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INVERSE LIMITS OF SMOOTH CONTINUA
Wiodzimierz J. CHARATONIK

Abstract: It is proved that (1) smoothness of conti-
nua in the sense of Malkowiak is preserved under the inver-
se limit operation for sequences with bonding mappings be-
ing monotone relativel¥ to points which form a thread; and
(2) the property of Kelley is preserved under the inverse
limit operation for sequences of continua with confluent
bonding mappings.
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The aim of this note is to prove that smoothness of
continua in the sense introduced by Makowiak ([5],p. 81)
is preserved by the inverse limit operation if the bonding
mappings are monotone relative to points which form a thread.
This is an answer to Problem 2 asked in [1l]. It is also pro-
ved that the property of Kelley (see [7), p. 291; cf. [6), p.
538) is preserved under the inverse limit operation with
confluent bonding mappings.

All spaces considered in this paper are assumed to be
metric continua. The following notation will be used. The hy-

perspace of subcontinua of a continuum X (with Hausdorff met-
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ric) is denot®d by C(X), and we put €2(X) for c(c(X)). Given
a continuous mapping f:X-—> Y, we denote by £* :C(X) —> ¢C(Y)
the induced mapping defined by £¥(K) = £(K), and analogously
f**:cz(x)——> Cz(Y). Further, we use the lower and upper limits
and the limit of a sequence A of subsets of a continuum X

(in symbols Li A, Ls A, and Lim A, respectively) in the sen-
se of [ 2], § 29, p. 335-340. Similarly, the notion of upper
(lower) semi-continuity of a set-valued mapping will be used
in the sense of [2], § 18, p. 173 (ef. [31, § 43, II, Theorems
1 and 2, p. 61 and 62). The symbol 'ixi,fi}?;l denotes the in-
verse sequence of continua Xi with continuous bonding mappings
£1:x1%_, xl; ve denote by x = 1in %', ¢ the inverse 1imit
space, and by ari:x-—> Xi the projection from X into the i-th
factor space Xi. Given two inverse sequences {Xi,fi}‘;:l and
{Y",Si}zl, and a mapping fhj‘}a;___l between the two sequences,
we denote the limit mapping by ln ni: um¥xi el o Un i,
g'} ter. 123, p. 28-30).

Finally recall that g continuous mapping f:X—> Y is said
to be (see 141, p. 720):
= confluent, if for every subcontinuum Q of Y each component
of the inverse image £ 1(Q) is mapped by f onto Q,
= monotone relative to a point pe X, if for each subcontinuum
Q of ¥ such that f(p)e @ the inverse image f-l(Q) is connect-
ed.

We say that a continuum X is smooth at the point peX if
for each convergent sequence -[xn} of points of X and for each
subcontinuum K o X sueh that Pyx€ K, where x = lim X,» there
exists a sequence *YKn} of subcontinua of X such that Pyxp € lgl

for each n = 1,2,... and Lim K, = K (see [5], p. 81).
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I. The mapping F. Fix a point p of a continuum X and
consider a mapping F[X,D]:X——%-CZCX) which assigns to a point
x< X the family of all subcontinua K of X containing both p
and x, i.e.,

FLX,p)(x) =<{Ke C(X):p,x€ Ki.

Note that, for each x¢ X, this is a compact and srcwise
connected subset of C(X), whence this is really an eclement
of C2(X). In this section the considered continuum X and the
point p are assumed to be fixed, so we will write F instead

of FlX,pl.

Proposition 1. The mapping F is upper semi-continuous.

Indeed, let Xn€ X and Xy, — Xe We have to prove that
Ls F(xgbc F(x). Let a continuum K be in Ls F(x ). Then there
exist a subsequence-{nki of natural numbers and a sequence
of points of F(xnk) that converges to K. Each of these points
is a continuum in X containing p and xnk, whence K contains

p and x, i.e., Ke F(x).

Propo jon 2. The mapping F is continuous if and only
if the continuum X is smooth at the point p.

Proof. Assume F is continuous. Let a point xe X, a con-
tinuum K e F(x) and a sequence of points x, € X convergent to
X be given. By continuity of F we have Lim flx ) = F(x), so
there exist points Kn of F(xn) tending to K. Since the conti-
nua Kn contain both p and X, Wwe are done by the definition
of smoothness.
Assume X is smooth at p. By Proposition 1 we have only

to show that F is lower semi-continuous, i.e., that
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F(x)e L1 F(x ) for any sequence X,—> x. Let Ke f(x), By
smoothness of X at P there is a sequence of continuag Kh,
with p,x e K,» converging to K. Thus K e F(xn), and the con-

clusion follows by the definition of the lower limit.

Proposition 3. Let a continuous surjection f:X—> Y
and points peX and qe Y with g = £(p) be given. If F) =
= FlX,p) and Fp = FLY,q], then the diagram

bid
Y X
F, l F
< E(x)
f**

commutes if and only if f is monotone relative to P.

Proof. Assume that the diagram commutes, i.e., that
NP (x)) = Fo(£(x)) for each xe¢ X, which means that
(1) {£YK):ke o(x) and p,xe—Kf=-{L¢:c(YL:q,f(x)e L% for
each xe X,

Let Qc Y be a continuum containing the point qe. Suppo-
se that f-I(Q) is not connected, and pick up a point x in an-
other component of f'l(Q) than that to which the point p be-
longs. Then Q is in the right member of (1), while it is not
in the left one.

Conversely, assume that £ is monotone relative to p. We
have to show that (1) holds. Take an arbitrary x in X and no>
te that the left member of (1) is obviously a subset of the
right. To prove the inverse inclusion take a continuum L in
the right member of (1), i.e., such that q,f(x) ¢ L. Since f

is monotone relative to P we conclude that K = f-l(L) is a
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continuum, so L = £¥(K) belongs to the left member of (1).

Corollary. Let a continuum X be smooth at a poir. peX,
and let a mapping £:X—> Y from X onto a continuum ' be mo-

notone relative to p. Then Y is smooth at f£(p).

Proof. By Proposition 2 we ought to show that the map-
ping F2=Y——> Cz(Y) defined as in Proposition 3 is continuous.
Take a sequence of points ¥n€ Y which converges to a point
yeY. We have to show that F,(y ) tend to F,(y). Choose x &
e f-l(yn) and xef—l(y)/ such that x  —> x (take a proper sub-
sequence if necessary). Now Fy(y ) = Fz(f(xn)) = f*“(Fl(xn))
by Proposition 3, and similarly we have F,(y) = F,(f(x)) =
= f‘**(’Fl(x)). Since F, 1s continuous by Propositiom 2 and
£** is continuous by its definition, we conclude that
£**(Fy(x)) converge to (R (x)), d.e., Fz(yn) converge to
F2(y); thus the proof is finished.

II. Smoothness of inverse limits. Now we are ready to

prove the following

Theorem l. Let {Xi,fij.f:l be an inverse sequence such

that for each 1 = 1,2,... (a) the continuum x! 1s smooth at

a point pi; (b) fi(p“l) = pi; (¢) £ is monotone relative

i+l

to p*l. Then the inverse limit continuum X = lim{X>,t% 1s

smooth at the thread p = -Epifﬁ‘:l.

Proof. Put F! = ’[Xi,pi] for 1 = 1,2,... and consider

0

the mapping {F1§T=1 between the inverse sequences {Xi,fii i=1

and § 2 (x1) ,fi** ‘f=1:
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et £

Sl X2 X
> F.L\
gl \L F .
e EPye .. ¢ (X}
fl’H f2"‘ '

Since for each i = 1,2,... the diagram
i
£
Xi% i+l
Fi Fi*l
) Z(xity
i**
f
commutes by Proposition 3, and since all mappings Fi are con-
tinuous by Proposition 2, hence the limit mapping F°C= lim Fr
is continuous. Note that the inverse limit Cgc (X) =
rx -
= lim{ Cz(xi),f“ § 1is homeomorphic to A(x). Indeed, by [6],
Theorem (1.169), p. 171, Co (X) = éxp_-f C(Xi),fi*f is homeo-
morphic to C(X) under a homeomorphism h:C,, (X)—> C(X) defin-
ed by h(A) = lim{ad,£}1ad*1} yhere 4 =447 €€ (1) (see
161,151, p. 172). Using the same result once more we see that
caw(x). = 11m-{C2(‘\X'i).,f1*»§ is homeomorphic to €(C,,(X)) under
a homeomorphism g:ci,(x)—» c(cm(x)) defined by

(2) g(B) = 1im 4B,¢% ) pi*ly

where B = 48T ) € €2 (X). The composite of g and W* is the
required homeomorphism from sz(X) to ¢2(x).

Now let us consider the following diegram in which P =

=F X,p
X
y \F
02, (X)—>-(¢ (X)) —> A (x),

g h*
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and note that its commuteativity implies continuity of F, which
is equivalent by Proposition 2 to the conclusion of the theo-
rem. To prove that the above diagram commutes, take a point

j,00
x =1x §i=15 X. We ought to show that

(3) ¥ (g(F®(x))) = F(x).
Applying the definition of F° and (2) we have

) gEPG) = gl T = 1n P G e o0y,

whence h¥(g(F®(x))) = h‘(lim-{Fi(xi),fi*\Fi’lbira)})- Take an
element K in h*(g(F®(x))). Thus there exists a thread-{KiS:;l

such that
(5 147, e un 1 rt e, eI A G

with K = h4kM$)), 1.e., K = Un ixd, £ k113, Note that

(5) implies that pl, x'e k! for each i = 1,2,..., whence p,

xeK, i.e., KeF(x). So one inclusion in (3) is proved.
To show the other one, take L e F(x). Thus, p,xe L. Put-

1, xie.Li for each i = 1,2,...,

ting 1! = a#3(L) we nhave )
i i i ;0

whence L e F'(x"), and therefore the thread 1L°};_; is in the

right member of (5), so it is in g(F=(x)) by (4). Thus we

conclude that L = %19 {Li,fi|Li‘1§ is in the left member of

(3). Hence (3) is shown and so the proof is complete.

III. The property of Kelley. Let d denote a metric on

a continuum X. The continuum X is said to have the property
of Kelley (71, II, p. 291 and 292; cf. [6], (16.10), p. 538)
provided that given any £ = O there exists J = O such that
if a,beX, d(a,b) =d  and a€h €C(X), then there exists
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BeC(X) such that beB and H(A,B) < € , where H denotes the
Hausdorff metric in €(X).

Define a mapping ecLX1:X —> ¢2(x) by oLX)(x) =4K e
€ C(X):xeK? (see [7], p. 292; cf. [61, p. 551). The follow-
ing two statements are known (L7), Theorem 2.2, p. 292 and
Theorem 4.2, p. 296).

A. The mapping ~ [X) is continuous if and only if X
has the property of Kelley.

B. The diagram

£
Yr<— x
ety | (%23
<:2'¢y><—7 Z(x)

commutes if and only if f is confluent.
Using the same methods as in the proof of the previous
theorem, we will prove

[~
Theorem 2. Let §xi’f%}1=1 be an inverse sequence such

that for each i = 1,2,... (a) the continuun Xi has the pro-
perty of Kelley, and (b) the mapping ploxi+l s>xt g con-
fluent. Then the inverse limit continuum X = lm {Xi,fii has
the property of Kelley.

In fact, to prove the theorem it is enough to replace in
the proof of Theorem 1 the mapping FIXi,p?] by ct[xil for
i =1,2,... and to delete the points pi and p from the consi-
derations. Then the role of Propositions 2 and 3 is performed
by the statements A and B respectively.
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