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ON COVERINGS OF RANDOM GRAPHS
M. AJTAI, J. KOMLOS, V. RODL, E. SZEMEREDI

Abstract: It is shown that almost all graphs have the
property that almost all edges can be covered by edge dis-
joint triangles. Various generalizations of this statement
are considered.
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Classification: 05C99

Many papers have dealt recently with the problem of de-
composing a graph into isomorphic aubgraphs. In this note
we investigate related questions concerning random graphs.
Let n be a positive integer; is it true that the majority
of graphs with n vertices can be decomposed into edge dis-
joint triangles (or more generally into edge disjoint copies
of a given graph F) so that only relatively few edges are
left?

We prove, provided n is sufficiently large that it is so.
(For the more detailed definitions concerning random graphs
see [2].)

Theorep. Let € be a positive, ¢ - 1 and (; = (V,¢) a
random graph with n vertices, such that each edge is present
with the prescribed probability p, independently of the pre-
sence or absence of any other edges. Then, with probability
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tending to one (as N —>cv ) there exists a system T(Q) of edge
disjoint triangles in G so that all but st most g n? edges:
are covered by some triangle from T(G).

Proof: A) We can clearly suppose without loss of ge-
nerality that n = 6m + 1 or 6m+3. Let K = Kn be a complete
graph with the vertex set V. From the existence of Steiner
triple systems with n vertices (n=1 or 3 (mod 6)) it imme~
diately follows that there exists g covering Co of the edges
of complete graph K = Kn by edge disjoint triangles. Let o 3
<r2,...,1rN be independent random permutations of the verti-
ces in V, N will be chosen later. We assume that these per-
mutations are also independent of the random g?nph Q} . (In
other words, we work on a B{oduct space 10,1} EZ*GTN with
the product measure P = Péah<¢an) where o7 is the set of all
permutations of {1,...,n} each one having & ~measure l/n, ’
and P(1) = p, P(0) = 1-p.) We define the independent cover-
ings Cyyee+,Cy as follows: g triangle {vl,vz,v3§ belongs to
¢ ir -{:rrivl,srivz,ariv3§ belongs to Coe

Now our algorithm goes as follows. Select all triangles
in G that appear in Cl, then all triangles appearing in 02
that are edge disjoint from the ones selected before, ete.
This way we cover some portion of the edges of g} by edge
disjoint triangles, and hopefully a large portion.

Define the indicator variables

lifec¥ » nevertheless e has not been covered in
our procedure

Ae =
O otherwise
and get d = l;[e, where E denotes the expectation of random

variable . (E does not depend on e because of complete
Te e
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symmetry.) For the number D of edges not covered we have

v
D =eeztg) Ae ((2) is a set of all pairs of V), ED ,(!21) d.
Now
n .. ED _d
P(D = ¢(D) p)= /&(g)p =%,
and

POI2i=< 3(3) p) = o(D)
(if only (g)p —>eo0 ), thus in order to show that D/l‘ﬂ —> 0
it is sufficient to show that d/p-ﬁ 0.
B) Define the numbers Py recursively as follows
Py =0
(1)
Prar = P * (P = p)°
Teking d, = p-p, we have thus dj = p, dy, = dy - @ .
It is easy to see that 4 -—> 0 (actually dkfvl/m). More-

over, since dk is decreasing we have 0< dk<p-kdi whence

(2) d =< (P/Y3, ka1,2,... .
Now we are going to prove
9N'
(3) d<dg + 7 /]
a/ N % 2
and thus ~‘p —> 0 if only 9 /np -2 0 and Np“-—> o0 which

holds if p V1og n —>oc (choose N = %—0 log n).

C) Consider an edge e. Let T, = T (e) denote the trian-
gle in C, that cover e. Start with Tyle).
In cN-l there are three triangles (not necessarily different)
containing the edges of TN(e). In Cy_, there are nine trian-

gles containing the nine edges that appeared so far, atc.

Let A = A(e) denote the event that the 3 + 32 +...+ N =

= 195 =



= g(]n -1) edges thus appearing are all different, and Bk =

= Bk(e) the event that the edge e is covered up to the K-th
step of our procedure (k=1,...,N).

We fix the covering Cl,...,CN in such a way that A holds,
and randomize g} « Define the conditional probability

Py = P(Bkl cl,...,cN)
for these fixed coverings.
For the probability Pk*l = Py that e gets covered in exactly
the (k+1)-th step, we obviously have

- 3 _ .3
Phl-Pk-(p-Pk)., Py =p

since the three edges of T, (e) have to be drawn in G- and
should not have been covered earlier (thig explains p - Pk)'
moreover, these three events are independent, for we fixed
the C-s in A(e).

Thus %‘,and also their mixture P(Bk\A) satisfy (1), and
hence are equal to Py

We have
d=p- P(By) = p - P(By|A)P(4) - P(By| D)P(R)= p - PyP(4a) =
£P = pp+ P(R) = dy + P(4),
Now
N-1
< k N
P(R) <%§34 2.9%/, <9 ‘n
for up to the k-th step (backwards) in the above argument ()
we have Jk edges altogether, and the Probability that the
corresponding random Jk points (one step back) are all diffe-

rent from the (3X o 3)/2 points obtained so far, is less than
2.9% . Q.E.D.
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Remgrk. Here we outline that in our theorem triangle
can be replaced by any other graph F. Consider a graph (con-
figuration of edges) F which Kn can be covered by. An impor-
tant result of R.M. Wilson [1) shows that the trivial neces-
sary conditions for n sre also "asymptotically sufficient"
and hence Kn can be covered by edge disjoint copies of F for
all sufficiently large n satisfying the necessary conditions.

If F contains r edges rather than three, then we have
to change (1) to

)I‘

Pay =P * (P - p)7, Py =0

which leads to
1
dk =p - pk’V((r- l)k) /!‘ L

and also (3) to

2N
B by
d\dw’ n
which leads to the condition

)1/1‘—1

log r =X

p(log n/

Thus, with p = const (say 1/2), the procedure works for co—
vering with subgraphs with o(log log n) edges, e.g. for
o VIog log n)-gons.
For fixed r we have seen that the procedure works as
long as
p(log n)l/r-l s cC
i.e. as long as the number of edges is much larger than

1
n’/(log n) /r-l

For triangles this is
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2
n /ﬁlog_n_ s

A good guess is, however, that even a random graph with

cu(n)nyz, @(n) ~—> ©

edges can be covered almost perfectly. This would be a
strong statement and is completely beyond the power of our

method, X)
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x) Added in proofs: Recently we have proved this conjecture.
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