gent segment [x, + t£(0,x,):t €40,1>] 18 a subset of Eu .
Now we prove the following theorem.

Theorem 2. Under the above assumptions, if AT<r, T<£1,
then the equation (1) has at least one solution satisfying the
condition (2). Moreover, all solutions of the problem (1)-(2)
are such that x(t)e Ew, for all t € <0,T>.
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Eroof. Let X c C = C(<0,T>E) be the set of all functi-
ons x such that x(0) = x, and lx{t) - x(s)g£Alt-sl. Notice
that Xo is closed, bounded, convex and equicontinuous. furt-

hermore, the transformation
t
(M) (t) = X, *+ j’; f(s,x(s))ds

maps continuously Xo into itself. Thus rur problem is equiva-
lent to the existence of a fixed point of F.
Fix a number % > 1 and for any X € mgq let us put

(%2 (X) = sup [a(x(t)) exp(- ae_[;t p(s)ds):te<0,T>].

Cne can show that (“pe{X) satisfies the axioms of measure of
noncompactness on the family mgq.

Then, in view of Lemma 5 we have
t t
@URO(0) = @lxg + fy £s,X(s))d8) = [ wlx +
+ f(s,X(s))ds < ‘f: p(s) “(X(s))ds < Ape (X) J‘:tp(s)
A t
exp(aej; p(t )dv )ds £ exp( 2e _/‘; p(s)ds),‘% (Lae (XD

0 t
After dividing both sides by exp( %j;p(s)ds) and taking sup-
remum on the left hand we get

(“oelTEG @ ().

Thus, applying Theorem 1, we complete the proof.

Repark. It is worth to mention that in the case X, =6,

{ele ker w , the comparison condition (3) has the form
(4) @(2(t,X)) £p(t) a(X)

(ef. L[2]). Noreover, if (** is = sublinear measure, then the
condition (3) is equivalent tc the condition (4). Indeed, we

have



Mx, + £(1,X)) £ (-L({xoi) + @(£(t,X)) = m(e(t,X)).
On the other hand,
@ (£(t,X)) = @lx, + £(t,X) +{-xoi)£ lxy + £(£,X) +
+ wd-x }) = @lx, + £(t,X)),
8o that
@(e(t,X)) = «(x, + £0£,X)).

Now we give a few examples.

Exemple 1. Let us consider the infinite system of diffe-
rentisl equations

(5] x;‘ = a (t)x + XX a1seee), o= 1,2,0..,

with the initial conditions
(6) z,(0) = xg, n s 1,2.606

We will assume that there exists 1lim xg = a. Moreover, we as-
sume that: nre

(1) 8,:€0,T> =R are continuous functions such that the
sequence a,(t) converges uniformly on the interval <0,T> to the
function which vanishes identically,

(11) there exists a sequence of real nonnegative numbers
a, such that nl_i’mw a, = 0 and lfn(xn’xn+1'xn+2"")|‘an for
n=1,2,... and for all x = (x9,%5,...)€ 1%,

(1i1) the function f = (f1,£5,++) transforms the space
1% into itself and is continuous.

Under the above hypotheses the initial value problem (5)-
-(6) has at least one solution x(t) such that x(t) € 1% for any
t&<0,T) and mlin, X, t) = & uniforrly with respect to te <e, Ty,
where T <1,

for the oroof 1=t us take ints accoun* the mea..™ o non=-



compactness in the space 1° defined as follows:
(X) = 11 Ls x_ - all
“ lin sup x\épxl - al
(cf. [3]). The kernel ker w of this measure is the family of
all bounded subsets of the space 1% consisting of sequences

which converge to a with the same "rate".

Now, for X € @ 0 we have
n
(/-(xo + £(t,X)) = m}{g sup [,‘823('10 + an(t)xn + fn(xn,xn+1,...
ees) = all < : :lm_) ggp[xsg&“an(t)l |xnl~'- |fn(xn,xﬁ*_1,...) +
+x% - alll < %&ggp [xs\ex&[p(t)lxn-al + 1 an(t)l lal +
+ lfn(xn,xn+1,'-o)l + ‘xg - B‘J]’
where p(t) = sup [I an(t)l in = 1,2,...], te<0,T). Hence we ob-
tain
(u.(xo + £(¢,X)) £ p(t) @ (X),

which proves our assertion.

Example 2. Now, let us take the infinite system of dif-
ferential equations of the form
(7 xl; = pplt)x, + falx)sX5,0.0), te<o,7>
with the initial condition
(8) x, (0) = apy 0 =1,2,...,

where an is a sequence of nonnegative reals converging to zero«
We assume that the functions £,:1%° —> R are such that there
1s a sequence b, converging to zero and lfn(x)lébn for x€1%.,
and besides, the function f = (fl,rz,...):l“’-—> 1%° i3 uniform-
ly continuous. Further, let us assume that Ppt <0,T> —>R are
continuous functions and such that Ip (t)1< p(t), te<0,T), whe-

re p:{0,T> —> R is some continuous function,
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In what follows, let us consider the measure of noncom-

pactness on the space 1%° defined by the formula
@(X) =  1in[ sup [sup [1x,]:xznl]] .

One can check that (u(x) is the sublinear measure such that its
kernel is a collection of all bounded sets in the space 1°° con-
sisting of sequences converging to zero with the same rate £3l.
Notice that if we denote x, = (a),a,,...) then {x e ker -

Now we show that the problem (7)-(8) has at least one so-
lution in the space 1% provided T<£1 and the above assumpti-
ons are satisfied.

Note at first that for X€ ml., we get

(h(f(t,x))ém];%%[;g& [sup [l p () Ixy | + ) fk(xl,xz,...)l :
ki < k2 = A
kznll) ml_%no[;\‘l&[eup[p(t)lxkl + btk nll] = p(t) w (X)
Hence, in view of Remark made after Theorem 2 we conclude that
the problem (7)-(8) admits at least one solution x(t) =

= (x;(t),x,(t),...) in the space 1%°, where the sequences x,(t)

converge to zero on the interval <0,T> with the same rate.

Exampple 3. Now we pay our attention to the case which is
not covered by Theorem 2. Namely, assume that @ is an arbitra-
ry measure of noncompactness on the space E and xoe E(“,. Furt-
her, let us suppose f:(O,T)xK(xo,r)—a x(xo,r) is a given
function which is uniformly continuous and such that
(9) wix, + f(t,x))é-‘igl for te (0,T>, XCK(x,,r)
and ’

(10)  @ix, + £(t,X)) = o(; %/tz) as t —» O+, uniformly with

respect to Xc K(xo,r) .
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Then we have the following theorem (cf. [151).

Theorem 3. Let T41. Then the equation (1) has at least
one solution x such that the condition (2) is satisfied. Apart
from that x(t)e Ew for all te<0,T).

Proof. Similarly as in the proof of Theorem 2 we consi-
der the set Xo defined there and reduce our problem to the ex-
istence of fixed points of the transformation % defined on the
set X with help of the formula

(Fx)(t) =x, + f: £(s,x(s))ds.

Next, consider the sets X44 = Conv FXy, i =0,1,2,... . All

these sets are of the same type as Xo and Xi”_C Xi' Let us put
u (t) = @ (X, (t)), te<o,T>.

We have that 0£un+1(t)éun(t). Moreover, in view of the ine-
quality
@ (X(t)) - w(x(a))ls aw(X,lt-sl)

(ef. [31), all these functions are equicontinuous. Consequent-
ly, the sequence un(t) converges uniformly to a function
u,(t) = 1im u,(t). Observe now that from (9) and Lemma 5

m-> o0
follows

t t

" U (8) = @lxg + 0, Xp(8))ds) < fF @ (xy
11

(x,(a)) u (s)
+ £(s,X (8)))ds é./: —t“—gi-ds = J;t n°

8 8

Fixing an arbitrary € > O and using (10) we deduce that the-
re exists d°> 0 such that

-k
@(x, + £(6,0) £ ee */42) zor te (0,d) , XcKlxg,r).
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Hence we get

t t
u(t) = @lx  + J; £(s,X,_;(8))ds) £ ,{; (««ixo +
+ £(s,X,1(8)))ds < ej:(e s/az)ds -ge ¥

1
for te(0,d> , which implies that u,(t) = o(e .E) as t = O+

and consequently

(12) U,lt) =ole *), as t—> O+,
nn(t)
From the above facts we conclude that the functions t— t2
are integrable. Hence and from (11) we obtain
u_(s)
v () _éft 2 ds.
(/] 8

The above inequality and (12) imply, via Roger ‘s Lemma [10],
that u,(t)=0. Finally observe that

1lim {max [un(t):te<0,1'>]] =0,

m->c0
-4
hence we deduce that the set Xm=¢/;\1 Xn is nonempty, convex,

closed and Xme ker ¢« « Now we apply the classical Schauder ‘s
fixed point theorem, which completes the proof.
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