

Werk

Label: Article **Jahr:** 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log23

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23,2 (1982)

GENERIC DIFFERENTIABILITY OF MAPPINGS AND CONVEX FUNCTIONS IN BANACH AND LOCALLY CONVEX SPACES LE VAN HOT

Abstract: Generic Fréchet-differentiability of mappings and convex functions defined on Banach and locally convex spaces is investigated. In particular, the Fréchet and Gâteaux differentiability of Hammerstein operators is also considered.

<u>Key words</u>: Differentiability, mappings, convex functions, Asplund spaces, Banach and locally convex spaces.

Classification: Primary 58C20, 58C25 Secondary 47H99

Introduction. The first important contribution to differentiability of convex functions has been given by Asplund [3]. He has shown that each Banach space X, which admits an equivalent norm such that the corresponding dual norm in X* is locally uniformly rotund is a strong differentiability space. Further conditions have been obtained also for weak differentiability spaces. The properties of the so called Asplund spaces have been intensively studied in [1],[5],[8],[11],[12],[17], [21],[24]. For the differentiability properties of Hammerstein and nonlinear operators, we refer the readers for instance to [15],[19],[25].

First section deals with the generic fréchet-differentiability of convex functions defined on a product space X = = $\prod_{\lambda \in \Gamma} X_{\lambda}$, where $(X_{\lambda} : \lambda \in \Gamma)$ is a family of Asplund spaces, and of finite convex weakly continuous functions defined on a locally convex space. Section 2 is devoted to generic Fréchet-differentiability of the class of mappings acting from a Banach space into another Banach space. In the last section we discuss generic Gâteaux and Fréchet-differentiability of Hammerstein operators.

1. Generic Fréchet-differentiability of convex functions defined on locally convex spaces

Lemma 1. Let X be a topological space and T be a subset of X such that for each open nonempty subset G of X there exists a nonempty G_{σ} -subset $T_G \subseteq T$ with the following property $T_G \subseteq \text{int } \overline{T}_G \subseteq G$. Then there exists a dense G_{σ} -subset $A \subseteq T$.

Proof: Put $\mathcal{H} = \{S \subseteq T; S \text{ is a } G_{\sigma} \text{-subset} \text{ and } S \subseteq \text{int } \overline{S} \}$, $\mathcal{M} = \{\mathcal{L} \subseteq \mathcal{H}; \text{ int } \overline{S}_1 \cap \text{int } \overline{S}_2 = \emptyset \text{ for all } S_1, S_2 \in \mathcal{L}, S_1 + S_2 \}$. We write $\mathcal{L}_1 \preceq \mathcal{L}_2$ iff $\mathcal{L}_1 \subseteq \mathcal{L}_2$. Then " \preceq " is a partial order on \mathcal{M} . It is easy to see that there exists a maximal element \mathcal{L} of \mathcal{M} . Put $A = U \ \{S:S \in \mathcal{L} \}$. Since every such S is a G_{σ} -subset, there exists a sequence of open subsets $G_{S,n}$ such that $S = \bigcap_{i=1}^{\infty} G_{S,n}$ for each $S \in \mathcal{L}$. Without loss of generality we can suppose that $G_{S,n} \subseteq \text{int } \overline{S}$ for $n = 1,2,\ldots$. Put $G_n = U \ \{G_{S,n}:S \in \mathcal{L} \}$. Then G_n is open for all $n = 1,2,\ldots$. We claim that $A = \bigcap_{i=1}^{\infty} G_n$. It is clear that $A \subseteq \bigcap_{i=1}^{\infty} G_n$. Now if $X \notin A$, then $X \notin S$ for all $X \in \mathcal{L}$. If $X \notin \text{int } \overline{S}$ for all $X \in \mathcal{L}$, then of course $X \notin G_n$ for all $X \in \mathcal{L}$, then $X \notin G_{S,n} \subseteq \text{int } \overline{S}$ for all $X \in \mathcal{L}$, $X \notin G_{S,n} \subseteq \text{int } \overline{S}$ for all $X \in \mathcal{L}$, $X \notin G_{S,n} \subseteq \text{int } \overline{S}$ for all $X \in \mathcal{L}$, $X \notin G_{S,n} \subseteq \text{int } \overline{S}$ for all $X \in \mathcal{L}$, $X \notin G_{S,n} \subseteq \text{int } \overline{S}$ for all $X \in \mathcal{L}$, $X \notin G_{S,n} \subseteq \text{int } \overline{S}$ for all $X \notin \mathcal{L}$, $X \notin G_{S,n} \subseteq \text{int } \overline{S}$ for all $X \notin \mathcal{L}$, $X \notin G_{S,n} \subseteq \text{int } \overline{S}$.

 $x \notin G_{n_0} = U \{G_{S,n_0} : S \in \mathcal{L}\}$. This proves that $A = \bigcap G_n$. It follows that $A \in \mathcal{H}$. To finish the proof of the lemma, we must prove that $\overline{A} = X$. Suppose that our claim is false, then $X \setminus \overline{A}$ is a nonempty open subset of X. By the assumption there exists a $G_{o'}$ -subset $M \subseteq T$ such that $M \subseteq \text{int } \overline{M} \subseteq X \setminus \overline{A}$. Then $M \in \mathcal{H}$ and int $\overline{M} \cap \text{int } \overline{S} = \emptyset$ for all $S \in \mathcal{L}$. This implies that $\mathcal{L}U \{M\} \in \mathcal{M}$ which contradicts the assumption that \mathcal{L} is a maximal element of \mathcal{M} . This completes the proof.

Now let X be a topological vector space, S be a family of bounded subsets of X, In this paper we always assume that S possesses the following properties:

- a) If $A,B) \in S$ then there exists a $C \in S$ such that $AUB \subseteq C$.
- b) U{ λ A:A \in S, $\lambda \in R_{\perp}$ } = X.

<u>Definition 1</u> ([261). Let X, Y be topological vector spaces, f be a mapping from an open subset Ω of X into Y. We say f is S-differentiable at $\mathbf{x}_0 \in \Omega$ if there exists a linear continuous mapping $\mathbf{T} \in \mathbf{L}(\mathbf{X},\mathbf{Y})$ such that $\mathbf{t}^{-1}(\mathbf{f}(\mathbf{x}_0+\mathbf{th})-\mathbf{f}(\mathbf{x}_0))$ converges uniformly to $\mathbf{T}(\mathbf{h})$ on each subset $\mathbf{A} \in \mathbf{S}$ when $\mathbf{t} \to \mathbf{0}$, i.e. for each O-neighborhood V of Y and $\mathbf{A} \in \mathbf{S}$ there exists a $\mathcal{O} > \mathbf{0}$ such that $\mathbf{t}^{-1}(\mathbf{f}(\mathbf{x}_0+\mathbf{th})-\mathbf{f}(\mathbf{x}_0))-\mathbf{T}(\mathbf{h}) \in \mathbf{V}$ for all $\mathbf{h} \in \mathbf{A}$, $\mathbf{t}:\mathbf{0} < \mathbf{th} < \mathbf{0}$.

If S is the family of all finite subsets of X, then f is said to be Gâteaux-differentiable at x_0 .

If S is the family of all bounded subsets of X, the f is said to be Fréchet-differentiable at $\boldsymbol{x}_{o}.$

Remark. If X is a normed space then without loss of generality we can suppose that every subset A from S is contained in the unit ball of X.

<u>Definition 2</u>. Let X, Y be topological vector spaces, f be a continuous mapping from an open subset Ω of X into Y. f is called generic S-differentiable if there exists a dense $G_{\mathcal{S}}$ —subset A of Ω such that f is S-differentiable at every point $x \in A$.

Definition 3. A Banach space X is called S-differentiability space if each continuous convex finite function defined on an open convex subset of X is S-differentiable on a dense G_d-subset of its domain.

Fréchet- (Gâteaux- resp.) differentiability spaces are known as Asplund (weak Asplund resp.) spaces.

Stegall I271 has proved that a Banach space X is Asplund if and only if its dual X* has the Radon-Nikodym property. Then it is easy to see that a finite product of Asplund spaces is Asplund.

Theorem 1. Let $(X_{\lambda}:\lambda\in\Gamma)$ be a family of Asplund spaces. Then each continuous convex function f defined on an open convex subset Ω of $X=\sum_{\lambda\in\Gamma}X_{\lambda}$ is generic Fréchet-differentiable.

Proof. Put $p_I((x_{\lambda})) = \max\{\|x_{\lambda}\| : \lambda \in I\}$ for all $(x_{\lambda}) \in X$ and each finite subset $I \subseteq \Gamma$. Then $\{p_I\}_I$ is a family of continuous seminorms on X which induces the locally convex product topology of X. Let G be any open nonempty subset of Ω , therefore G is open in X, since Ω is open. To prove Theorem 1, by Lemma 1, it is sufficient to prove that there exists a G_{σ} -subset M such that $M \subseteq \inf M \subseteq G$ and that f is Fréchet-differentiable at every point $x \in M$. Take $x_0 \in G$. Since f is continuous at x_0 , there exist a G > 0 and a finite subset

I $\subseteq \Gamma$ such that $U = \{x \in X: p_I(x - x_0) < \sigma'\} \subseteq G$ and $|f(x) - f(x_0)| \le 1$ for all $x \in U$. We claim that $|f(x_1) - f(x_2)| \le \frac{2}{\sigma_1} p_I(x_1 - x_2)$ for all $x_1, x_2 \in U$, where $\sigma_1 = \sigma' - \max \{p_I(x_1 - x_0), p_I(x_2 - x_0)\}$. Put $h = x_1 - x_2$. We have that

- a) If $p_{I}(h) = 0$, then from the convexity of f we deduce that $f(x_1) f(x_2) = f(x_2 + h) f(x_2) \le s^{-1} [f(x_2 + sh) f(x_2)]$ for all $s \ge 1$. Now $p_{I}(h) = 0$ implies that $x_2 + sh \in U$ for all $s \in \mathbb{R}$. Hence $f(x_1) f(x_2) \le \lim_{h \to \infty} s^{-1} [f(x_2 + sh) f(x_2)] \le \lim_{h \to \infty} 2s^{-1} = 0$. Similarly $f(x_2) f(x_1) \le 0$. Therefore $|f(x_2) f(x_1)| \le 2 \cdot o_1^{-1} p_{I}(x_2 x_1)$.
- b) Suppose that $p_{I}(h) = r > 0$. If $r \ge \sigma_{I}$, then $|f(x_{2})| f(x_{1})| \le 2 \le 2 \sigma_{I}^{-1}$, $r = 2 \cdot \sigma_{I}^{-1} p_{I}(h)$. If $r < \sigma_{I}$, put $h_{0} = \sigma_{I}^{-1} r_{I}^{-1} h$; then $x_{1} \pm h_{0} \in \overline{U}$, i = 1, 2, and $f(x_{1}) f(x_{2}) \le \Gamma \sigma_{I}^{-1} [f(x_{2} + h_{0}) f(x_{2})] \le 2r \sigma_{I}^{-1} = 2 \sigma_{I}^{-1} = 2 \sigma_{I}^{-1} p_{I}(x_{I} x_{2})$. Similarly $f(x_{2}) f(x_{1}) \le 2 \sigma_{I}^{-1} p_{I}(x_{I} x_{2})$. This proves our claim.

Put $Y_I = {}_{A \in I} X_A$, $\|(x_A)\|_I = \max\{\|x_A\|: \lambda \in I\}$ for all $(x_A) \in Y_I$ and each finite subset $I \subseteq \Gamma$, $X_I = \{(x_A) \in X: x_A = 0\}$ for all $A \notin I$. Let J_I be an embedding mapping of Y_I into Y_I defined by $J_I((x_A)) = (y_A)$, where $y_A = x_A$ for all $A \in I$; $y_A = 0$ for $A \notin I$. Then J_I is an isomorphism of Y_I onto X_I and $\|(x_A)\|_I = p_I(J_I(x_A))$ for all $(x_A) \in Y_I$. Let P_I be the canonical projection of X onto X_I . Put $Q_I = J_I^{-1} p_I : Y \to Y_I$ and $f_I = f \circ J_I : Y = Q_I(U) \to R$. Then it is clear that f_I is a continuous convex function on Y and $f(x) = f_I(Q_I(x)) = I(P_I(x))$ for all $X \in U$ because $p_I(x - P_I(x)) = 0$ whenever $X \in U$. Since X_A is an Asplund space for all $X \in \Gamma$, Y_I is

Asplund for each finite subset $I \subseteq \Gamma$. Therefore there exists a G_{σ} -subset M of $Y_{\underline{I}}$ which is dense in V such that $f_{\underline{I}}$ is Fréchet-differentiable at every point of M. Put N = $Q_T^{-1}(M)$ = = $P_I^{-1} \circ J_I(M) \subseteq U$. One can verify that N is a $G_{\sigma''}$ -subset of X and Neint $\overline{N} = Q_{\underline{I}}^{-1}(\text{int }\overline{M}) = U$. Now we claim that f is Fréchetdifferentiable at every point x & N. Let x be any fixed point of N, D a bounded subset of X, & a given positive number. Then $Q_{\underline{I}}(x) \in M$ and there exists a number K > 0 such that $p_{\underline{I}}(h) \neq 0$ \leq K for all h ϵ D. Let T ϵ F $_{\rm I}^*$ be the Fréchet-derivative of f $_{\rm I}$ at $Q_{\underline{I}}(x)$. Then there exists a $\sigma_0 > 0$, $\sigma_0 < \sigma - p_{\underline{I}}(x)$ such that $|f_I(Q_I(x) + k) - f_I(Q_I(x)) - T(k)| \leq c \cdot K^{-1} ||k||_T$ for $\| \mathbf{k} \|_{\mathbf{I}} < \sigma_{o}^{\prime}. \text{ Let } Q_{\mathbf{I}}^{*} \text{ be the adjoint of } Q_{\mathbf{I}^{*}}. \text{ Put } S = Q_{\mathbf{I}}^{*}(\mathbf{T}) \in X^{*}.$ Now take teR such that $0 < |t| < \sigma_0^{-1}$. Then $p_I^{-1}(th) < \sigma_0^{-1}$, $x + \frac{1}{2}$ + the U and $|f(x + th) - f(x) - S(th)| = |f_I(Q_I(x + th)) - f_I(Q_I(x)) - T(Q_{\underline{I}}(th)) | \leq \varepsilon \cdot K^{-1} | | Q_{\underline{I}}(th) | |_{\underline{I}} = \varepsilon \cdot K^{-1} p_{\underline{I}}(P_{\underline{I}}(th)) =$ = $\varepsilon \cdot K^{-1} p_I(th) < \varepsilon |t|$ for all $h \in \mathbb{D}$. This proves that f is Fréchet-differentiable at x & N, which finishes the proof of Theo-

Theorem 2. Let X be a locally convex space and f be a $\mathcal{C}(X,X^*)$ - continuous convex function defined on a weakly open sonvex subset Ω of X, where $\mathcal{C}(X,X^*)$ denotes the weak topology on X. Then f is generic Fréchet-differentiable.

rem 1.

Proof. Let G be an open nonempty subset of Ω , therefore G is open since Ω is open, $x_0 \in G$. Since f is $\sigma'(X,X^*)$ -continuous at x_0 , there exist $x_1^*, x_2^* \cdots x_n^* \in X^*$ and a $\sigma > 0$ such that $U = \{x \in X: |\langle x_1^*, x_2 - x_0 \rangle | < \sigma', i = 1, 2 ... n \} \subseteq \Omega$ and $|f(x) - f(x_0)| \le 1$ for all $x \in U$. Put $p(x) = \max\{|\langle x_1^*, x_2 \rangle|: i = 1, 2 ... n \}$

= 1,2...n{, for all x ∈ X. Then p is a continuous seminorm on $(X, \mathcal{E}(X, X^*))$ and $U = \{x \in X : p(x_0 - x) < \sigma\}$. Using the same argument as in the proof of Theorem 1, one can verify that $|f(x_1) - f(x_2)| \le 2\delta_1^{-1}p(x_1 - x_2)$ for all $x_1, x_2 \in U$, where $\delta_1 = 0$ = σ - max {p(x₁ - x₀), p(x₂ - x₀)}. Put $V = \mathcal{T}$ ker x_i^* . Then Vis a closed finite codimensional subspace of X. There exists a continuous projection $Q:X \longrightarrow V$. Put $M = \ker Q$, P = I - Q, then $X = M \oplus V$ and M is a finite dimensional subspace of X. Let {x1,x2...x2} be a basis of M. Since GAU is a neighborhood of x_0 , there exist a convex open neighborhood U_1 of $P(x_0)$ in M and a convex open neighborhood O_1 of $Q(x_0)$ in V such that $G_1 = U_1 +$ + $0.5 \, \text{G} \cap \text{U}$. Let $J:\mathbb{R}^k \longrightarrow X$ be the mapping defined by $J(a_1, a_2, \dots$ $\ldots a_k$) = Σ_4^{k} $a_i x_i$ for all $a = (a_1, \ldots, a_k) \in \mathbb{R}^k$. Then J is a topological isomorphism of R^k onto M. Put $S = J^{-1} \circ P:X \longrightarrow R^k$, $g(a) = f(J(a) + Q(x_0))$ for all $a \in S(G_1) = J^{-1}(U_1)$. It is easy to see that $P(x) + Q(x_0) \in G_1 \subseteq U$ whenever $x \in G_1$. Then g is a continuous convex function defined on $S(G_1)$ and |f(x) - f(P(x) ++ $Q(x_0)$) $\leq 2\sigma_1^{-1}p(x - P(x) - Q(x_0)) = 2\sigma_1^{-1}p(Q(x) - Q(x_0)) = 0$, where $d_1 = d - \max \{p(x - x_0), p(P(x) + Q(x_0) - x_0)\} > 0$. Hence $f(x) = f(P(x) + Q(x_0)) = g(S(x))$ for all $x \in G_1$. There exists a dense G, -subset A in an open set J-1(U1) such that g is Fréchet-differentiable at every point a & A. Similarly as in the proof of Theorem 1, we can prove that f is Fréchet-differentiable at every point $x \in J(A) + O_1$ and f'(x) = S*(g'(S(x))) for all $x \in J(A) + O_1$. It is clear that $J(A) + O_1$ is a G_{0} -subset of X and $J(A) + O_1 \le int(\overline{J(A)} + O_1) = U_1 + O_1 = G_1$. By Lemma 1, this concludes the proof.

2. <u>Generic differentiability of mappings</u>. In this section, X always denotes a Banach space, S denotes a family of subsets contained in the unit ball of the space X with the properties a) and b) introduced in Section 1.

Definition 4. Let X, Y be Banach spaces, Ω be an open subset of X, f be a mapping from Ω to Y. We say that f is Lipschitzian at a point $x_0 \in \Omega$ if there exist a K>0 and $\sigma'>0$ such that $\|f(x)-f(y)\| \leq K \|x-y\|$ for all $x,y \in \Omega$, $\|x-x_0\| < \sigma'$, $\|y-x_0\| < \sigma'$.

f is said to be locally Lipschitzian if f is Lipschitzian at every point $x\in\Omega$.

<u>Definition 5</u>. Let $\varepsilon > 0$ be a fixed positive number. We say that f is locally (ε,S) -approximated at $x \in \Omega$ if for each $A \in S$ there exist $T_A \in L(X,Y)$ and $\sigma > 0$ such that:

(1) $\| f(x + th) - f(x) - T_A(th) \| < \varepsilon | t |$ for all $t: | t | < \sigma'$ and $h \in A$. Denote by $S_{\varepsilon}(f,x,A)$ the set of all $T \in L(X,Y)$ such that (1) holds for some $\sigma' > 0$.

Lemma 2. Let f be Lipschitzian at $x \in \Omega$. Then f is S-differentiable at x if and only if f is (ε,S) -approximated at x for all $\varepsilon>0$.

<u>Proof.</u> 1) If f is S-differentiable at x, then it is clear that f is (ε,S) -approximated for all $\varepsilon>0$.

2) Now let f be (ε,S) -approximated at x for all $\varepsilon > 0$. Put $S_{\varepsilon}(f,x,A)(h) = \{T(h): T \in S_{\varepsilon}(f,x,A)\}$ for all $h \in A$. It is easy to see that diam $S_{\varepsilon}(f,x,A)(h) \leq 2\varepsilon$ for all $h \in A$ and $\varepsilon > 0$. Therefore there exists $T(h) = \bigcap_{\varepsilon > 0} S_{\varepsilon}(f,x,A)(h) = \lim_{\varepsilon > 0} t^{-1} [f(x+th) - f(x)]$ for all $h \in A$, and $\|T(h) - T_{\varepsilon,A}(h)\| \leq 2\varepsilon$ for all $T_{\varepsilon,A} \in S_{\varepsilon}(f,x,A)$ and $h \in A$. Hence, by

the property b), $\lim_{t\to 0} t^{-1} [f(x+th)-f(x)]$ exists for each $h\in X$. The additivity of T follows from the property a) of S and the boundedness of T follows from the assumption that f is Lipschitzian at x. This shows that $T\in L(X,Y)$. Now let $\varepsilon>0$ be given and A be an arbitrary element of S. Take $T_1\in S_{\varepsilon/3}(f,x,A)$. Then there exists a $\delta>0$ such that $\|f(x+th)-f(x)-T_1(th)\| \leq \frac{\varepsilon}{3}\|t\|$ for all t: $\|t\| < \delta$ and $h\in A$. Hence $\|f(x+th)-f(x)-T_1(th)\| < \varepsilon\|t\|$ for all t, $\|t\| < \delta$ and $h\in A$. This proves that f is S-differentiable at x, which concludes the proof of Lemma 2.

<u>Proposition 1.</u> Let X be the one of the following spaces: a Hilbert space, C(S) where S is a compact Hausdorff space, $L^p(\Omega, \Sigma, \omega)$, where ω is a positive 6-finite measure defined on a 6-algebra Σ of subsets of a set Ω , $1 \le p < \infty$ and let X^* be the dual of X. Then X^* possesses the following property:

- (*) There exists a net of continuous linear projections $\{P_i\}_T$ of X^* onto finite dimensional subspaces of X^* such that:
 - 1) $\|P_i\| \leq K$ for some K > 0 and all $i \in I$,
- 2) $\{x^* P_i x^*\}$ converges weakly-star to 0 uniformly on $\{x^* \in X^* \colon ||x^*|| \le 1\}$.

<u>Proof.</u> 1) Let X be a Hilbert space and $(e_{\lambda})_{\lambda \in \Gamma}$ be an orthonormal basis of X. Let I be the family of all finite subsets i of Γ . We write $i_1 \le i_2$ iff $i_1 \le i_2$ for $i_1, i_2 \in I$. Let P_i be the orthogonal projection of $X^* = X$ onto sp $\{e_{\lambda} : \lambda \in i\}$ for all $i \in I$, where sp $\{e_{\lambda} : \lambda \in i\}$ denotes the linear hull of $\{e_{\lambda} : \lambda \in i\}$. Then it is clear that $\{P_i\}_{I}$ possesses the properties 1) and 2) with K = 1.

2) Let S be a compact Hausdorff topological space. We know that the dual space C*(S) of C(S) is the space of all Radon measures on S, and denoted by $\mathcal{M}(\mathtt{S})$. Denote by $\mu_{\mathtt{X}}$ the atomic measure defined by $\mu_{\mathbf{x}}(\mathbf{A}) = 1$ if $\mathbf{x} \in \mathbf{A}$, $\mu_{\mathbf{x}}(\mathbf{A}) = 0$ if $\mathbf{x} \notin \mathbf{A}$ for all Borel subsets A of S and $x \in S$. I denotes the family of all collections $(x_1,\ldots,x_n;S_1,\ldots,S_n)$ where S_1,\ldots,S_n is a disjoint partition of S into Borel subsets and $x_k \in S_k$ for $k = 1, \dots, n$. Let $\mathbf{i}_1 = (\mathbf{x}_k, \dots, \mathbf{x}_n; \mathbf{S}_1, \dots, \mathbf{S}_n) \in \mathbf{I}; \ \mathbf{i}_2 = (\mathbf{y}_1, \dots, \mathbf{y}_m; \mathbf{T}_1, \dots, \mathbf{T}_m) \in \mathbf{I}.$ We write $i_1 \le i_2$ iff for each $j: 1 \le j \le m$ there exists a $k(j): 1 \le j \le m$ $\leq k(j) \leq n$ such that $T_j \subseteq S_{k(j)}$ and $x_k = y_j$ whenever $x_k \in T_j$. Put $Q_i = \text{sp } \{\mu_{x_1}, \dots, \mu_{x_n}\} \text{ and } P_i(\mu) = \sum_{1}^n \mu(S_k) \mu_{x_k} \text{ for all } i = 1$ = $(x_1, ..., x_n; S_1, ..., S_n) \in I$. Now we prove that $\{P_1\}_I$ possesses the properties 1) and 2) with K = 1. Let $\mu \in \mathcal{M}(S)$, then $\|P_{\mathbf{i}}(\mu)\| = \sup_{\mathbf{j}} \left|P_{\mathbf{i}}(\mu)(\mathbf{A}_{\mathbf{j}})\right| = \sup_{\mathbf{j}} \left|\sum_{k=0}^{n} \mu(\mathbf{S}_{k}) \mu_{\mathbf{x}_{k}}(\mathbf{A}_{\mathbf{j}})\right| \leq$ $\leq \sum_{k=0}^{\infty} |\mu(S_k)| \leq \|\mu\|$, for all $i \in I$, where the supremum is taken over the set of all finite collections $\{A_{\underline{j}}\}$ of pairwise disjoint Borel subsets of S. Now let f be an arbitrary fixed continuous function defined on S, then f is uniformly continuous on S. It is easy to see that given $\epsilon > 0$ there exists a finite partition $\alpha = (S_1, \dots, S_n)$ of S into Borel subsets such that $|f(x) - f(y)| < \varepsilon$ whenever $x, y \in S_k$ for some k = 1, ..., n. Let x_k be an arbitrary fixed point of S_k for k = 1, ..., n. Put $i_0 = (x_1, \dots, x_n; S_1, \dots, S_n) \in I$. Now we claim that $|(\mu - P_1(\mu))(f)| = |\int_S f(x) d\mu(x) - \int_S f(x) d(P_1(\mu)(x))| \le \varepsilon$ for all $\mu \in \mathcal{M}(S)$, $\|\mu\| \le 1$, $i \in I$, $i \ge i_0$ and this completes the proof for X = C(S). Suppose $i = (y_1, \dots, y_m; T_1, \dots, T_m) \in I$, $i \ge i_0$, then it is clear that $|f(x) - f(y_j)| \le \varepsilon$ for all $x \in T_j$, j =

 $= 1, \ldots, m,$ and

$$\begin{split} &|\int_{S} f(x) d\mu(x) - \int_{S} f(x) dP_{1}(\mu)(x)| = |\Sigma_{1}^{m} \int_{T_{j}} f(x) d\mu(x) - \\ &- \int_{T_{j}} f(x) \mu(T_{j}) d\mu_{Y_{j}}(x)| = |\Sigma_{1}^{m} \int_{T_{j}} (f(x) - f(y_{j})) d\mu(x)| \leq \\ &\leq |\Sigma_{1}^{m} \int_{T_{j}} |f(x) - f(y_{j})| d\mu(x) \leq \epsilon \|\mu\| \leq \epsilon. \end{split}$$

3) Let $X = L^p$, $1 \le p < \infty$, then $X^* = L^q$, where $p^{-1} + q^{-1} = 1$. Let I be the family of all finite partitions $i = (E_1, \ldots, E_n)$ of Ω such that $E_k \in \mathcal{Z}$, $\omega(E_k) > 0$ for all $k = 1, \ldots, n$. We write $i_1 \le i_2$ iff $F_j \subseteq E_k$ whenever $F_j \cap E_k \ne \emptyset$, for $j = 1, \ldots, m$; $k = 1, \ldots, n$; $i_1 = (E_1, \ldots, E_n) \in I$, $i_2 = (F_1, \ldots, F_m) \in I$. Put (taking $\frac{g(x)}{\infty} = 0$ for all $x \in \Omega$) $(P_i g)(x) = 1$. The following $\sum_{k=0}^{\infty} (E_k)^{-1} g(k) d(k) d(k)$.

We shall prove that $(P_i)_I$ possesses the properties 1) and 2) with K = 1.

If $q = \infty$, then it is clear that $\|P_i g\|_{\infty} \le \|g\|$ for all $g \in L^q$. Now let $1 < q < \infty$, $g \in L^q$, $i = (E_1, \dots, E_n) \in I$:

$$\|\mathbf{F}_{\mathbf{1}}\mathbf{g}\|^{q} = \int_{\Omega} |\mathbf{\Sigma}_{\mathbf{1}}^{n} (\int_{\mathbf{E}_{\mathbf{k}}} \mu(\mathbf{E}_{\mathbf{k}})^{-1} \mathbf{g}(\mathbf{t}) d\mu(\mathbf{t})) \chi_{\mathbf{E}_{\mathbf{k}}}(\mathbf{x})|^{q} d\mu(\mathbf{x}) =$$

$$=\int_{\Omega} \sum_{1}^{n} \left| \int_{E_{\mathbf{k}}} \mu(E_{\mathbf{k}})^{-1} g(t) d \mu(t) \right|^{q} \chi_{E_{\mathbf{k}}}(x) d \mu(x) =$$

$$= \sum_{1}^{n} \mu(E_k)^{1-q} | \int_{E_k} g(t) d \mu(t) |^q \leq \sum_{1}^{n} \mu(E_k)^{1-q}.$$

$$\int_{E_{A}} d \mu(t)^{qp} \cdot \int_{E_{A}} |g(t)|^{q} d \mu(t) = \int_{\Omega} |g(t)|^{q} d \mu(t) =$$

$$= ||g||^{q}.$$

This proves that $\|P_i\| \le 1$ for all $i \in I$.

Now we suppose that f be a fixed function from L^p . We shall prove that for each $\varepsilon > 0$ there exists an $i_0 \in I$ such that $|\int_{\Omega} f \cdot g \ d\mu - \int_{\Omega} f \cdot (P_i g) \ d\mu | \neq \varepsilon$ for all $i \in I$, $i \ge i_0$ and $g \in L^q$, $||g|| \neq 1$.

Let $\varepsilon > 0$ be given. Then there exists a simple measurable function $f_0 = \sum_{1}^{m} c_k \cdot \chi_{E_k}$ such that $\|f - f_0\| \leq 2^{-1} \cdot \epsilon$. Without loss of generality we can suppose that $\mathcal{O}_{\mathbf{k}}^{\mathbf{K}} \mathbf{E}_{\mathbf{k}} = \mathbf{\Omega}$. Put $i_0 = (E_1, ..., E_n) \in I$. Let $g \in L^q$, $\|g\| \le 1$ and $i \in I$, i = 1= $(\mathbf{F}_1, \dots, \mathbf{F}_m) \ge \mathbf{i}_0$. Then for each $k = 1, \dots, n$ there exists an $\alpha_k \subseteq \{1, \dots, m\}$ such that $E_k = U\{F_j: j \in \alpha_k\}$. Whence r = 0= $\int_{\Omega} f(x) \cdot g(x) d(x) - \int_{\Omega} f(x) \cdot (P_{i}g)(x) d(x) =$ = | \int_{\Omega}(f-f_0)(x)g(x)d \(\mu(x) + \sum_{k=1}^{\infty} \geq_k \int_{F_{\infty}} c_k g(x) d \(\mu(x) - \frac{1}{2} \) $-\sum_{k=1}^{m} \sum_{j \in \alpha_{k}} (\int_{F_{j}} \mu(F_{j})^{-1} g(t) d \mu(t)) \cdot (\int_{F_{j}} f(x) d \mu(x)) | \leq$ $\leq \| f - f_0 \| \cdot \| g \| + \sum_{k=1}^{n} \sum_{j \in \alpha, k} (\int_{F_j} \mu(F_j)^{-p^{-1}} |g(t)| d \mu(t)).$ $\cdot (\int_{F_{2}} (\omega(F_{j})^{-q^{-1}} | (c_{k} - f(x)) | d \omega(x)).$ If $q = \infty$ then it is clear that $r \le 2 \|f - f_0\| \cdot \|g\|$. Suppose that $1 < q < \infty$. Then $r \leq \|f - f_0\| \|g\| + (\sum_{k=1}^{n} \sum_{\alpha_k} (\int_{F_i} \mu(F_i)^{-p^{-1}} |g(t)| d \mu(t))^{q})^{q^{-1}}.$ $\cdot (\sum_{k=1}^{m} \sum_{\alpha_{k}} (\int_{F_{i}} \mu(F_{j})^{-q^{-1}} | c_{k} - f(x) | d_{\alpha}(x))^{p})^{p^{-1}} \leq$ $\leq \| f - f_0 \| \| g \| + (\sum_{k=1}^{m} \sum_{\mathbf{x}_k} (\int_{\mathbf{F}_{\hat{\mathbf{x}}}} \mu (\mathbf{F}_{\hat{\mathbf{j}}})^{-1} d \mu(\mathbf{x}))^{pq^{-1}}.$. (\(\int_{\infty} \) | c_k - \(\epsi(x) \) | \(\alpha(x) \)) \(\int_{\infty} \) • $(\int_{F_1} |g(t)|^q)^{q-1} = 2 \|g\| \|f-f_0\|$

This completes the proof of Proposition 1.

Remark 2. Let X be a Banach space. If its dual X^* has a net $(P_i)_I$ with the properties 1) and 2), then we say that X^* possesses the property (*) with respect to $(P_i)_T$.

We shall use the following notations.

Let X, Y be Banach spaces, Ω be an open subset of X, f be a map-

ping of Ω into Y, $x \in \Omega$, r > 0, $A_r(f,x) = \{\|h\|^{-1} \Delta_h f(y) : \|y-x\| \le r, 0 < \|h\| \le r\}$ where $\Delta_h f(y) = f(y+h) - f(y)$, $B_r(f,x) = \{f(x_1) + f(x_2) - 2f(\frac{x_1+x_2}{2}) : x_1 \in X, \|x_1-x\| \le r,$

 $B_{\mathbf{r}}(f,x) = \{f(x_1) + f(x_2) - 2f(\frac{x_1 + x_2}{2}) : x_1 \in X, \|x_1 - x\| \le r, 1 = 1, 2\}.$

For $A \subseteq Y$, γ (A) denotes the measure of noncompactness of A defined by γ (A) = inf $\{t > 0$: there exists a finite subset $C \subseteq A$ such that $A \subseteq C + tB_1$ where $B_1 = \{y \in Y : \|y\| \le 1\}$. We use the symbol A^{\bullet} defined by $A^{\bullet} = \{y^* \in Y^* : \langle y^*, y \rangle \ge 0$ for all $y \in A$.

Theorem 3. Let X be an S-differentiability Banach space and Y be a Banach space, whose dual Y* possesses the property (*) with respect to $(P_1)_{i\in I}$, Ω be an open subset of X. Let f be a mapping from Ω to Y such that:

- 1) $\lim_{x \to 0} (A_r(f,x)) = 0$ for all $x \in \Omega$,
- 2) for each open nonempty subset $G \subseteq \Omega$ and each $i \in I$ there exist an $x \in G$ and an r > 0 such that $\sup_{r \in B_r^{\bullet}(f,x)} \supseteq P_i(Y^{\bullet})$. Then f is generic S-differentiable.

<u>Proof.</u> We denote the canonical embedding mapping of Y into its bidual Y** by \Re . Let K be a positive number such that $\|P_i\| \leq K$ for all $i \in I$ and \mathcal{E} be an arbitrary given positive number. Put $T_{\mathcal{E}} = \{x \in \Omega : f \text{ is } (\mathcal{E}, \mathbb{S}) \text{-approximated at } x\}$. We shall prove that $T_{\mathcal{E}}$ contains a dense $G_{\mathcal{O}}$ -subset in Ω for all $\mathcal{E} > 0$. By Lemma 1, it suffices to prove that for each open nonempty subset $G \subseteq \Omega$ there exists a $G_{\mathcal{O}}$ -subset $N \subseteq T_{\mathcal{E}}$ such that $N \subseteq \inf_{K \neq 0} \mathcal{N} \subseteq \mathbb{F}_{\mathcal{E}}$ such that $\mathbb{F}_{\mathcal{O}} \subseteq \mathbb{F}_{\mathcal{E}} \subseteq \mathbb{F}_{\mathcal{E}}$ such that $\mathbb{F}_{\mathcal{E}} \subseteq \mathbb{F}_{\mathcal{E}} \subseteq \mathbb{F}_{\mathcal{E}} \subseteq \mathbb{F}_{\mathcal{E}}$ by such that $\mathbb{F}_{\mathcal{E}} \subseteq \mathbb{F}_{\mathcal{E}} \subseteq \mathbb{F}_{\mathcal{E}}$ such that $\mathbb{F}_{\mathcal{E}} \subseteq \mathbb{F}_{\mathcal{E}} \subseteq \mathbb{F}_{\mathcal{E}} \subseteq \mathbb{F}_{\mathcal{E}}$ such that $\mathbb{F}_{\mathcal{E}} \subseteq \mathbb{F}_{\mathcal{E}} \subseteq \mathbb{F}_{\mathcal{E}$

 $B_1 = \{ y \in Y \colon ||y|| \le 1 \}. \text{ Put } K_1 = \max \{ ||y_1||, \dots, ||y_k|| \} + \varepsilon.$ Then $\|y\| \leq K_1$ for all $y \in A_r(f,x_0)$ and hence f is Lipschitzian at x_0 . Since Y possesses the property (st) with respect to $(P_i)_I$, there exists an $i_0 \in I$ such that $\langle y^* - P_i y, y_j \rangle \leq 4^{-1}$. Ex for all $y^* \in Y^*$, $\|y^*\| \le 1$; j = 1, ..., k; $i \in I$, $i \ge i_0$. One can verify that $\langle y^* - P_i y^*, y \rangle \leq 2^{-1}$. ε for all $y^* \in Y^*$, $\|y^*\| \le 1$; $y \in A_r(f,x_0)$, $i \in I$, $i \ge i_0$. On the other hand, by 2, there exist an $x_1 \in \{x: \|x-x_0\| < r\}$ and $r_1: 0 < r_1 < r - \|x_1-x_0\|$ such that $Q_{i_0} = P_{i_0}(Y^*) \subseteq \operatorname{sp} \overline{B_{r_1}^{\bullet}(f,x_1)}$. Let $\{e_1^*,\dots,e_n^*\}$ be a basis of the subspace Q_{i_0} , $\|e_j^*\| = 1$ for j = 1,...,n. Put $\|\mathbf{y}^*\|_1 = \sum_{1}^{n} |\lambda_j| \text{ for } \mathbf{y}^* = \sum_{1}^{n} \lambda_j \mathbf{e}_j^* \in \mathbb{Q}_{1_0}. \text{ Then } \|\cdot\|_1 \text{ is a}$ norm on Q_{1} and it is equivalent with the norm $\|\cdot\|$ restricted to Q_1 . Therefore there exist $K_2, K_3 > 0$ such that $K_2 \parallel y^* \parallel \leq$ $\leq \|y^*\|_1 \leq K_3 \|y^*\|$ for all $y^* \in Q_1$. Take $z_j^* \in \operatorname{sp} B_{r_j}^{\bullet}(f,x_1)$ such that $\|e_j^k - z_j^*\| \le [4K_1K_3K]^{-1} \varepsilon$, for j = 1,...,n. Since $z_j^* \in$ $\in \text{sp } B^{\bullet}_{\mathbf{r}_1}(\mathbf{f},\mathbf{x}_1) \text{ there exist } \mathbf{u}^{\star}_{\mathbf{j},1},\ldots,\mathbf{u}^{\star}_{\mathbf{j},k_{\mathbf{j}}} \in B^{\bullet}_{\mathbf{r}_1}(\mathbf{f},\mathbf{x}_1) \text{ and } t_{\mathbf{j},1},\ldots,$ $t_{j,k_j} \in \mathbb{R}$ such that $z_j^* = \sum_{k=1}^{k_j} t_{j,k_j} t_{j,k_j}^*$ for $j = 1, \dots, n$. It is easy to see that $(u_{j,s}^*f)(v_1) + (u_{j,s}^*f)(v_2) - 2(u_{j,s}^*f)(\frac{v_1 + v_2}{2}) =$ $=\langle u_{j,s}^{*}, f(v_{1}) + f(v_{2}) - 2f(\frac{v_{1}+v_{2}}{2})\rangle \ge 0 \text{ for all } s = 1,...,k_{j};$ $j = 1,...,n; v_k \in X, ||v_k-x_1|| \leq r_1, k = 1,2. \text{ Hence } u_{j,s}^* \circ f \text{ is a}$ continuous midconvex (therefore convex) function on the open convex subset $U = \{x: ||x-x_1|| < r_1\} \subseteq G$, for j = 1,...,n; s = 1,... \dots , k_j . Since X is an S-differentiability space, there exists a dense $G_{\sigma'}$ -subset $H_{j,s}$ of U such that $u_{j,s}^* \circ f$ is S-differentiable at every point $x \in H_{j,s}$ for all j = 1,...,n; $s = 1,...,k_j$. Put $N = \bigcap_{j=1}^{\infty} \bigcap_{s=1}^{\infty} H_{j,s} \subseteq G$. Then N is a G_{σ} -subset which is dense

in U. It is clear that $z_j^* f = \sum_{j=1}^{k} t_{j,s} u_{j,s}^* f$ is S-differentiable at every point $x \in \mathbb{N}$ for j = 1, ..., n. Now we prove that $x \circ f$ is (ε,S) -approximated at every point $x \in N$. Let w_i be a linear functional on Q_i defined by $w_j(y^*) = t_j$ for $y^* = \sum t_j e_j^* \in Q_i$, j = 1,...,n. Then of course we have $|w_j(y^*)| \leq \sum_{i=1}^{\infty} |w_j(y^*)| =$ = $\|y^*\|_1 \leq K_3 \|y^*\|$ for all $y^* \in Q_1$, j = 1,...,n. One can see

 $\|\,P_{\mathbf{i}_0}y^* - \Sigma_{\mathbf{i}}^m \,\, w_{\mathbf{j}}(P_{\mathbf{i}_0}y^*) \,\, z_{\mathbf{j}}^* \,\| = \, \| \Sigma \,\, w_{\mathbf{j}}(P_{\mathbf{i}_0}y^*)(e_{\mathbf{j}}^* - z_{\mathbf{j}}^* \,) \,\| \leq$ $\leq (4\kappa \kappa_1 \kappa_3)^{-1} \in \kappa_3 \|P_1 y^*\| \leq 4\kappa_1^{-1} \cdot \epsilon \|y^*\|.$

Let x be an arbitrary fixed point of N. Denote the S-differential of the function $z_j^* \circ f$ at x by $d(z_j^* \circ f)(x)$ for $j = 1, \dots, n$. Let $K_4 = \max \{ \| d(z_j^* \circ f)(x) \| : j = 1,...,n \}$. Then the functional B(h,y*) on X × Y defined by

 $B(h,y^*) = \sum_{j=0}^{n} w_{j}(P_{j,y}^{*}) \cdot d(z_{j}^{*} \cdot f)(x)(h) \text{ for all } h \in X, y^* \in Y^*,$

is bilinear. Furthermore, $|B(h,y^*)| \leq \sum |w_j(P_i,y^*)| \cdot \|d(z_j^*\cdot f)(x)\|$

This shows that $B(h,y^*)$ is continuous and for each fixed $h \in X$, $B(h,.) \in Y^{**}$. Let V be a mapping of X into Y^{**} defined by V(h) == B(h,.), then V is a linear continuous mapping and $\|V\| \leq KK_3K_4$. Let A be an arbitrary fixed subset from S. Then there exists a

 $\delta:0 < \delta < r_1$ such that

 $|(z_1^* f)(x + th) - (z_1^* f)(x) - d(z_1^* f)(x)(th)| \le (4KK_3)^{-1} \varepsilon |t|$ for all t such that $|t| \leq \delta'$ and $h \in A$. Take an arbitrary fixed number $t_0: 0 < |t_0| \le \delta$, $h_0 \in A$ and $y^* \in Y^*$, $||y^*|| \le 1$; then $\infty (t_0, h_0, y^*) = \{ \langle t_0^{-1} [w \circ f(x + t_0 h_0) - w \circ f(x_0)] - w \rangle \}$ $- V(h_0), y^* > | = | t_0^{-1} y^*, \Delta_{t_0} h_0 f(x) - B(h_0, y^*) | \le | \langle y^* - P_1 y^*, y^* \rangle | \langle y^* - P_1 y^$

 $\|t_0h_0\|^{-1} \Delta_{t_0h_0}f(x) > \|h_0\| + \|\langle P_{i_0}y^* - \sum_{i_0}w_{j_0}(P_{i_0}y^*)z_{j_0}^*,$

 $\begin{array}{l} t_o^{-1} \; \Delta_{t_o h_o} f(x) > | + | \sum \; w_j(P_{i_o} y^*) \; \{ t_o^{-1} [\; z_j^* \circ f(x \; + \; t_o h_o) \; - \; \\ - \; z_j^* \circ f(x)] \; - \; \mathrm{d}(z_j^* \circ f)(x)(h_o) \} \; \} \; . \end{array}$

Since $\|\mathbf{x} - \mathbf{x}_0\| \le \|\mathbf{x} - \mathbf{x}_1\| + \|\mathbf{x}_1 - \mathbf{x}_0\| \le \mathbf{r}_1 + \|\mathbf{x}_1 - \mathbf{x}_0\| < \mathbf{r}$ and $\|\mathbf{t}_0\mathbf{h}_0\| = \|\mathbf{t}_0\| \|\mathbf{h}_0\| \le \|\mathbf{t}_0\| \le \sigma < \mathbf{r}_1 < \mathbf{r}$, it follows that $\|\langle \mathbf{y}^* - \mathbf{P}_{\mathbf{i}_0}\mathbf{y}^*, \|\mathbf{t}_0\mathbf{h}_0\|^{-1} \Delta_{\mathbf{t}_0\mathbf{h}_0}\mathbf{f}(\mathbf{x}) > \|\mathbf{h}_0\| \le 2^{-1} \cdot \varepsilon$ and $\|\langle \mathbf{P}_{\mathbf{i}_0}\mathbf{y}^* - \mathbf{\Sigma} \mathbf{w}_{\mathbf{j}}(\mathbf{P}_{\mathbf{i}_0}\mathbf{y}^*)\mathbf{z}_{\mathbf{j}}^*, \mathbf{t}_0^{-1} \Delta_{\mathbf{t}_0\mathbf{h}_0}\mathbf{f}(\mathbf{x}) > \| \le \|\mathbf{P}_{\mathbf{i}_0}\mathbf{y}^* - \mathbf{\Sigma} \mathbf{w}_{\mathbf{j}}(\mathbf{P}_{\mathbf{i}_0}\mathbf{y}^*)\mathbf{z}_{\mathbf{j}}^*, \mathbf{t}_0^{-1} \Delta_{\mathbf{t}_0\mathbf{h}_0}\mathbf{f}(\mathbf{x}) > \| \le \|\mathbf{P}_{\mathbf{i}_0}\mathbf{y}^* - \mathbf{\Sigma} \mathbf{w}_{\mathbf{j}}(\mathbf{P}_{\mathbf{i}_0}\mathbf{y}^*)\mathbf{z}_{\mathbf{j}}^* \| \cdot \|\mathbf{h}_0\| \| \cdot \|\mathbf{t}_0\mathbf{h}_0\| - 1 \cdot \Delta_{\mathbf{t}_0\mathbf{h}_0}\mathbf{f}(\mathbf{x}) \| \le (4\mathbf{K}_1)^{-1} \cdot \varepsilon$ $\cdot \varepsilon \|\mathbf{y}^*\| \mathbf{K}_1 \le 4^{-1} \cdot \varepsilon \cdot \varepsilon \cdot \| \mathbf{y}^*\| \mathbf{K}_1 \le 4^{-1} \cdot \varepsilon \cdot \varepsilon \cdot \| \mathbf{y}^*\| \mathbf{K}_1 \le 4^{-1} \cdot \varepsilon \cdot \| \mathbf{K}_1 \mathbf{K}_1 + \mathbf{K}_1 \mathbf{K}_1 +$

This means that $\infty(t_0,h_0,y^*) \leq \varepsilon$. Since t_0,h_0,y^* are taken arbitrarily, $\infty(t_0,h_0,y^*) \leq \varepsilon$ for all $t:0 < |t| < \sigma$, $h \in A$, $y^* \in Y^*$, $||y^*|| \leq 1$. Hence

If t^{-1} $\mathscr{H} \circ f(x + th) - \mathscr{H} \circ f(x) - V(h)$ = $\sup_{\|y^*\| \le 1} \alpha(t,h,y^*) \ge \varepsilon$ for all $t:0 < |t| < \sigma^*$, $h \in A$. This shows that $\mathscr{H} \circ f$ is (ε,S) -approximated at x. Therefore for each $\varepsilon > 0$ there exists a dense G_{σ} -subset M_{ε} of Ω such that $\mathscr{H} \circ f$ is (ε,S) -approximated at every point $x \in M_{\varepsilon}$. Put $T = \bigcap_{n=1}^{\infty} M_{1/n}$. Then T is a dense G_{σ} -subset of Ω and $\mathscr{H} \circ f$ is (ε,S) -approximated at every point $x \in T$ for all $\varepsilon > 0$. By Lemma 2, $\mathscr{H} \circ f$ is S-differentiable at every point $x \in T$. Therefore f is S-differentiable at every point $x \in T$, as $\mathscr{H}(Y)$ is a closed subspace of Y^{**} and \mathscr{H} is an isometric isomorphism of Y onto $\mathscr{H}(Y)$. This completes the proof of Theorem 3.

Remark 3. From the proof of Theorem 3, it follows that the condition 1) in Theorem 3 can be replaced by the following one:

l') f is locally Lipschitzian and for each $x \in \Omega$ and $\varepsilon > 0$ there exist an r > 0 and $i_0 \in I$ such that $1 < y^* - P_i y^*, y > 1 \le \varepsilon$ for all $y \in A_r(f, x)$, $y^* \in Y^*$: $||y^*|| \le 1$ and $i \in I$, $i \ge i_0$.

<u>Corollary 1.</u> Let X be an Asplund space and Y, Ω , f be as in Theorem 3. Then f is generic Fréchet-differentiable.

Recall that under a convex cone in a linear space X we understand every convex subset C of X such that $C + C \subseteq C$, $\lambda C \subseteq C$ for all $\lambda \ge C$. Now let X be a Banach space. We shall say that a subset $A \subseteq X$ has the property (**) if there exists a $\beta > 0$ such that $\sup\{|\langle x^*, x \rangle| : x^* \in A^*, ||x^*|| \le 1\} \ge \beta \|x\|$ for all $x \in X$. It is easy to see that if C_A denotes the closed convex cone in X generated by A then A has the property (**) if and only if C_A has, because $C_A^* = A^*$.

Lemma 3. Let X, Y be Banach spaces, Ω be an open subset of X, f be a continuous mapping from Ω to Y such that for each $x \in \Omega$ there exists an r > 0 such that $B_r(f,x)$ has the property (**). Then f is locally Lipschitzian on Ω .

Proof. Let x be a fixed point of Ω . By the assumption there exist an r>0 and a $\beta>0$ such that $\sup\{|\langle y^*,y\rangle|:y^*\in E_{\mathbf{r}}^{\bullet}(\mathbf{f},x),\|y^*\|\leq 1\}\geq \beta\|y\|$ for all $y\in Y$; note that $\beta\leq 1$. Let C be the closed convex cone in Y generated by $B_{\mathbf{r}}(\mathbf{f},x)$. We claim that $(1-t)f(x_1)+tf(x_2)-f((1-t)x_1+tx_2)\in C$ whenever $x_1\in X,\|x_1-x\|< r$, $0\leq t\leq 1$. Suppose that this claim is false. Then there exist $x_1\in X,\|x_1-x\|< r$, $i=1,2,x_1+x_2$ and $t_0\in C$. Then by the separation theorem, there exists a $y_0^*\in Y^*$ such that $y_0^*,y_0^*>0\leq 0\leq (y_0^*,y_0^*)$ for all $y\in C$. Hence

 $y_0^* \in C^*$. Put $g(t) = \langle f(x_1 + t(x_2 - x_1)) - f(x_1) - f(x_1) \rangle$ - $t[f(x_2) - f(x_1)], y_0^* >$. Then g is a continuous function on [0,1] and g(0) = g(1) = 0. Let t_1 be a point from (0,1) such that $g(t_1) = \max \{g(t), 0 \le t \le 1\}$. Put $\sigma = \min \{1-t_1, t_1\} > 0$. One can verify that $g(t_1+\sigma') + g(t_1-\sigma') - 2g(t_1) =$ $= \langle f(x_1 + (t_1 + \sigma)(x_2 - x_1)) + f(x_1 + (t_1 - \sigma)(x_2 - x_1)) -$ - $2f(x_1 + t_1(x_2-x_1)), y_0^* > < 0.$ Put $u = x_1 + (t_1-\sigma)(x_2-x_1),$ $v = x_1 + (t_1 + \sigma')(x_2 - x_1), w = x_1 + t_1(x_2 - x_1).$ Then $w = 2^{-1}(u + v)$ and $\langle f(u) + f(v) - 2f(w), y_0^* \rangle < 0$. This contradicts the fact $y_0^* \in C^*$ and $f(u)+f(v) - 2f(w) \in C$. This proves our claim. Since f is continuous at x, there exists a $\sigma > 0$, $\sigma < r$ such that $\| f(u) - f(x) \| < 4^{-1}$ for all u.e.X, $\| u - x \| < \sigma'$. Put $s = 2^{-1} \sigma'$ and let $v, w \in X$, ||v-x|| < s, ||w-x|| < s. If $||v-w|| \ge s$ then $\| f(u) - f(v) \| \le 2^{-1} \le (s \beta)^{-1} \| v - w \|. \text{ Now suppose that } 0 < \| v - w \| < 1 \le r - w \|$ <s. Put h = w-v, $h_0 = s \|h\|^{-1}h$. One can conclude that $(1-s^{-1} \| h \|)f(v)+s^{-1} \| h \| f(v+h_0) - f(w) \in C.$ Therefore $f(v) - f(w) - s^{-1} \|h\| [f(v)-f(v+h_0)] \in C.$ Similarly $f(w) - f(v) - s^{-1} \ln \| [f(w) - f(w - h_0)] \in C.$ Hence $| < f(v) - f(w), y^* > | \le s^{-1} \| h \| [| < f(v) - f(v + h_0), y^* > | + h_0 + h_$ + $|\langle f(w)-f(w-h_0),y^*\rangle|$ for all $y^* \in C^{\bullet}$. Therefore $\beta \parallel f(v) - f(w) \parallel \leq \sup \{|\langle f(v) - f(w), y^* \rangle| : y^* \in C^{\bullet}, \parallel y^* \parallel \leq 1\} \leq$ $\leq s^{-1} \| h \| (\| f(v) - f(v + h_0) \| + \| f(w) - f(w - h_0) \|) \leq s^{-1} \| h \|.$ Whence $\|f(v)-f(w)\| \le (s\beta)^{-1} \|v-w\|$ for all $v,w \in X$, $\|v-x\| < s$, $\|\mathbf{w}-\mathbf{x}\| < s$. This proves that f is locally Lipschitzian and the proof of Lemma 3 is complete.

Corollary 2. Let X be an S-differentiable Banach space, Y, Z Banach spaces, Ω an open subset of X, f a mapping from Ω to Y and K a linear compact mapping from Y to Z. Suppose that f is continuous and for each open nonempty subset $G \subseteq \Omega$

there exist an $x \in G$ and an r > 0 such that $B_r(f,x)$, $B_r(K \circ f,x)$ have the property (**). Then $g = K \circ f$ is generic S-differentiable.

Proof. Let G be any open nonempty subset of Ω . By the assumption there exist an $x_0 \in G$ and an r > 0 such that $B_r(f, x_0)$, $B_r(K \circ f, x_0) = K(B_r(f, x_0))$ have the property (**). Put U = = $\{x \in X: ||x-x_0|| < r\}$. To prove Corollary 2, it suffices to prowe that g is generic S-differentiable on U. Put W = $\{z^* \in Z^*\}$ $: \| z^* \| \le 1 \} \cap (K(B_r(f, x_0)))^{\bullet} = \{ z^* \in B_r^{\bullet}(K \circ f, x_0), \| z^* \| \le 1 \}.$ Then W endowed with the weakly-star topology $\mathfrak{S}(\mathbf{Z}^*,\mathbf{Z})$, restricted to W is a compact Hausdorff topological space. Let C(W) denote the Banach space of all real continuous functions defined on a compact space W and 20 the embedding mapping from Z to C(W) defined by $\mathscr{X}(z)(z^*) = \langle z, z^* \rangle$ for all $z \in \mathbb{Z}$, $z^* \in \mathbb{W}$. We claim that & is a topological isomorphism from Z onto a closed subspace of C(W) and $\mathscr{R}(z)(z^*) \ge 0$ for all $z \in K(B_r(f,x_0))$, $z^* \in W$. It is clear that at is a linear mapping from Z into C(W). Since $B_r(K \circ f, x_0)$ possesses the property (**) there exists a $\beta > 0$ such that $\beta \parallel z \parallel \leq \sup \{ |\langle z^*, z \rangle| : z^* \in \mathbb{W} \} = \| \operatorname{ae}(z) \| \leq \| z \|$. This proves that a is a topological isomorphism of Z onto $\mathscr{R}(Z)$ and since Z is complete, $\mathscr{R}(Z)$ is a closed subspace of C(W). Furthermore, if $z \in B_r(g,x_0)$ then $\mathscr{R}(z) \geq 0$, since $W \subseteq S$ $\underline{\boldsymbol{\varepsilon}}$ B $_{\mathbf{r}}^{ullet}(\mathbf{g},\mathbf{x})$. Thus our claim is proved. One can see that the mapping $h = \mathcal{H} \circ g|_{U}: U \longrightarrow C(W)$ is S-differentiable at x if and only if g is S-differentiable at x. We know that (Proposition 1) C(W) is a Banach space whose dual C*(W) possesses the property (*). To finish the proof, it suffices to prove that h satisfies the conditions 1) and 2) in Theorem 3. Let u be an arbitrary fixed point of U. Take an s>0 such that $\{x \in X: ||x-u|| < s\} \subseteq U$. Put $U_1 = \{x \in X: ||x|| < 2^{-1}s\}$ and

 $\Delta f(x,k) = \begin{cases} \|k\|^{-1} (f(x+k) - f(x)) & \text{for } x \in (u+U_1), k \in U_1, k \neq 0, \\ 0 & \text{for } x \in u+U_1, k = 0. \end{cases}$

By the assumption and Lemma 3, f is locally Lipschitzian on U, there exist $\sigma':0<\sigma'<$ s and M>O such that

If $(v)-f(w) \| \leq M \| v-w \|$ for $v,w \in X$, $\| v-u \| < \sigma'$, $\| w-u \| < \sigma'$. Put $r_1 = 2^{-1}\sigma'$, $U_2 = \{x \in X : \| x \| < r_1 \}$. Then $\| \Delta f(x,k) \| \leq M$ for all $(x,k) \in (u+U_2) \times U_2$. From the compactness of the linear mapping $\mathscr{B} \circ K$, it follows that $A_{r_1}(h,u) = \mathscr{B} \circ K \circ \Delta f((u+U_2) \times U_2)$ is a precompact subset of C(W). This means that $\lim_{k \to 0} \gamma(A_r(h,u)) = 0$, and the condition 1) in Theorem 3 is satisfied. On the other hand, we have $B_{r_1}^{\bullet}(g,u) \supseteq B_{r}^{\bullet}(g,x_0)$ as $B_{r_1}(g,u) \subseteq B_{r_1}(g,x_0)$. Hence $C^*(W) = \sup \{\omega \in C^*(W) : \omega \geq 0\} \subseteq B_{r_1}(g,u) \subseteq B_{r_1}(g,x_0)$.

 $B_{r_1}(g,u) \subseteq B_r(g,x_0)$. Hence $C^*(W) = \sup \{ u \in C^*(W) : u \ge 0 \} \subseteq G^*(g,u)$. This proves that the condition 2) in Theorem 3 is satisfied, too, and the proof of Corollary 2 is complete.

Now we give some applications of Theorem 3 to the problem of generic differentiability of convex mappings. All notions concerning Banach lattices used here are standard, we refer the readers for instance to [23].

<u>Definition 6.</u> Let X be a Banach space, Y a Banach lattice, Ω an open convex subset of X. A mapping f from Ω to Y is said to be convex if $f((1-t)u + tv) \leq (1-t)f(u) + tf(v)$ for all $u,v \in \Omega$, $t \in [0,1]$.

<u>Corollary 3.</u> Let X be an S-differentiability Banach space, Y, Z Banach lattices, Ω an open convex subset of X, f a continuous convex mapping from Ω to Y, K a linear positive compact mapping of Y into Z. Then $g = K \circ f \colon \Omega \longrightarrow Z$ is generic

S-differentiable.

Proof. It follows immediately from Corollary 2, if we note that the positive cone in a Banach lattice always has the property (**). In fact, let Y be a Banach lattice and C_+ the positive cone in Y. Then Y* is also a Banach lattice and C_+^* is the positive cone in Y*. If $(y^*)^+$, $(y^*)^-$ denote the positive and negative parts of y^* respectively, then $(y^*,y) = ((y^*)^+,y) - ((y^*)^-,y)$ for all $y^* \in Y$, $y \in Y$. Therefore $\sup\{|(y^*,y)|: y^* \in C_+^*, ||y^*|| \le 1\} \ge 2^{-1} \sup\{|(y^*,y)|: ||y^*|| \le 2^{-1} \}$. This completes the proof of Corollary 3.

Definition 7. Let X, Y be Banach spaces, Ω an open subset of X. A mapping f from Ω to Y is said to be locally compact if for each $u \in \Omega$ there exists an r > 0 such that the set $\{f(x): \|x-u\| < r\}$ is relative compact.

Corollary 4. Let X be an S-differentiability Banach space, Y a Banach lattice whose dual Y* has the property (*) with respect to a net $\{P_i\}_I$ of band projections. Then each continuous convex locally compact mapping f from an open convex subset Ω of X into Y is generic S-differentiable.

<u>Proof.</u> It is clear that to prove Corollary 4, it suffices to prove that f satisfies the condition 1') in Remark 3. By Lemma 3 f is locally Lipschitzian. Let x_0 be any point of Ω . Since f is locally compact, there exists a $\sigma > 0$ such that f maps $\{x \in X \colon \|x - x_0\| < \sigma'\}$ into a relative compact subset of Y. Put $r = 2^{-1}\sigma'$. Then $D_r = \{\|h\|^{-1}(f(x+h) - f(x)): \|x - x_0\| < r$, $\|h\| = r\} \subseteq r^{-1}(\{f(x) \colon \|x - x_0\| \le 2r\} - \{f(x) \colon \|x - x_0\| < r\})$ is relative compact. Now let ε be any given positive number. Then there exists a finite subset $\{y_1, \dots, y_n\}$

such that $D_r \subseteq \{y_1, \dots, y_n\} + 4^{-1} \varepsilon \cdot B_1 \ (B_1 = \{y \colon \|y\| \le 1\})$. By the assumption there exists an $i_0 \in I$ such that $|\langle y^* - P_i y^*, y_j \rangle| \neq 0$ $\leq 4^{-1}$. ε for all $y \in Y$, $||y^*|| \leq 1$, j = 1, ..., n, $i \in I$, $i \geq i_0$. It is easy to verify that $|\langle y^* - P_1 y^*, y \rangle| \le 2^{-1} \epsilon$ for all $y \in$ $\in D_{r}, y^{*} \in Y^{*}, ||y^{*}|| \leq 1$ and $i \in I$, $i \geq i_{o}$. Let $y \in A_{r}(f, x_{o})$, $y \neq 0$. Then there exists an $x \in X$, $\|x-x_0\| < r$, $h \in X$, $0 < \|h\| \le r$ such that $y = \|h\|^{-1}(f(x+h) - f(x))$. Put $k = \|h\|^{-1}rh$. From the convexity of f it follows that $\overline{y}_1 = r^{-1}(f(x) - f(x-k)) \neq y \neq 0$ $\leq \mathbf{r}^{-1}(\mathbf{f}(\mathbf{x}+\mathbf{k}) - \mathbf{f}(\mathbf{x})) = \overline{\mathbf{y}}_2, \ \overline{\mathbf{y}}_1, \overline{\mathbf{y}}_2 \in \mathbb{D}_{\mathbf{r}}. \ \text{Hence: } -2^{-1} \cdot \epsilon \leq \langle (\mathbf{y}^*)^* - \mathbf{y}^* \rangle$ $-P_{1}(y^{*})^{+},\overline{y}_{1}\rangle \neq \langle (y^{*})^{+}-P_{1}(y^{*})^{+},y\rangle \neq \langle (y^{*})^{+}-P_{1}(y^{*})^{+},\overline{y}_{2}\rangle \neq$ $\leq 2^{-1} \cdot \epsilon$; $-2^{-1} \cdot \epsilon \leq \langle (y^*)^- - P_1(y^*)^-, \overline{y}_1 \rangle \leq \langle (y^*)^-, \overline{y}_1 \rangle$ $-P_1(y^*)^-,y> \le <(y^*)^- -P_1(y^*)^-,\overline{y}_2> \le 2^{-1}. \varepsilon$ for all $y^* \in Y^*$, $\|y^*\| \le 1$, $i \in I$, $i \ge i_0$. Therefore $|\langle y^* - P_i y^*, y \rangle| = |\langle (y^*)^+ - P_i y^*, y \rangle|$ $- P_{1}(y^{*})^{+}, y > - \langle (y^{*})^{-} - P_{1}(y^{*})^{-}, y \rangle | \leq \varepsilon \quad \text{for } y^{*} \in Y^{*}, \ \|y^{*}\| \leq 1,$ ie I, $i \ge i_0$. This proves that f satisfies the condition 1') in Remark 3 and the proof of Corollary 4 is complete.

Using Theorem 2 and slight modifications of the proof of Theorem 3 we get $\begin{tabular}{lll} \hline \end{tabular} \label{table}$

Theorem 4. Let X, Y be Banach spaces, Y* have the property (*) with respect to $\{P_i\}_{I}$. Let f be a $\mathscr{C}(X,X^*)$ - $\mathscr{C}(Y,Y^*)$ -continuous mapping from X to Y such that:

- 1) $\lim_{\kappa \to 0} \gamma(\Lambda_{\mathbf{r}}(f,x)) = 0$ for all $x \in X$,
- 2) $P_{\mathbf{i}}(Y^*) \leq \overline{sp} ff(u) + f(v) 2f(\frac{u+v}{2}):u,v \in X^*$ for all $i \in I$.

Then f is generic Fréchet-differentiable.

Corollary 5. Let X be a Banach space, Y, Z Banach lattices, let f be a continuous convex mapping from X into Y, which is $\mathscr{C}(X,X^*)$ - $\mathscr{C}(Y,Y^*)$ -continuous; K a linear positive compact

mapping from Y to Z. Then $g = K \circ f$ is generic Fréchet-differentiable.

3. Generic differentiability of Hammerstein operators. In this section we shall consider the differentiability of Hammerstein operators.

Theorem 5. Let $K(t,s) \in L^p([0,1] \times [0,1])(K(t,s) \in C([0,1] \times [0,1])$ resp.), $1 < k < \infty$, g(t,s) be a function defined on Rx[0,1] satisfying the Carathéodory condition and such that

- 1) g(.,s) is convex continuous for a.e. $s \in [0,1]$,
- 2) $|g(t,s)| \le a |t|^{kq^{-1}} + b(s)$ for all $t \in \mathbb{R}$, and a.e. $s \in [0,1]$, where $1 < q \le \infty$, $p^{-1} + q^{-1} = 1$, $s \ge 0$, $b(s) \in L^q([0,1])$. Then the Hammerstein operator $H(u)(t) = \int_0^1 K(t,s)g(u(s),s)ds$ is generic Fréchet-differentiable on $L^k([0,1])$.

<u>Proof.</u> Let $K^+(t,s)$, $K^-(t,s)$ be the positive and negative part of K(t,s) respectively. Then $K^+, K^- \in L^p([0,1] \times [0,1])$ $(\in C([0,1] \times [0,1])$ resp.). Put $K_1(u)(t) = \int_0^1 K^+(t,s)u(s)ds$, $K_2(u)(t) = \int_0^1 K^-(t,s)u(s)ds$ for all $u \in L^q$. Then K_1 , K_2 are linear positive compact operators from L^q to L^p (to C([0,1]) resp.). We know that the Nemycki operator N(u)(s) = g(u(s),s) is a continuous operator from L^k to L^q when g satisfies the condition 2) (see [24]) and it is convex when g satisfies the condition 1). Hence the operators $H_1 = K_1 \circ N$, $H_2 = K_2 \circ N$ are generic Fréchet-differentiable on L^k by Corollary 3. Therefore the Hammerstein operator $H = H_1 - H_2$ is generic Fréchet-differentiable on L^k , which concludes the proof.

We know that C([0,1]) is a separable Banach space and therefore C([0,1]) is a weak Asplund space. Then we get

Theorem 6. Let $K(t,s) \in L^p([0,1] \times [0,1])$, $1 \le p < \infty$, g(t,s) be a continuous function on Rx [0,1] and let $g(\cdot,s)$ be a convex function on R for all $s \in [0,1]$. Then the Hammerstein operator $H(u)(t) = \int_0^1 K(t,s)g(u(s),s)ds$ acting from C([0,1]) to $L^p([0,1])$ is generic Gâteaux differentiable on C([0,1]).

References

- [1] R. ANANTHARAMAN, T. LEVIS, J.H.M. WHITFIELD: Smoothability and dentability in Banach spaces, Canad. Math. Bull. 24(1981),59-68.
- [2] N. ARONSZAJN: Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57(1976), 147-190.
- [3] E. ASPLUND: Fréchet differentiability of convex functions, Acta Math. 121(1968), 31-48.
- [4] E. ASPLUND and R.J. ROCKAFFELAR: Gradients of convex functions, Trans. Amer. Math. Soc. 139(1969),443-467.
- [5] J.M. BORWEIN: Weak local supportability and application to approximation, Pacific J. Math. 82(1979),323-338.
- [6] J.R. CHRISTENSEN: Topology and Borel structure, Math. Studia No. 10 North-Holland, Amsterdam 1974.
- [7] F.H. CLARK: Generalized gradients and applications, Trans. Amer. Math. Soc. 205(1975), 247-262.
- [8] J.B. COLLIER: A class of strong differentiability spaces, Proc. Amer. Math. Soc. 53(1975), 420-422.
- [9] J. DIESTEL: Geometry of Banach spaces, Lecture Notes in Math. No. 485, Springer-Verlag 1975.
- [10] G. EDGAR: Measurability in Banach spaces, Indiana Univ. Math. J. 26(1977), 663-677.
- [11] I. EKELAND and G. LEBOURG: Generic differentiability and perturbed optimization problems in Banach spaces, Trans. Amer. Math. Soc. 224(1976),193-216.

- [12] R.E. HUFF and P.D. MORRIS: Dual spaces with the Krein-Milman property have the Radon-Nikodym property, Proc. Amer. Math. Soc. 49(1975), 104-108.
- [13] KA SING LAU, C.E. WEIL: Differentiability via directional derivatives, Proc. Amer. Math. Soc. 70(1978),11-1
- [14] J. KOLOMÝ: On the differentiability of operators and convex functions, Comment. Math. Univ. Carolinae 9 (1968), 441-454.
- [15] M.K. KRASNOSELSKIJ, P.P. ZABREJKO, E.I. PUSTYLNIK, P.E. SOBOLEVSKIJ: Integralnyje operatory v prostranst-vach summirujemych funkcij, Moskva 1966.
- [16] KUTATELADZE: Vypuklyje operatory, Uspechy Mat. nauk 34 (1979), 167-196.
- [17] D.G. LARMAN R.R. PHELPS: Gâteaux differentiability of convex functions on Banach spaces, London Math. Soc. 20(1979), 115-127.
- [18] G. LEBOURG: Generic differentiability of Lipschitzian functions, Trans. Amer. Math. Soc. 256(1979),125-144.
- [19] P. MANKIEWICZ: On Lipschitz mapping between Fréchet spaces, Studia Math. 41(1972), 225-241.
- [20] F. MIGNOT: Côntrol danse les variationelles elliptiques, J. Functional Analysis 22(2)(1976).
- [21] I. NAMICKA and R.R. PHELPS: Banach spaces which are Asplund spaces, Duke Math. J. 42(1975), 735-750.
- [22] K. RITTER: Optimization theory in linear spaces: part III,

 Mathematical programming in partial ordered Banach spaces, Math. Ann. 184(1970), 133-154.
- [23] H.H. SCHAEFER: Banach lattices and positive operators, Springer-Verlag, New York 1974.
- [24] M. TALAGRAND: Deux examples de fonctions convexes, C.R. Acad. Sci. AB 288, No 8(1979), A461-A464.
- L251 M.M. VAJNBERG: Variacionnyje metody issledovanija nelinejnych operatorov, Nauka, Moskva 1956.

- [26] S. YAMAMURO: Differential calculus in topological linear spaces, Lecture Notes in Mathematics No 374, Springer-Verlag, New York 1974.
- [27] Ch. STEGALL: The duality between Asplund spaces and spaces with Radon-Nikodym property, Israel J. Math. 59 (1978), 408-412.

Matematický ústav, Universita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia

(Oblatum 25.6. 1981)