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Kalicki [2] proved that there are uncountably many mini-
mal varieties of commutative groupoids. Although this result
was strengthened and generalized in various ways (see e.g.
{1),031,04],[5]), there seems to be no mention of idempotency
in the literature in this connection. The purpose of this pa-—

per is to prove the following

A%
Theorem. There are 2 © minimal varieties of commutative
idempotent groupoids.

The proof will be divided into several lemmas. It will
be convenient to work in the free commutative groupoid G over
{x,y% (x,y are two different elements). The binary operation
of G will be denoted multiplicatively. If a,b,c,deG then
ab = cd takes place iff either a=c%b=d or a=d% b=c. G is a
cancellation groupoid. There\exiats a unique mapping A of G

into the set of positive integers such that A(x) = A(y) =1
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and \(ab) = A(a) + A(b) for all a,beG; the number A(a)
is called the length of an element a€ G. An element ae G is
said to be a subterm of an element be G if b = (((acl)cz...
...)ck for some k>0 and some elements C11Corece,c EG; if
kZ1, a 13 said to be a Proper subterm of b, Evidently, an
element acG is a proper subterm of byb, iff it is a subterm
of either b; or b2.

If nZ0 and a,beG, we define an element [a,b]neG as
follows: [a,b]® = a; [a,p)P*] - [a,b]™b. Hence Ta,b]™ =
= (((ab)b)e..)b with n appearances of b.

Put N ={2,3,4,...%. Denote by E the set of all finite
sequences (el,...,ek) such that k21, €1 €N and ey € Nx {1,23
for all ie{2,...,k}.

In the following let M be an arbitrary subset of N.

For every e € B define three elements Re’se'Te of G as
follows:

(1) Let e=(n), neN. Then R = [x,y1%, Se= [x,y]znx, T =x
~if neM and Tezy if n¢ M.

(2) Let e=(£,(n,1)), £cE, neN. Then Re=[T,,5™ g,
Sg= [Tf,ssz"‘laf,"reaaf if neM and T =S, if néwM,

(3) Let e=(£,(n,2)), f€E, neN. Then Ry= [T,,R )™ 1g
S, = [Tc,nsz"'lsf, Te=Sp 1f neM and T,=R, i ngw,

Lemma 1. Let eeE and let p be an endomorphism of G,
Then p(Re) is sharter than p(Se); p(Te) is a proper subterm
of both p(R,) and p(s ).

Proof. It is obvious.

Lemmg 2. Let n,m=2 gnd let a,b,c,de€G be such that
{a,b)"" 1= Le,d)™ ! ang la,b)20" 1, lec,a12m-1, Then n=m,a=c and
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b=d.

Proof. It is enough to consider the case n £m. We have
b=d, since otherwise b= fe,d]™ 2= [c,d12m—2, which is impos-
sible. From this we get by cancellation a = Lc,b]m-n and a =
= [c’b]Zm-Zn; hence m-n=2m-2n, i.e. m=n; we get a=c as a con-

sequence.

Lemma 3. Let e,fe E and let p,q be two endomorphisms of
G such that p(ReSe)zq(Rfo). Then e=f and p=q.

Proof. By induction on the sum of the lengths of e and
f. If e,f are both one-termed, it is evident. Suppose e=(m)
and f=(g,{(m1)). We have p([x,y)mx)=q([Tg,Sg]n-le) and
p([x,y?zmx)zq([Tg,Sé]Zn-le). Evidently p(x)=q(Rg),
pClxy,y) ™ D=a(1T,,5,)™ ™) and pllxy,3 2" H=ql,,s 2.
By Lemma 2 we get n=m and p(xy)=q(Tg), so that q(Tg) is lon-
ger than p(x)=q(Rg), which is impossible by Lemma 1. Quite si-
milarly, we cannot have e=(m) and f=(g,(n,2)).

Let e=(g,(n,1)) and £=(j,(m,1)). We have p([Tg,Sg]n_lR8)=

- 2n- om-
qa(1T,,$,)™ R} and p(IT 57" le)zq(ITh,ShJ m-lp ). Evi-

VL

g
dently p(Rg)=q(Rh), p([Tg,Sg =q(lTh,Sﬁ)m-1) and
p(['rg,sg]2“'1)=q(lrh,sh12‘“‘1). By Lemma 2, n=m and p(S,) =
=q(Sh). By the induction assumption, g=h and p=q; since n=m,
we get e=f.

If e=(g,(n,2)) and f=(h,(m,2)), the proof is quite ana-
logous.

Suppose e=(g,(n,1)) and £=(h,(m,2)). Similarly es above
we get p(Rg):q(Sh) and p(Sg)=q(Rh). However, this is a con-
tradiction by Lemma 1.
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Denote by A the set of all aeG such that whenever ecBR
and p is an endomorphism of G then neither p(xx) nor p(ReSe)
is a subterm of a. Define a binary operation o on A as fol-
lows:

(1) if a,beA and abed, put as b=ab;

(2) if acA, put ac a=a;

(3) if a,be A and ab=p(ReSe) for some e€ E and some endomor-
phism p of G, put ao bzp(Te).

The correctness of this definition follows from Lemmas 1 and

3. Evidently A(o) is g commutative idempotent groupoid.

Lemma 4. Let a,be A and abé A. Then either a=b or there
are elements R,S,T€G with R+S and a number m Z2 such that
ab=([T,s]1%"1R) (11,5720 1R),

Proof. It is easy.

Lemma_ 2. Let u,ve A and let u be a proper subterm of v.

Then uveA,

Proof. There are an integer k =21 and elements Wygeoe
.o W€ G with v=(((uw1)w2)...)wk. Suppose uv4 A. It follows
from Lemma 4 that we can write u= [T,S1™ IR ana v= [r,s)°m"1g
for some R,S,T,m with R+S and m > 2. Let us prove by inducti-
4= [p,g1%d,
For j=1 it follows from (((uwl)wz)...)wk= fT,S]Zm'lR, since

on on j=l,...,k that 2m-j>0 and (((uwi)wz)...)wk_

we cannot have (((uwl)wz)...)wk_l&l. Assume that the two as-
sertions are proved for some j< k. If it were (((uwl)wz)...

...)wk_d_lﬂ then we would have 2A(u)=A(S); but u is longer
than S, a contradiction. Thus there remains only one possibi-

Lity: (CCawpdwy)ondwy o )= £9,81°0" L, T 44 were Zo-j-1s0
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then we would have A(u) £ A(T); but u is longer than T, a
contradiction. Hence 2m-j-1>0. The induction is thus finish-
ed. Especially, for Jj=k we get: there is an 1 >0 with u =
= 17,514 Hence [T,51"1R= [T,51%. We cannot have S= [r,s)mt

snd so we get S=R, a contradiction.

Lepma 6. Let a,bc A, ab& A and a%b; let i= 1. Then
Lao b,‘tﬂiae A.

Proof. Since ao b is a proper subterm of b, several ap-
plications of Lemma > give (ao b,b]ie A. Suppose [a o b,b]ia¢ A.
If it were [ao b,b)i=a then b would be a proper subterm of a,
so that abe A by Lemma 5, a contradiction. By Lemma 4 we get
Ta o b,b)ta=(07,51271R) ((T,51%"R) for some R,S,T,m with R+S
and m>2. If it were [a o b,b) = [7,51°7IR and a= [r,s12™ 1R,
then we would have either b=R or b=[T,S]m_lq so that b would
be a proper subterm of a and so abe A by lemma 5, a contradic-
tion. Hence [a ob,b)i= (7,512% IR and a= (T,5)®7'R. Since b=R
is impossible, we get b=[T,532m_1. By Lemma 4 there are r,s,
te G and a k > 2 such that ab=([t,s]k-lr),([t,s]zk‘lr). There
are two possible cases.

Case 1: a=1T,8)"'R=1t,8)%Ir anda b= [T,52%71 =
= [t,s]z}('lr. Since either r=[T,S]2m—2 or r=S, we cannot have
r= [T,S]m_l. Hence r=R. Since R+S, we get[t,s,’_Zk-lﬂ and
Tt,s] k-l Y_T,S.)m-l, evidently a contradiction.

Case 2: a= ‘:T,Slm-lR= Tt,s! 2k=1lp and b= "7T,S! 2m-l o
= {t,s}k_lr. Similarly as in the previous case we get
rt,sl k=15 and [t,s)Zk']‘: [T,S]m_l; we have either S=s or S=

= [t,812%™2 evidently a contradiction.
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lemma 7. Let neN., Then the groupoid A(e) satisfies the
identity R(n)S(n) 3’1'(11) o

Proof. Let g be any homomorphism of G into a(°2); we
must prove 9(R(n)8(n))= QJ(T(n)). Put a= @ (x) and b= ¢ (y),
If a=b, everything is clear. If abe A then by Lemma 5,
T‘R(n)s(n))= La,b)" o a,b]%Ma= $ (T(,))- It remains to con-
sider the case when ab=p(ReSe) for some e € E and some endo-
morphism p of G; we have ez:b=p(Te). There are two possible
cases,
Case 1: a=p(R,) and b=p(S_). By Lemma 6 we have
— n-1 12n=1__
9’(R(n)S(n))- [aub,b] a 0[8 Ob,bJ B—D(R(e’(n’l)))b
°p(s(e,(n,l)))=p(T(e,(n,l)))=:@(T(n))'
Case 2: a=p(Se) and b=p(Re). By Lemma 6 we have
- n-1 2n-1__
?(R(n?s(n))_ [aeob,bJ7 "a cTao b,b) a-p(R(e,(n’z)))c

°PU(e,(n,2))) 7 T(q (5 2)))= (T ).

The proof of the Theorem can now be ~ompleted in the fol-
lowing way. For any subset M of N denote by VM the variety of
commutative idempotent groupoids determined by the identities
([x,¥1 %) ([x,y1%P%) = for any neM and ([x,y]"x)([x,yj‘?nx)=y
for any ne N\ M. It follows from Lemma 7 that VM is non-tri-
vigl, so that it contains a minimal subvariety UM' Ir Ml,M2
are two different subsets of N, then evidently VM1A VM is
trivial and so UM #fUM » Hence the number of minimal varieties
of commutative idempotent groupoids cannot be smaller than
the number of subsets of N, i.e. than ?y%. On the other hand,
it cannot be larger than ésb, since there are only 2$° varie-

ties of groupoids.
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