

Werk

Label: Article Jahr: 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log22

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

23,1 (1982)

THE NUMBER OF MINIMAL VARIETIES OF IDEMPOTENT GROUPOIDS Jaroslav JEŽEK

Abstract: It is proved that there are uncountably many minimal varieties of commutative idempotent groupoids.

Key words: Minimal variety, commutative idempotent groupoid.

Classification: 08B05, 08B15

Kalicki [2] proved that there are uncountably many minimal varieties of commutative groupoids. Although this result was strengthened and generalized in various ways (see e.g. [1],[3],[4],[5]), there seems to be no mention of idempotency in the literature in this connection. The purpose of this paper is to prove the following

Theorem. There are $2^{\frac{y}{10}}$ minimal varieties of commutative idempotent groupoids.

The proof will be divided into several lemmas. It will be convenient to work in the free commutative groupoid G over $\{x,y\}$ (x,y are two different elements). The binary operation of G will be denoted multiplicatively. If $a,b,c,d\in G$ then ab=cd takes place iff either a=c b=d or a=d b=c. G is a cancellation groupoid. There exists a unique mapping λ of G into the set of positive integers such that $\lambda(x) = \lambda(y) = 1$

and $\mathcal{N}(ab) = \mathcal{N}(a) + \mathcal{N}(b)$ for all $a,b \in G$; the number $\mathcal{N}(a)$ is called the length of an element $a \in G$. An element $a \in G$ is said to be a subterm of an element $b \in G$ if $b = (((ac_1)c_2.....)c_k$ for some $k \geq 0$ and some elements $c_1, c_2, ..., c_k \in G$; if $k \geq 1$, a is said to be a proper subterm of b. Evidently, an element $a \in G$ is a proper subterm of b_1b_2 iff it is a subterm of either b_1 or b_2 .

If $n \ge 0$ and $a,b \in G$, we define an element $[a,b]^n \in G$ as follows: $[a,b]^0 = a$; $[a,b]^{n+1} = [a,b]^nb$. Hence $[a,b]^n = (((ab)b)...)b$ with n appearances of b.

Put N = $\{2,3,4,\ldots\}$. Denote by E the set of all finite sequences (e_1,\ldots,e_k) such that $k\geq 1$, $e_1\in\mathbb{N}$ and $e_1\in\mathbb{N}\times\{1,2\}$ for all $i\in\{2,\ldots,k\}$.

In the following let M be an arbitrary subset of N. For every $e \in E$ define three elements R_e , S_e , T_e of G as follows:

- (1) Let e=(n), n \in N. Then $R_e = [x,y]^n x$, $S_e = [x,y]^{2n} x$, $T_e = x$ if $n \in M$ and $T_e = y$ if $n \notin M$.
- (2) Let e=(f,(n,1)), $f \in E$, $n \in N$. Then $R_e = [T_f,S_f]^{n-1}R_f$, $S_e = [T_f,S_f]^{2n-1}R_f$, $T_e = R_f$ if $n \in M$ and $T_e = S_f$ if $n \notin M$.
- (3) Let e=(f,(n,2)), $f \in E$, $n \in N$. Then $R_e = [T_f,R_f]^{n-1}S_f$, $S_e = [T_f,R_f]^{2n-1}S_f$, $T_e = S_f$ if $n \in M$ and $T_e = R_f$ if $n \notin M$.

Lemma 1. Let $e \in E$ and let p be an endomorphism of G. Then $p(R_e)$ is shorter than $p(S_e)$; $p(T_e)$ is a proper subterm of both $p(R_e)$ and $p(S_e)$.

Proof. It is obvious.

Lemma 2. Let $n,m \ge 2$ and let $a,b,c,d \in G$ be such that $[a,b]^{n-1} = [c,d]^{m-1}$ and $[a,b]^{2n-1} = [c,d]^{2m-1}$. Then n=m,a=c and

Proof. It is enough to consider the case $n \le m$. We have b=d, since otherwise b= $[c,d]^{m-2} = [c,d]^{2m-2}$, which is impossible. From this we get by cancellation $a = [c,b]^{m-n}$ and $a = [c,b]^{2m-2n}$; hence m-n=2m-2n, i.e. m=n; we get a=c as a consequence.

<u>Lemma 3.</u> Let e,f \in E and let p,q be two endomorphisms of G such that $p(R_eS_e)=q(R_fS_p)$. Then e=f and p=q.

Proof. By induction on the sum of the lengths of e and f. If e,f are both one-termed, it is evident. Suppose e=(m) and f=(g,(n,1)). We have $p([x,y]^mx)=q([T_g,S_g]^{n-1}R_g)$ and $p([x,y]^{2m}x)=q([T_g,S_g]^{2n-1}R_g)$. Evidently $p(x)=q(R_g)$, $p([xy,y]^{m-1})=q([T_g,S_g]^{n-1})$ and $p([xy,y]^{2m-1})=q([T_g,S_g]^{2n-1})$. By Lemma 2 we get n=m and $p(xy)=q(T_g)$, so that $q(T_g)$ is longer than $p(x)=q(R_g)$, which is impossible by Lemma 1. Quite similarly, we cannot have e=(m) and f=(g,(n,2)).

Let c=(g,(n,1)) and f=(j,(m,1)). We have $p(lT_g,S_g)^{n-l}R_g)=q(lT_h,S_h)^{m-l}R_h)$ and $p(lT_g,S_g)^{2n-l}R_g)=q(lT_h,S_h)^{2m-l}R_h)$. Evidently $p(R_g)=q(R_h)$, $p(lT_g,S_g)^{n-l})=q(lT_h,S_h)^{m-l}$, and $p(lT_g,S_g)^{2n-l})=q(lT_h,S_h)^{2m-l}$. By Lemma 2, n=m and $p(S_g)=q(S_h)$. By the induction assumption, g=h and p=q; since n=m, we get e=f.

If e=(g,(n,2)) and f=(h,(m,2)), the proof is quite analogous.

Suppose e=(g,(n,1)) and f=(h,(m,2)). Similarly as above we get $p(R_g)=q(S_h)$ and $p(S_g)=q(R_h)$. However, this is a contradiction by Lemma 1.

Denote by A the set of all a \in G such that whenever $e \in E$ and p is an endomorphism of G then neither p(xx) nor $p(R_eS_e)$ is a subterm of a. Define a binary operation o on A as follows:

- (1) if a,b \in A and ab \in A, put a \circ b=ab;
- (2) if $a \in A$, put $a \circ a = a$;
- (3) if $a,b \in A$ and $ab = p(R_e S_e)$ for some $e \in E$ and some endomorphism p of G, put $a \circ b = p(T_e)$.

The correctness of this definition follows from Lemmas 1 and 3. Evidently $A(\circ)$ is a commutative idempotent groupoid.

Lemma 4. Let a,b \in A and ab \notin A. Then either a=b or there are elements R,S,T \in G with R \neq S and a number m \geq 2 such that ab=([T,S]^{m-1}R)([T,S]^{2m-1}R).

Proof. It is easy.

Lemma 5. Let $u,v \in A$ and let u be a proper subterm of v. Then $uv \in A$.

Proof. There are an integer $k \ge 1$ and elements $w_1, \ldots, w_k \in G$ with $v = (((uw_1)w_2) \ldots)w_k$. Suppose $uv \notin A$. It follows from Lemma 4 that we can write $u = [T,S]^{m-1}R$ and $v = [T,S]^{2m-1}R$ for some R,S,T,m with $R \ne S$ and $m \ge 2$. Let us prove by induction on on $j = 1, \ldots, k$ that 2m - j > 0 and $(((uw_1)w_2) \ldots)w_{k-j} = [T,S]^{2m-j}$. For j = 1 it follows from $(((uw_1)w_2) \ldots)w_k = [T,S]^{2m-1}R$, since we cannot have $(((uw_1)w_2) \ldots)w_{k-1} = R$. Assume that the two assertions are proved for some j < k. If it were $(((uw_1)w_2) \ldots)w_{k-j-1} = S$ then we would have $A(u) \le A(S)$; but u is longer than S, a contradiction. Thus there remains only one possibility: $(((uw_1)w_2) \ldots)w_{k-j-1} = [T,S]^{2m-j-1}$. If it were 2m-j-1=0

then we would have $\lambda(u) \leq \lambda(T)$; but u is longer than T, a contradiction. Hence 2m-j-1>0. The induction is thus finished. Especially, for j=k we get: there is an i>0 with $u=[T,S]^{\frac{1}{2}}$. Hence $[T,S]^{m-1}R=[T,S]^{\frac{1}{2}}$. We cannot have $S=[T,S]^{m-1}$ and so we get S=R, a contradiction.

<u>Lemma 6.</u> Let $a,b \in A$, $ab \notin A$ and $a \neq b$; let $i \geq 1$. Then $[a \circ b,b]^{1}a \in A$.

Proof. Since $a \circ b$ is a proper subterm of b, several applications of Lemma 5 give $[a \circ b, b]^{i} \in A$. Suppose $[a \circ b, b]^{i} = A$. If it were $[a \circ b, b]^{i} = a$ then b would be a proper subterm of a, so that $ab \in A$ by Lemma 5, a contradiction. By Lemma 4 we get $[a \circ b, b]^{i} = ([T,S]^{m-1}R)([T,S]^{2m-1}R)$ for some $[a,S]^{m-1}R$ with $[a \in S]^{m-1}R$ and $[a \in T,S]^{m-1}R$, then we would have either $[a \circ b,b]^{i} = [T,S]^{m-1}R$ and $[a \in T,S]^{2m-1}R$, then we would have either $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$ and $[a \in T,S]^{m-1}R$. Since $[a \circ b,b]^{i} = [T,S]^{2m-1}R$. By Lemma 4 there are $[a \circ b,b]^{i} = [T,S]^{2m-1}R$.

Case 1: $a=[T,S]^{m-1}R=[t,s]^{k-1}r$ and $b=[T,S]^{2m-1}=[t,s]^{2k-1}r$. Since either $r=[T,S]^{2m-2}$ or r=S, we cannot have $r=[T,S]^{m-1}$. Hence r=R. Since R+S, we get $[t,s]^{2k-1}=S$ and $[t,s]^{k-1}=[T,S]^{m-1}$, evidently a contradiction.

Case 2: $a = [T,S]^{m-1}R = [t,s]^{2k-1}r$ and $b = [T,S]^{2m-1} = [t,s]^{k-1}r$. Similarly as in the previous case we get $[t,s]^{k-1} = s$ and $[t,s]^{2k-1} = [T,S]^{m-1}$; we have either s = s or $s = [t,s]^{2k-2}$, evidently a contradiction.

<u>Lemma 7.</u> Let $n \in \mathbb{N}$. Then the groupoid $A(\circ)$ satisfies the identity $R_{(n)} S_{(n)} = T_{(n)}$.

Proof. Let φ be any homomorphism of G into A(°); we must prove $\varphi(R_{(n)}S_{(n)})=\varphi(T_{(n)})$. Put $a=\varphi(x)$ and $b=\varphi(y)$. If a=b, everything is clear. If $ab\in A$ then by Lemma 5, $\varphi(R_{(n)}S_{(n)})=[a,b]^n a\circ [a,b]^{2n} a=\varphi(T_{(n)}).$ It remains to consider the case when $ab=p(R_eS_e)$ for some $e\in E$ and some endomorphism p of G; we have $a\circ b=p(T_e)$. There are two possible cases.

Case 1: $a=p(R_e)$ and $b=p(S_e)$. By Lemma 6 we have $g(R_{(n)}S_{(n)}) = [a \circ b,b]^{n-1}a \circ [a \circ b,b]^{2n-1}a=p(R_{(e,(n,1))}) \circ p(S_{(e,(n,1))}) = p(T_{(e,(n,1))}) = g(T_{(n)}).$ Case 2: $a=p(S_e)$ and $b=p(R_e)$. By Lemma 6 we have $g(R_{(n)}S_{(n)}) = [a \circ b,b]^{n-1}a \circ [a \circ b,b]^{2n-1}a=p(R_{(e,(n,2))}) \circ p(S_{(e,(n,2))}) = p(T_{(e,(n,2))}) = g(T_{(n)}).$

The proof of the Theorem can now be completed in the following way. For any subset M of N denote by V_M the variety of commutative idempotent groupoids determined by the identities $([x,y]^nx)([x,y]^{2n}x)=x$ for any $n\in M$ and $([x,y]^nx)([x,y]^{2n}x)=y$ for any $n\in N\setminus M$. It follows from Lemma 7 that V_M is non-trivial, so that it contains a minimal subvariety V_M . If M_1,M_2 are two different subsets of N, then evidently $V_{M_1}\cap V_{M_2}$ is trivial and so $V_{M_1} \neq V_{M_2}$. Hence the number of minimal varieties of commutative idempotent groupoids cannot be smaller than the number of subsets of N, i.e. than 2^{*0} . On the other hand, it cannot be larger than 2^{*0} , since there are only 2^{*0} varieties of groupoids.

References

- [1] A.D. BOL'BOT: Ob ekvacional no polnych mnogoobrazijach total no simmetričeskich kvazigrupp, Algebra i logika 6/2(1967), 13-19.
- [2] J. KALICKI: The number of equationally complete classes of equations, Indag. Math. 17(1955), 660-662.
- [3] G. McNULTY: The decision problem for equational bases of algebras, Annals of Math. Logic 10(1976), 193-259.
- [4] G. McNULTY: Structural diversity in the lattice of equational theories (to appear).
- [5] D. PIGOZZI: Universal equational theories and varieties of algebras, Annals of Math. Logic 17(1979), 117-150.

Matematicko-fyzikální fakulta, Universita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia

(Oblatum 26.10. 1981)