#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1982
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log23

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,2 (1982)

GENERIC DIFFERENTIABILITY OF MAPPINGS AND CONVEX
FUNCTIONS IN BANACH AND LOCALLY CONVEX SPACES

LE VAN HOT

ract: Generic Fréchet-differentiability of mappings
and convex functions defined on Banach and locally convex aspa-
ces is investigated. In particular, the Fréchet and Gateaux
differentiability of Hammerstein operators is also considered.

Eax wordg: Differentiability, mappings, convex functions
Asplund spaces, Banach and locally,eonvex apécee. ’

Classification: Primary 58C20, 58C25
Secondary 4TH99

Introductiop. The first important contribution to diffe-
" rentiability of convex functions has been given by Asplund [3].
He has shown that each Banach apace X, which admits an equiva-
lent norm such that the corresponding dual norm in X* 48 local-
ly uniformly rotund is a strong differentiability space. Furt-
her conditions have been obtained also for weak differentiabi-
1ity spaces. The properties of the so called Asplund ubaee.
have been intensively studied in [11, (5], [8],([11],([12],0a7],
[21],024]. For the differentiability properties of Hammerstein
and nonlinear operators, we refer the readers, K for instance to
(151,1191,[25]).

First section deals with the generic fréchet-differentia-
bility of convex functions defined on a product space X =
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= J.‘eTI" X, , where (xa tAel") is a family of Asplund spaces,
and of finite convex weakly continuous functions defined on
a locslly convex space. Section 2 1s devoted to generic Fré-
chet-differentiability of the class of mappings acting from
a Banach space into another Banach space. In the last secti-
on we diascuss generic Gateaux and Fréchet-differentiability

of Hammerstein operators.

l. Geperic Fréchet-differentiasbility of convex functions
defined on locglly convex spages

Lemmg 1. Let X be a topological space and T be a subset
of X such that for each open nonempty subset G of X there ex-
ists a nonempty G -subset TGQT with the following property
Tos int EGQ G. Then there exists a dense Gy -subset A&T.

Proof: Put A =4{SST; S is a Gy -subset and SSint 5},
WM =1{€s X ; int S;nint'S, = O for all $1,S, € €, S;#S,1-
We write €< €, 1rr € < €,. Then " < " is a partial order
on M . It is easy to see that there exists a maximal element
& of W . Put A =U4S:S € £% . Since every such S is a
G -eubset, there exists a sequence of open subsets Gs ,n such
that S = (f'\ Gs n for each S e & . Without loss of generali-
ty we can suppose that Gs €int§ for n = 1,2,... « Put G,
= U-i'Gs niS e £3%. Then G, is open for all n = 1,2,... . We
claim that A= 3 G, It is clear that A ¢ fc?\ G, Now if x ¢
¢ A, then x¢S for all Se &£ . If x¢int S for all Se &£ ,
then of course x¢ G, for all n = 1,2,... . Therefore x ¢

n
all S e ¥ , S+S,, n =1,2,... . However, x¢S  =/NG

[--d - . _—
¢ 7 O, If xeint S for S e £ , then x¢Gg p&int S for

So,n’

there exists an integer n_ such that x4G « Hence
so’no

(]
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x¢cno = U{Gs'nozs & £} . This proves that A = NG, . It fol-

lows that A € 7 . To finish the proof of the lemma, we must
prove that A=1X. Suppose that our claim is false, then X\A
is a nonempty open subset of X. By the assumption there exists
a Gy -subset McT such that Meint MSX\ A, Then M s 7/ amd
int ¥Nint S = B for all S « £ . This implies that LU {M}ec
e 7N which contradicts the assumption that &£ is a maiimal
element of 4% . This completes the proof.

Now let X be a topolegical vector space, S be a family of
bounded subsets of X, In this paper we always assume that S
possesses the following properties:

a) If A,BleS then there exists a Cc S such that AUB<C.

b) U{aA:Ae€S,AeR,t =X,

Deripition 1 ([26]). Let X, Y be topological vector spa-
ces, £ be a mapping from an open subset £ of X into Y. We say
£ 1s S-differentiable at x, € ) if there exists a linear con—
tinuous mepping TeL(X,Y) such that t™l(f(x +th) - £(x_)) con-
verges uniformly to T(h) on each subset A¢S when t — o, i.e.
for each O-neighborhood V of Y and A€ S there exists a J > 0
such that t™1(£(x #th) - £(x,)) - T(h)€ V for all heA, t:0<
<|tl<d.

If S is the family of all finite subsets of X, then f is
said to be Gateaux-differentisble at x .

If S is the family of all bounded subsets of X, the f is
sald to be Fréchet-differentiable at x_.

Remark. If X ie & normed space then without loss of ge-
nerality we can suppose that every subset A from S is contain-

ed in the unit ball of X.
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Definition 2. Let X, Y be topological vector spaces, f
be a continuous mapping from an open subset D of X into Y, -

f is called generic S-differentiable if there exists a dense
Gy -subset A of 0l such that f is S-differentiable at every
point xc A,

Definition 3. A Banach space X is called S-differentia-
bility space if each continuous convex finite function defin-
ed on an open convex subset of X is S-differentiable on a den-
se G4 -subset of its domain.

Fréchet- (GAteaux- resp.) differentiability spaces are known
as Asplund (weak Asplund resp.) spaces.

Stegall [27] has proved that a Banach space X is Asplund
if and only if its dual X# has the Radon-Nikodym property.
Then it is easy to see that a finite product of Asplund spa-~
ces 1is Asplund.

Theorem 1. Let (Xa tA€T) be a family of Asplund spa-
cea. Then each continuous convex function £ defined on an open
convex subset Q of X =af‘r'xa. is generic Fréchet-differen~
tiable.

Broof. Put pr((x,)) = max{lx,N: A eIf for all (x, e
€ X and each finite subset I <« " , Then {'pI}I is a family of
continuous seminorms on X which induces the locally convex
product topology of X. Let G be any open nonempty subset of
K\ X » therefore G is open in X, since £l ig open. To prove
Theorem 1, by Lemma 1, it is sufficient to prove that there
exists a Gy -subset M such that Meint MEG and that ¢ is Fré-
chet-differentiable at every point xe M. Take X, € G. Since f

is continudus at X,» there exist a d> 0 and a finite subset
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I ST such that U = {x ex:pI(x - x°)<d"}§G and |£(x) -
- f(xo)lél for all xeU. We claim that |£(x,) - f(xz)l £
£ % pr{x; = x;) for all x;,x,€U, where d; =o -
- max {pI(xl - xo), pI(xz - xo)}. Put h = x; - x,. We have
that

a) If py(h) = O, then from the convexity of £ we deduce

_ _ L =1
that £(x;) - £(x;) = £(x, + h) - £(x;) 28 " [£(x, + sh) -
- f(x2)] for all 8 Z1l. Now pI(h) = O implies that x, + she U
-1
- p3 -

for all s& R. Henc; r(xl) f(‘z)—}},“.," [elx, + sh)
- £(x,)]41im 28 " = O. Similarly f£(x,) - £(x,)=< 0. Therefo-

27 450 2 1
re l£(x,) - £(x;))l& 2:67 7 p (x, - x)).

b) Suppose that py(h) =r>0. If r 207, then If(x;) -

-1 -1

- f(x))£242587".r = 2-d7 py(h). If r<d), put b =
= d"lr-lh; then x;*h eV, 1 = 1,2, and £(x;) - £(x,) =

-1 -1 _ -1 _ -1 =
< rd) Le(x, + ho) - f(xz)]é ZrJl = 20'1 = 2d‘1 pI(xl x5).
Similarly r(xz) - f(xl)é Zd'IlpI(xl - x5). This proves owr
claim.
Put Yy = 01, X, , U(xy Wy = max {0x, N:AcI} for all (x, Je
€ Y; and each finite subset I& I , X; = {(x, e Xix, =0
for all A ¢ Il. Let J; be an embedding mapping of Yy into X
defined by Jy((x,)) = (y, ), where y, = x, for all Ac I;
¥, = O for A ¢ I. Then Jy is an isomorphism of Y; onto Xy
and M(x, W = py(Jz(x, )) for all (x, )& Yr. Let Py be the
canonical projection of X onto Xy. Put Qp = JII% Pp:X—> Y;
and fr =fe JI:V = QI(U) —> R, Then 1t is clear that fI is a
continuous convex function on V and f£(x) = fI(QI(x)) =
= f(PI(x)) for all xeU because pI(x - PI(x)) = O whenever
x €U. Since X, 1s an Asplund space for all A e T , Y7 1o
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Asplund for each finite subset I © " . Therefore there exists
a Gy -subset M of Y; which is dense in V such that f; is fré-
chet-differentiable at every point of M. Put N = Qll(l) =
= PI oJ (M)2 U. One can verify that N is a Gy~ —subset of X
and N&int N = G71(int ¥) = U. Now we claim that ¢ is Préchet-
differentiable at every point xe N. Let x be any fixed point
of N, D a bounded subset of X, € a given positive number:
Then Qr(x)é M and there exists a number K> O such that pI(h)ﬁ
£K for all heD. Let Te ¥ be the Fréchet-derivative of £y
at Qr(x). Then there exists & f°>0, do <" = pr(x) such
that 1£70Qr(x) + &) = £1(Q;(x)) - 20V £€. K2 Nl for
Nicl; < 0. Let @} be the adjoint of Q- Put § = @4(Te x*,
Now take t6 R such that O<|tl <o K™\, Then p (th) < Iy x +
+ the U and
I£(x + th) - £(x) - s(th)) = l£7(Qq(x + th)) - £i(Q(x)) -
- r(qI(th))ua i heenhy = ¢ -xlp(p (th) =
=£-K pI(th) <eltl for all heD. This proves that £ is Fré—
chet-differentiable at xe N, which finishes the proof of Theo-
rem 1.

Theorem 2. Let X be a locally convex space and £ be a
& (X,X*) - continuous convex function defined on a weakly open
eonvex subset Q. of X, where 6 (X,X*) denotes the weak topo-
logy on X, Then £ is generic Fréchet-differentiable.

£roof. Let G be an open nonempty subset of O » therefo-
re G is open since L 1s open, x,€ G. Since f is &(X,X®=-con-
tinuous at x, there exist x’i‘,x; eee x}eX* and a 4" > 0 such
that U ={xeX: I<xf, x - x > 1<€d, 1 =1,2...n3c 2 and
le(x) - £(x )I£1 for all xeU. Put p(x) = max Uxf,xd): 1 =

- 212 -



= 1,2...n}, for all x€X. Then p is a continuous seminorm on
(X, 8(X,%*¥)) and U ={xe X:p(x - x)<d¥ . Using the same ar-
gument as in the proof of Theorem 1, one can verify that

1£(x;) - £(x,) 14 ZJ'Ilp(xl - x,) for all x),X,€ U, where ')

=d - max {p(x; - x), plx, - x)t. Put V = 6 ker x:. Then V
is a closed finite codimensional subspace of X. There exists a
continuous projection Q:X — V. Put M = ker Q, P = I - Q, then
X=M®V and M is a finite dimensional subspace of X. Let
{xl,xz...xk§ be a basis of M. Since G U is a neighborhood of
x,, there exist a convex open neighborhood U; of P(xo) in M and
a convex open neighborhood O; of Q(xo) in V such that G, = U; +
+ 0,5 GNU. Let J:RE—> X be the mapping defined by J(al,az...
cooty) = Z:" ayx; for all a = (al,...,ak)eRk. Then J is a to-
pological isomorphism of R¥ onto M. Put S = J"te P:X—+Rk,
gla) = £(J(a) + Q(xo)) for all aeS(Gl) = J'l(Ul). It is easy
to see that P(x) + Q(xo),e G, € U whenever x€Gy. Then g is a con-
tinuous convex function defined on S(G;) and |£(x) - £(P(x) +
+ Qx 1€ 26 plx - PGo) - Qlx)) = 28T plalx) - Qlx)) = o,
where dJl = d’ - max {p(x - xo), p(P(x) + Qlx)) - xo)}> 0. Hence
£(x) = £(P(x) + Q(xo)) = g(s(x)) for all xeG,. There exists a
dense Gy’ -subset A in an open set J-l(Ul) such that g is Fré-
chet-differentiable at every point ae A. Similarly as in the
proof of Theorem 1, we can prove that f is Fréchet-differentia-
ble at every point x€J(A) + 0, and £7(x) = $¥(g (s(x))) for
all x& J(A) + 0;. It is clear that J(A) + 0, is a Gy’ -subset of
X and J(A) + 0;< int(JCA) + 0;) = U; + 0; =G By Lemma 1,
this concludes the proof.
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2. erjc d t « In this section,
X always denotes a Banach space, S denotes a family of subsets
contained in the unit ball of the space X with the properties
a) and b) introduced in Section 1.

Definition 4. Let X, Y be Banach spaces, 2 be an open
subset of X, £ be a mapping from £ to Y. We say that £ is Lip-
schitzian at a point X, €l if there exist a K>0 and &> o
such that I£(x) - P(y)ll2Kk fIx - ¥y for all x,yen , lx -

- x°“<d", ly - x W <d.

£ 1s said to be locally Lipschitzian if ¢ is Lipschitzian
at every point x e QL .

Definjtion 5. Let € > O be a fixed positive number. We
say that f is locally (e,S)-approximated at x € O if for each
A €S there exist T, e L(X,Y) and J"> O such that:

(1) W £(x + th) - £(x) =~ T,(th) < € 1t] for all t: |t)<d’
and he A. Denote by S¢ (f£,x,4) the set of all Te L(X,Y) such
that (1) holds for some J” > 0.

Lemma 2. Let £ be Lipschitzian at x € ., Then f ig S~
differentiable at x if and only if f is (e,S)-approximated at
x for all & > O.

Proof. 1) If f is S-differentiable at X, then it is clear
that £ is (e,S)-approximated for all € > o.

2) Now let f be (€,S)-approximated at x for all € > 0.
Put S (£,x,4)(h) = {T(h) ‘TeSg (£,x,A)3  for all heA. It is
easy to see that diam S (£,x,A)(h)<£2¢ for all hea and g>
> 0. Therefore there exists T(h) =sOoS£ (fy,x,4)(h) =
=Un t7Le(x + th) - £(x)] for all he A, and I T(n) -

- Te’A(h) l22¢ por a1l TE’AESE (f,x,A) and heA. Hence, by
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the property b)’tl_%mo ¢ L£(x + th) - £(x)] exists for each
he X. The additivity of T follows from the property a) of S and
the boundedness of T follows from the assumption that £ is Lip-
schitzian at x. This shows that TeL(X,Y). Now let € > O be
given and A be an arbitrary element of S. Take Tlé 85/3(f,x,A).
Then there exists a d > O such that Il £(x + th) - £(x) -

- (e £ £ 1t) for all t: [t1 <0 and heA. Hence

le(x + th) - £(x) - T(tn)N& lelx + th) - £(x) - T, ()l +

+ 7, (t) = T(th)l <€l tl for a1l t, Itl<d” and heA. This
proves that f is S-differentiable at x, which concludes the
proof of Lemmsa 2,

Propogition 1. Let X be the one of the following spaces:
a Hilbert space, C(S) where S is a compact Hausdorff space,
P, ,w), where v is a positive G-finite measure defined
on a ©-algebra = of subsets of a set L , 14p <co and let
X* be the dual of X. Then X* possesses the following property:

(%) There exists a net of continuous linear projections
{Pi} I of X* onto finite dimensional subspaces of X* such that:

1) “Pi“-‘- K for some K> 0 and all i€1I,

2) {x* - Pix‘f converges weakly-star to O uniformly on
{x*e x™: hx*Il £ 1%,

Proof. 1) Let X be a Hilbert space and (e, ), ¢p be an or-
thonormel basis of X. Let I be the family of all finite subsets
1 o0f T . We write il_fs 12 iff 119. 12 for 11,1261. Let P1 be
the orthogonal projection of X* = X onto sp{e_x e it for
all 1€ I, where sp{e, : Q € 1% denotes the linear hull of
{e, 5\.6’1}. Then it is clear that {Pi}I possesses the propew-
ties 1) and 2) with K = 1.
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2) Let S be a compact Hausdorff topological space. We know
that the dual space C*(S) of C(S) is the space of all Radon me-
asures on S, and denoted by J(S). Denote by 4x the atomic me-
asure defined by w,(A) =1 if xeA, “y(A) =0 if x¢A for all
Borel subsets A of S and xeS. I denotes the family of all col-
lections (xl,...,xn;sl,...,sn) where S;,...,S 1s a disjoint
partition of S into Borel subsets and X € Sk for k¥ = 1,.,.,n.
Let 4; = (xk,...,xn;sl,...,sn)e I; 4, = (yl,...,ym;Tl,...,Tm)e'I.
We write 1,< 1, iff for each j:1< j<m there exists g k(j): 1«
£ k(j)< n such that Tjgsk,(,j) and x) = ¥; whenever x € TJ. Put
Q = sp {((Lxl,---,ébxng and Py(@) = EF w(s)) (4x, for all 1 =
= (xl,...,xn;sl,...,sn)e I. Now we prove that tP,} ; possesses
the properties 1) and 2) with K = 1. Let @es(S), then

"
1P ()l = sup %I Py(@)(ay) 1 = sup % I u(sy) f“’xk(AJ)I‘é

< hgo | (sl £ el | eor a11 1 €I, where the supremum is

taken over the set of all finite collections {AJ§ of pairwise
disjoint Borel subsets of S. Now let £ be an arbitrary fixed
continuous function defined on S, then f is uniformly continu-
ous on S. It is easy to see that given € > O there exists a
finite partition o =(Sl,...,Sn) of S into Borel subsets such
that 1£(x) - £(y) <& whenever x,ye S for some k = 1,...,n.
Let X, be an arbitrary fixed point of Sy for k = 1,...,n. Put
i, = (xl,...,xn;Sl,...,Sn)e I. Now we claim that

(@ = Py (@) ()} =1Lt a @ - L ex) a (Ry()ix))lse

for all weM(s), Null<1, 1e1, 121 and this completes the
proof for X = C(S). Suppose i = (yl,...,ym;Tl,...,Tm)e I, 124,
then it is clear that | f(x) - f(yJ)I.é € for all xely, § =
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=1l,e..,m, and
m
[ £ @ @0 - et apg (@Gl = 1 =4 .L;.?, £(x) a4 @ (x) -
o L op() @ (1) dag () = | ZML (ex) - £(y5)) @ @ (x)) £
1;—3.' @il (“‘g} 4 1:—? J “
e =7 l;,jlf(x) - sy talulto £ e hwlhze -

3) Let X = LP, 14p < @ , then x* = 19, where p_l + q-l=
= 1. Let T be the family of all finite partitioms 1 = (El,...
..+,B) of L such that E & =z , w(E)>0 for all k = 1,...,M
We write i,;£1, iff FJEEk whenever anEk4=b, for j = lyeece,m;
K= 1yeee,m; 4 = (Bp,eee,B)eT, 45 = (£1,000,Fy) € I Put (to-
king &ég‘—) = 0 for all x € £2) (P;e)(x) =

v -1
=Z4[,/ék(u.(Ek) g(t) 4 @ (1 gp (0.
We shall prove that (Pi)I possesses the properties 1) and 2)
with K = 1.
If q =c , then it is clear that e, g K, 2lgll for all ge 19,

Now let 1<q < @ , geld, i = (Bj,...,E )€ I:

NEeld = 1 E] S, (BT () @ @lt) 1g, (017 4 @)=

= IS (BT ) @ @17y () d @)
= )t e d @19 £ =™ wE)i™e .

(g, d & (£))9P .f,%lg(t)lcl a () =f et a @lt) =
=1 gll9.
This proves that P, Il £1 for all i€ T

Now we suppose that f be a fixed function from 1P, We shall
prove that for each €& > O there exists an ioe I such that
| [ pog d@ - Jy £.(Pje) a@w £ & for all €1, 121, and g€
eldligli«l.
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Let € > 0 be given. Then there exists a simple measurab-

le function £, = =7¢ . g, such that g - ¢ | <2 1. e .
Without loss of generality we can suppose that UE
Put 1 = (ByyeeesB) € I Let g€l gl <1 ana 151 i=
= (rl,...,r )>1°. Then for each k = 1,...,n there exists an
oy <4l,...,m% such that E = U{F;j ') € &} Whence r =
= l.éf(x).g(x) d @ (x) -f f(x) (Pig)(x) d w(x)| =

=1 (£ ) (0e(x)d @ (x) +, & _43“ ) -, cuBx) a4 wlx) -

lud

-1
- h§4 5§a{,&'(‘[ . ‘w(F ) T glt)d e (t)).( f,_- f£(x)d M (x)) 12
€ Me-e ll-Ngls z TERE S &(Fd) P Ig(t)ld “(t)).

CJL L (HET @ |(ck-f(x))ld @ (x).

If 9 = @ then it 1s clear that r<» Mf-f h-negy.
Suppose that 1<q < oo . Then

ety Hghe (F, R, 0P g1 e

C G S .f;:é(u(FJ)-q-ll epm£0)d @ (x)P)P

£le-£l ligh+ (‘é_: §k K 5 ¢ (Fy )7L a (a(x))pq-l.

('/I:'a'l e 0IP a4 ()P T, (245 ([ ey (£ )" dlu(x))qp—l.
s J;},I g(t)lq))q-l =21Mgll Il e-£ I,

This completes the proof of Proposition 1.

Remark 2. Let X be a Banach space. If its dual X* has a net
(Pi)I with the properties 1) and 2), then we say that X¥ posses-
8es the property (%) with respect to (Pi)I'

We shall use the following notations.

Let X, Y be Banach spaces, {. be an open subset of X, £ be a map-
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ping of L into ¥, x e 2 , r>0,
a(e,x) =NnIMt Ay £(p): ly=xll «r, 0<linli£r?
where A,f(y) = £(y+h) - £ly),

B, (£,x) ={£(x;) + £(x;) - 2f (f-l-;a):xiex, hx,=x Il £,
i=1,2%.

For Ac Y, T(A) denotes the measure of noncompactness of A de-
fined by <4(A) = inf {t >0: there exists a finite subset CESA
such that ASC + tB;} where By = {yeY:yll£1%. We use the
symbol A® defined by A* ={y*eY*: {y*,y> 2 0 for all ye Al.

Theorem 3. Let X be an S-differentiability Banach space
and Y be a Banach space, whose dual Y ¥ possesses the property
(x) with respect to (Pi)ieI’ f) be an open subset of X. Let f
be a mapping from (L to Y such that:

1) e, (a,(f,x)) =0 for all x € L,

2) for each open nonempty subset G & fL and each i€ I the-
re exist an x€G and an r>0 such that ma P, (YF). Then
£ 1s generic S-differentiable.

Proof. We denote the ceanonical embedding mapping of Y in-
to its bidual Y** by 2¢ . Let K be a positive number such that
I PillﬁK for all 1€ I and & be an arbitrary given positive
number. Put Tg ={x € & : £ is (g,¥)-approximated at x}. We
shall prove that T, contains a dense Gg'-subset in 1 for all
¢ > 0O. By Lemma 1, it suffices to prove that for each open non-
empty subset G € L there exists a G, -subset NeTg such that
Ncint NEC. Take an x € G. Since ,](;Exofx‘(Ar(f,xo)) = O there
exists an r>0 such that xeG for all xeX, |l x-xoll < r and

q"(Ar(f,xo)?<E4(K+l)]-le . Therefore there exist yj,ee«,¥p &
€ Y such that Ar(f,x)s{yl,...,yk} +Caxk+ 10 e By, where
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By ={ye¥: llyll <1}, put K, = max {’lylu rveees iy i+ e
Then llyll ¢ K, for all yeAr(f,xo) and hence f is Lipschitzi-
an at Xg. Since Y pPossesses the property () with respect to
(Pi)I' there exists an 1,€ I such that (y* - Pyy ,yJ> 2471, ¢
for all y¥e v¥ lysh<1; 5 = Lyeeoyk; 1€1, 121 . One can
verify that {y¥ - Pyy*,y>e 271, ¢ for all y*e Y,
ly*nsa; yeAr(f,xo), ie1, iz i,+ On the other hand, by 2,
there exist an x) e{x: ﬂx—x°||< r} and ry:0<ry<r - | xl-x;)l

such that Y =P; (YHgep B;l (£,x;). Let {e’i,...,e;} be a
o o
basis of the subspace Q ﬂe':;“= 1 for § =1,...,n., Put
o
n mn k
hy*h, = Z1IJJI for y* = x },Je’seQio. Then M- W, 15 4
noTm on Q; and it i3 equivalent with the norm |l » | restricted
o
to Qio. Therefore there exist K2,K3>o such that Klly*l <
< | y* l|1$K3 ly*N for a11 v¥e Q . Take z:;s sp B;_, (r,xl) such
o

that lldy - 2% < LKk e ) for 3 = 1,... 0. Since 7 e

€ ap B;l(f,xl) there exist u:;’l,...,u’j,kde B;l(f,xl) and tj,‘l)""

. . & x =
t.j,kJe R such that z§ -A§1i tJ,qu,a for J = 1,...,n. It is

Vy+ v
easy to see that (uj,sf)(vl) + (u'j,sf)(vz) - 2(u§’st)(l7—z) =

* vy* Y2
= <“J,s'f("1) + £lv,) - 2f(~%—=)> > 0 for a1l 8 = 1,00u,ky;
XK
J=1,..0,n; Vg€ X, llvk-xlnﬁ Ty, k = 1,2, Hence Uj,s°f ie a
continuous midconvex (therefore convex) function on the open
convex subset U ={x: ) x-x1|<r1}EG, for j =1,...,n; 8 = l,ees
""kj- Since X is an S-difrerentiability Space, there exists g
dense Gy -subset H, _ of U such that u* op 44 S-differentiab-
J Jy8 Jy8
le at every point xEHJ,s for all j§ = lyeeeyn; g = 1""th°

= 7 . -
Put N 551 :24 Hy g€ G. Then N 1s o Gg” -subset which is dense
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R
f = ¥ b -
in U. It is clear that Zf = F ¥ t, juj of 1s S-differentisb-
le at every point x€e N for J = 1,...,n. Now we prove that 2« f
is (g,S)-approximated at every point xe N. Let w’j be a linear
¢ *) = X = *‘
functional on Qio defined by wj(y ) ty for y = t4€;5 eQio,

j=1,e..,n. Then of course we have l\w'j(y"‘)lég,{—t | wd(y*)l =

= )y¥ lllél(3 ly*l for all y*e Qio, j=1,...,n. One can see
that

I\ Picy* - Z:' wJ(Pioy*‘) z:; == wJ(PiOy*)(e’G - z’s £
5(410(11(3)"1 € Xy I\Pioy“ﬂ caktoe iyl

Let x be an arbitrary fixed point of N. Denote the S=-differen-
tial of the function zfj o f at x by d(z’:;ef)(x) Por § = 1lyee.,n.
Let K, = max {1 d(z3of)(x)|| :J=1,...,n}. Then the functional
B(h,y*) on XxY defined by

B(h,y¥ == wJ(Pioy*) . A(Z50)(x) (n) for all heX, y*e Y%,

is bilinear. Furthermore, |B(h,y*)|l= = le(Pioy"‘)l.ﬂd(zsof)(X)“'
- DhnleZ g lni \wJ(Pioy‘) F2KK K, Inll Iy .

This shows that B(h,y*) is continuous and for egch fixed he X,
B(h,.) € Y*™, Let V be a mapping of X into Y** defined by V(h) =
= B(h,.), then V is a linear continuous mapping and llVIl.‘.-KK3K4.
Let A be an arbitrary fixed subset from S. Then there exists a
d:0 <d'<r) such that

123 £)(x + th) = (2 £)(x) - a(Z £) ) ()l £ (axky) ™t g bt
for all t such that (t| £ ¢ and h€A. Take an arbitrary fixed
number t°:0<|to\ £d , heAand y¥e Y* ,ly*H £1; then

o (tgyhy,¥%) = l(t;]‘ Lo £(x + t h) = %e£(x )] -

- Vihy),y® =17t Vel p 200 = BlngyD | 2] Cy* - By v,

Nt Il 72 A 6 p P> W ngll + ICRy 3% = X wy(py ™3,
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t;l Atohof(x» |+ 1 = wJ.(Pioy*) {t;‘l[ zs of(x + t h) -
- 23 o P(x)] - d(zgof)(x)(ho)} IS

Since ||x-xo F£lix = x; h+) 7%, le ) + | x=x,l < r and
Wt ht = et hn I £ ltol £d< ry<r, it follows that

1{y* - Py ¥% Negn i =l Atohof(x)>| Inllz2l. e

and IK Pioy*" = wJ(Pioy"‘)z}, t;l At h£(x)> |£llPi°y*"

= Z WPy I NN n 1L b 1Bt b opo ) £ (axt
cely*ix «a7l e,

|z:”wj(1>ioy*)§t;1££3r(x * toho) = Z5rGal- d(Zfer) (x) ()}l £

< (axxy) e Z;"le(pioy*)ll_-fl. €.

This means that x(to,ho,y*)é € . Since to,ho,y* are taken
arbitrarily, « (t ,h,y*) 2 & for a1l t:0<lt|l<d, hea, Yet¥
ly*)<1. Hence

I t‘laeo f(x + th) -2 0 £(x) - Vv(n) | =l|q§“lip‘1 xlt,h,y*) < ¢

for 211 t:0<lt1<d”, heA. This shows that 2o f is (g,S)~ap-
proximated at x. Therefore for each © > O there exists a dense
Gy-subset Mg of O such that go ¢ ig (&,S)-approximated at a-
very point xeMg. Put T = 5 Ml/n. Then T is a dense Gr-subset
of ) and 220 f ig (e,S)-approximated at every point x€T for all
€ > 0. By Lemma 2, 220 £ is S-differentiable at every point xeT.
Therefore f is S-differentiable at every point xeT, as 2e(Y) ig
a closed subspace of Y**and % is an isometrie isomorphism of Y

onto 2(Y). This completes the proof of Theorem 3.

Remark 3. From the proof of Theorem 3, it follows that
the condition 1) in Theorem 3 can be replaced by the following

one:
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1°) £ is locally Lipschitzian and for each x € fL and
€ > 0 there exist an r>0 and i € I such that
| Ky* =Py ,y214¢ for all yealf,x), y¥e Y™ hy*hsl
and 1€1I, i=1..

Corollary 1. Let X be an Asplund space and ¥, L, £ be
as in Theorem 3. Then f is generic Fréchet-differentiable.

Recall that under a convex cone in a linear space X we
understand every convex subset C of X such that C + C&GC,
ACEC for all A Z 0. Now let X be a Banach space. We shall
say that & subset A< X has the property (xx) if there exists
a (3> O such that sup{l {x*,x> | :x*e a*, [ x ¥/l £1} > Al xl
for all xeX. It is easy to see that if CA denotes the closed
convex cone in X generated by A then A has the property (%)
if and only if C, has, because C; = A%,

Lemma 3. Let X, Y be Banach spaces, £L be an open subset
of X, £ be a continuous mapping from £ to Y such that for each
x € & there exists an r> 0 such that Br(f,x) has the property
(x%), Then f is locally Lipschitzian on £ .

Proof. Let x be a fixed point of £l . By the assumption
there exist an r»0 and a 3> O such that sup{|<{y*,y>l:y*e
€ Bo(£,x), |y*I £ 1} = Bliyll for all ye¥; note that B £ L.
Let C be the clogsed convex cone in Y generated by B (f,x). We
claim that (1-t)f(x;) + tflx,) - £((1-t)x; + tx,) € C whenever
x, €X, I X4=X < r, 0£t£1. Suppose that this claim is false.
Then there exist x;€ X, I xg=xl<r, 1 =1,2, xy%x, and t_ €
e (0,1) such that Yo = (l-to)f(xl) + tof(xz) - f((l-to)xl +
+ t°x2)¢ C. Then by the separation theorem, there exists a
y;eY* such that <y%,y,> <0 é(yé‘,y) for all ye C. Hence
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yle C*. Put g(t) =< f(xl + t(xz-xl)) - f(xl) -

- t[f(xz) - £ix;)] ,yé‘) - Then g 1s a continuous function on

£0,1) and g(0) = g(1) = 0. Let t; be a point from (0,1) such
that g(t,) = max {g(t), 04t<1}. Put &= min {l-tl,t1}> 0.

One can verify that g(t1+d') + glty-d) - 2g(t;) =

<f(x1+ (t1+d')(x2-xl)) + f(xl + (tl-d')(xz - xl)) -
2£(x,+ tl(xz-xl)),y:) <0. Put u =x, + (tl-d‘)(xz-xl),

vVEox o+ (t1+d")(x2-xl), w = x;+t)(x,-x;). Then w = 271 (u+y)
and < £lu)+ £(v) - 2f(w),y¥> < O, This contradicts the fact
y;’sc' and flu)+£(v) - 2¢(w) € C. This proves our claim Since
f is continuous at x, there exists a d' > 0, &< r such that
h£(u) = £(x)l < 471 for all ue X, lu-x l<d”, Put ¢ = 271"
and let v,we X, lv-x R<s, lw-xll<s. If lv-wll2 s then
Netw)-e(v) s 271e (g (s)-l D v-w Il . Now suppose that 0< I v-wl<
<s. Put h = w-v, hy =8 |lhﬂ-lh. One can conclude that
(l-s'lll nil)e(y)+s™t Rhll f(v+h°) - f(w) € C. Therefore
£(v) = £(w) = e™ Nl [£()-£(vsh )] € C. Similarly
£w) = £(v) = o7 A Bl Cew-2tw-n )] e c.
Hence | < £(v)-£(w),y*> |2 6™ Inll [I<e(u)-pluan ), 55| +
+ [(f(w)-f(w-ho),y")ll for all y*€ C°. Therefore
pll £(v)=e(w)h £ sup {I1<2(0)=2(w) ,y*> | :y*e Cc lly*ll < 13 2
£87 B R (N eto)=2(osn )N+l etw=2wn ) I Y271 nl
Whence | £(v)=f(w)|l £ (s g)-l Kv-wll for all v,weX, lv-xll< s,
l w-x|l< s. This proves that ¢ is locally Lipschitzian and the
proof of Lemma 3 is complete.

c lary 2. Let X be an S-differentiable Banach space,
Y, Z Banach spaces, L an open subset of X, £ a mapping from
L to Y and X a linear compact mapping from Y to Z. Suppose
that £ is continuous and for each open nonempty subset G &
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there exist an xe G and an r>0 such that B, (f,x), Br(Ko f,x)
have the property (%), Then g = Ko £ is generic S-differen-
tiable. ’

Proof. Let G be any open nonempty subset of 2 . By the
assumption there exist an X, € G and an r> O such that Br(f,xn),
B, (Ko f,xo)‘/ = K(B,(f,x_)) have the property (x*), Put U =
={xeX: 1l x—xol\A r¥. To prove Corollary 2, it suffices to pro-
ve that g is generic S-differentiable on U. Put W = {z*e Z'?

s hz* <1y 0 (K(Br(f,xo)))‘ ={z*eBL(Ke £,x ), I 2¥Il £ 1%.
Then W endowed with the weakly-star topology e(z*,2), restric-
ted to W is a compact Hausdorff topological space. Let c(w) de-
note the Banach space of all real continuous functions defined
on a compact space W and 9¢ the embedding mapping from Z to C(W)
defined by ®(z)(z*) =<z,z*> for all z€2Z, z¥€W. We clain
that e 1is a topological isomorphism from Z onto a closed sub-
space of C(W) and 2¢(z)(2*)= O for all z € K(B,(£,x.)), z* € W,
It is clear that @¢ is a linear mapping from Z into C(W). Since
Br(Ko f,xo) possesses the property (kX ) there exists a 3 > O
such that Il z M gup {I<z*,z>l:z¥ews=MNlaelz)hs |l z10.
This proves that 2¢ is a topological isomorphism of Z onto

20(2) and since Z is complete, 2¢(2) is a closed subspace of
¢(W). Furthermore, if zeBr(g,xo) then 2(z)= 0, since W £
< B (g,x). Thus our claim is proved. One can see that the map-
ping h = 2€e g|y:U — c(w) is S-differentiable at x if and on-
ly if g 1s S-differentiable at x. We know that (Proposition 1)
c(w) is a Banach space whose dual C*(W) possesses the property
(%x). To finish the proof, it suffices to prove that h satis-
fles the conditions 1) and 2) in Theorem 3. Let u be an arbit-
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rary fixed point of U, Take an s> 0 such that {xe X: || x~u ll< sdc

€U. Put Uy ={xe X: | x I<27 28} ana

Af(x,k) = { ™t (el xare) = £(x)) for x € (utl)) ke U ,k+0,
0 for xe utl;, k = 0,

By the assumption and Lemma 3, f is locally Lipschitzian on u,

there exist d":0 <d'< s and M>0 such that

b =-r(wh < M llv-wll fopr VaweX, lv-u ll< o | [l w-u |l <,

Put ry = 271y » Uy =4{xeX: Ixll< ri}. Then || A flx, k)l £ M

for all (x,k)e (u+U2)><U2. From the compactness of the linear

mapping 2¢e K, it follows that Arl(h,u) = RoKoA f((u+U2).><

X 02) is a precomm ct subset of C(W). This means that

%}ELO 7 (A.(h,u)) = 0, and the condition 1) in Theorem 3 is sa-

tisfied. On the other hand, we have B;l(g,u).Q B;,(g,xo) as

Brl(g,u)EBr(g,xo). Hence C¥(w) = spiue C*W:iw > 0% =

< sp B;l(h,u). This proves that the condition 2) in Theorem 3
is satisfied,too, and the proof of Corollary 2 ig complete.

Now we give some applications of Theorem 3 to the problem
of generic differentiability of convex mappings. All notions
concerning Banach lattices used here are standard, we refer the
readers for instance to [23],

Definition 6. Let X be a Banach space, Y a Banach lattice,
fL an open convex subset of X. A mapping £ from £ to Y is
sald to be convex 1f £((1-t)u + tv) £ (1-t)P(u) + t£(v) por all
u,v el | telo0,1],

Corollary 3. Let X be an S-differentiability Banach spa-
ce, Y, Z Banach lattices, QO an open convex subset of X, £ g
continuous convex mapping from . to Y, K a linear positive

compact mapping of Y into Z. Then g = Ko £: Q —> Z is generic
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S-differentiable.

Proof. It follows jmmediately from Corollary 2, if we no=
te that the positive cone in a Banach lattice always has the
property (*%*). In fact, let Y be a Banach lattice and C, the
positive cone in Y. Then Y*¥ 4g also a Banach lattice and c;
is the positive cone in Y* . If (y¥)*, (y*)” denote the posi-
tive and negative parts of y* respectively, then € y*,y > =
={(ynty> - {(y®"~,y> for all y*e Y , y€Y. Therefore
sup {I< y5y>) ty*a €, Ny *ll£132 o sup{I<y*,y> ) ly*h £
£1% = 2_1llyl|. This completes the proof of Corollary 3.

Defini . Let X, Y be Banach spaces, £ an open sub-
set of X. A mapping f from {L to ¥ is said to be locally com—
pact if for each u €[l there exists an r>0 such that the set
$£(x): l x-ull< r} is relative compact.

Corollary 4. Let X be an g-differentiability Banach space,
Y 5 Banach lattice whose dual Y* has the property (%) with res-
pect to a net 1P;i; of band projections. Then each continuous
convex locally compact mapping £ from an open convex subset Q
of X into Y is generic S-differentiable.

Proof. It is clear that to prove Corollary 4, it suffi-
ces to prove that £ satisfies the condition 1) in Remark 3.

By Lemma 3 f is locally Lipschitzian. Let X, be any point of
Q . Since £ is locally compact, there exists a J“> O such
that ¢ maps {xe€X: lx-x Il < &} into a relative compact subset
o T. Put ¢ = 21" . Then D_ = {UnI"H(eGxrn) - £0x)):
:lx=x < r, nN = r}Er-l({f(x): L x-x W & or} - {£x):
:l\x—xoﬂ < r}) is relative compact. Now let © be any given

positive number. Then there exists a finite subset {yl,...,yn}
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such that Drs{yl,-..,yni + 4_16°B1 (Bl ={y: byl <1p). By
the assumption there exists an 1 € I such that [<y* - Piy*,yd>lé
247N e ror all yXey ,Iy*l <1, = l,0e0yn, 1€, 124,
It is easy to verify that I{y* - Py*y g2l for all y €
€D ,y¥e Y* lly*I £1 and 1€1, 12 1,- Let yeAy(f,x ), y+o.
Then there exists an xeX, "x-x°||<r, heX, 0<khll<r such
that y =Nl (e(x+h) - £(x)). Put k = f bl lrh. From the conve-
xity of £ it follows that 7 = re(x) - flx=k))& y4

cr N e(xrn) - £(x)) =7,, ¥1:¥5€ D,. Hence: 2l.ex <ya)* -
Py, 7> £ <(yM* - Py T,y > £(yN* - Py lyM7?,7,> £
227l e ; 2 liee L(yn- - Py (y¥) 7,7 >4 <y -

=Py T,y 24 <(3HT - Py, 7,0 £ 2l ¢ for an1 yrex¥,
Ny=<l<1, 1e1, 1> i,. Therefore i<y* - Piy*,y)l =< (yn* -
- Pi(y*)",y)- {(y*~ - Pi(y¥)7, 521« & for yte ¥ iy*l <1,
ieI, 1> 10. This proves that f satisfies the condition 1°) 4n
Remark 3 and the proof of Corollary 4 is complete.

Using Theorem 2 and slight modifications of the proof of
Theorem 3 we get

Theorem 4. Let X, Y be Banach spaces, ¥ have the property
(%) with respect to {Piil. Let £ be a &(X,X*) - &(Y,Y¥)-con-
tinuous mapping from X to Y such that:

1) ;E.mo (a,(£,x)) = 0 for all xeX,

2) Py(¥M) e 5p {£(u) + £(v) - 2¢¢ B )iu,ve X3 for all

1€1,

Then £ is generic Fréchet-differentiable.

Corollary 5. Let X be a Banach space, Y, Z Banach latti-
ces, let £ be a continuous convex mapping from X into Y, which

1s &(X,x* - & (Y, Y¥)-continuous; K a linesr positive compact
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mapping from Y to Z. Then g = Ko f is generic Fréchet-diffe-

rentiable.

3. Generic differentigbility of Hammerstein operators. In
this section we shall consider the differentiability of Hammer-
stein operators.

Theorem 5. Let K(t,s)e LP(L0,11x[0,1])(K(t,s) €
€ ¢(L0,11=<[0,1]) resp.), 1<k < , g(t,s) be a function de-
fined on Rx[0,1) satisfying the Carathéodory condition and such
that

1) g(.,s) is convex continuous for a.e. sel0,1],

2) lglt,s)l<a ltlkq“1 + b(s) for all teR, and a.e. s &
eL0,1], where 1<q £ 0 , p"'l + q-1 =1, az0, bls)e L([0,1]).
Then the Hammerstein operator H(u)(t) = f"; K(t,s)gl(u(s),s)ds is
generic Fréchet-differentiable on Lk(fo,l] ).

Proof. Let K'(t,s), K (t,s) be the positive and negative
part of K(t,s) respectively. Then K',K e LP([0,11%[0,1])

(& c(L0,17%[0,11) resp.). Put K, (w (t) = f K*(t,8)ula)ds,
K,(u)(t) = f: K (t,s)u(e)ds for all ueL9d, Then K, K, are 1i-
near positive compact operators from 19 to LP (to c(CO,11)
resp.). We know that the Nemycki operator N(u)(s) = glu(s),s)
is a continuous operator from Lk to LI when g satisfies the
condition 2) (see [24)) and it is convex when g satisfies the
condition 1). Hence the operators H; =Kjo N, Hy = K, N are
generic Fréchet-differentiable on ik by Corollary 3. Therefo-
re the Hammerstein operator H = Hl - H2 is generic Fréchet-
differentiable on Lk, which concludes the proof.

We know that C(LO,1]) is a separable Banach space and the-

refore C(I0,11) is a weak Asplund space. Then we get
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Theorem 6. Let K(t,s)e LP([0,11x[0,11), 14p < 0,
g(t,8) be a continuous function on Rx [0,1] and let g(.,8) be
a convex function on R for all se€l[0,1]. Then the Hammerstein
operator H(u)(t) = L: K(t,s)g(uls),s)ds acting from ¢([0,1])
to LP([0,11) is generic GAteaux differentiable on c(fo,13).
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