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ASYMPTOTIC PROPERTIES OF SOME TESTS UNDER ALMOST
REGULAR ASSUMPTIONS
M. HUSKOVA

Abgtract: Under "pegular" assumptions (density absolu-
tely continuous, Fisher s information finite) the asymptotic
properties of tests based either on the loglikelihood statis-
tic or on simple linear rank statistics were studied by many
authors (e.g. [2]). The aim of this paper is to investigate
the Froperties of such tests under "almost,regular" assumpti-
ons dinsity absolutely continuous, Fisher s information in-
finite).

Key words: Asymptotically optimal tests, nonregular ca-
se, rank tests.

Classification: 62G10, 62E20

1. Introduction. Let (an,...,Xnn), n=1,2,...; be a ran-
dom vector with density TT ., f(x3=6 ;) (with respect to Le-
besgue measure), where enl”"'enn are regression constants.

Consider the sequence of the testing problems {Hn,AJ°;=1,
where Hy = {(an,...,xnn) has the %ﬁnsity ;i%1f(xi)}, A, =
= {(Xp4e+4Xpy) has the density ;faf(xi'eni)i' It is known
that under the "regularity" conditions ( f absolutely conti=-
nuous, finite Fisher’s information, 1€.1,...,0, 7., fulfils
Noether s condition) the asymptotically most powerful test
can be based on either of the following statistics

k)

(1.1) L =i.-24 In(e(x3-6,;)/£(X3)), n=1,2,...
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v
(1.2) Splf) =1‘?'4 8n3 an(Rpgst), n=1,2,...
= 0
(1.3) Spf) = = 6. al(R

i 1 ni i'f)’ n=l,2,... .

n

Here R4 denotes the rank of‘Xni in the sequence an,...,xnn,

(1.4) ap(i,f) = -E f’(x(i))/f(x(i)) 12144 00 1,
(1.5) al(i,f) = -f'(F-l(B%I))/f(F-l(%)) i=1,...,n,

where X(i) denotes the i-th order statistic from the sample
of size n from the distribution with the density f,F-l deno-
tes the quantile function corresponding to f.

The critical regions corresponding to the asymptotic most po-

werful test (with leveloC ) have the following form:

Ly + /2 18 2 & 11 —o) (1(£))1/2,

s ow =l 1/2
SiEY 2§ TT(1 —ac)(T(£)) 12,
$eY 2 ¢ T —a) (10201112,

when I(f) is Fisher’s information, § is the distribution
function N(0,1) and the asymptotic moaximum power equals to
1-¢ (0 ~h1 -)-108)).

In the present paper, analpgous results are established
under "almost regular" agsumptions ( f absolutely econtinuous
and Fisher’s information infinite). We show among others that
the asymptotic most powerful test can be based on the same
rank statistics as under "the regular" assumptions. The re-
sults concerning estimation theory under “"almost regular"
assumptions are published in [4], L5].

In the following, the probability measures induced by
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TT £(x4) end Tr r(xi-eni) will be denoted by P and Q
resp. for the expectations with respect to P and Qn we shall
write E E, (similarly var var, etc.).

Py’ Q Py’ Q

2. Main resultg. We start this section by formulation
of "almost regular" assumptions:

(AR) 1) f is sbsolutely continuous, there exist real
numbers ¥y« ¥y and & > O such that f is expressible as

= e = i ‘ = .o
£(x) a (yd x)+ VJCX) for y; d'< x<ys J Lyees gk

=bj(-y1+x)+ vd(x) for yjéx yd+o", J=1 600 5K

%
> P > - -

a;Z 0, by =0, Zl,, (a 0bJ) O,qrj(yj) w{j(y'j):O, qrj is continu
ous on (yj—a ,yd+d) and

J & S (£°(x))2/£(x)dx <+ c0
J¢é§14(:gé—a,'y—i+ )

n 1

2) 1im mex 1@ i):o,_z 0,40,,2, 5 Inlejjl=1.
nyo0 1£44m % ni

mv

First we state the assertions on the asymptotic proper-

ties of the loglikelihocd statistic Ln:

Theorem 2.1. If the assumptions AR are satisfied,
then

1) -iQn7; is contiguous to $P '75 and conversely;
», i‘ﬁ
- 1/2 TX£) + op (1} n-—> 0.
n
where 0~ 4~ <0”, I{A} denotes the indicator of a set A,
%
I"‘(..‘.’)=,¢-)§-11 (al-ﬁbj);
- =1 %
3 (1 \py—>  N= 2 THENTS, M),

w
; -1 )
L \Q)—> o N 2 ()™, 1)),
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4) the asymptotic maximum power for {Hn,An ':__,l is equaled
to 1-$ (D "H(1-t) - I¥(£)) and 1s reached by the test with
the critical region

Ly + 2 X072 B ~La1-00) (1%(£)) 12,

Proof: Assertions 1,3,4, follow directly from Theorem
4.3 in [3_]-
As for 2, using Lemma 4.1 in [3] one can get similarly as in
the proof of Lemma VI.2.l.a and Lemma VI.2.1.b in [2] the

following relations:

m '
varpn{‘":i.',1 In(elX 4-0,,)/£(X ;) )I{xni¢§}=u4 (yy- iy $=

v
(2.1) =0, = 62), n—so0 ,0=<w<d,

"y A
Bp L%y Lnle(Xy-00,)/8(x, ) 8= 2.2 [ (Velxmb,)- VE(x))2axe
et
(2.2)  + o)= -1/2 =, 62 1nle_| "1 IX(£)eo(1), n—>co.

Since the assumption AR we have
v

-1 . .
;gq‘fln(f(xni-eni)/f(xni))- | xni°yJ] em}.r{lxni-yJR 33>o0
for n—co . The last relation together with (2.1) and (2.2)

imply 2). Q.E.D.

Clearly, the asymptotically optimal test for {Hn'An}or.;ﬂ

depends only on xni lying in the neighbeurhoods of Yysees

eres Yo Consider general simple linear rank statistics

v

-
(2.3) s, =, 0, a (R, ),

where scores an(l),...,an(n) satisfy:
4
2 -
(2.4) ﬂl})n;o_{‘; (a (lun] +1) = @(u))° du = 0

q
(2.5) 0<J; P 2(w)du<+ o,
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with Lun] denoting the largest integer not exceeding -un .
It is well known that if an,...,xnn are i.i.d. random

variables with continuous distribution function and if

(2.6) % 6., =0, lim max \® \Q(FZV )l =0
4 =1 ni = ’ m->00 144 5m ni —3,:4 nj =

then the asymptotic distribution of Sn is normal with para-
% 1
meters (0,"__24 9r211 j; pz(u)du).

Since the contiguity of 1Q,% to —\'Pni and the proof of

Theorem V.1.5 a in L2} one can assert

(2.7 $ .=, 6, (F(X))= an(l), as n —> O+
By Theorem in [ 6] we have
(2.8)  L((Z, 2)7V2(E 6, p(rx))- a)—>
—>y N(O, _);4 % 2(u)du) as n —> 0 »
where a=(. = 020712 2 o [ o(r(x))rix-0_,)dx
3=y 2 Ong? 7 At i) @ ni’ X
With respect to the assumption AR 1 we can write for 0<e<d’
(2.9)  by=b (6 )+ b (€],
X 22k =
by (@)=03) 677 =, (=, 6,3 ) @ (F(x)) (£(x=6p4)-£(x)).
16 ) 1nl/4 0, =ley x-y < €} dx,
"y - o
bz (8)=GE, 635) 12 2 e, @(F(x))£(x-0 ) Hlx=y,|=<3 .
Similarly as in the regular case we get

(2.10) bn2(s)=°((2‘-§4 9!211)1/2) as n —> o0 uniformly ine€ ,
0<e<d.

Using Lemma 4.1 ir [5) and the Schwarz equality we obtain
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= 2
(2.11) by, (e3en(E 62)) V; f B RCICOPPICOLTR

o (Vf(x-eni)- Vf(x))zdx)]‘/z.
lx-rgyvl‘e

This relation together with (2.9 - 2.10) yields ( & can be
chosen small enough):
b= o(l—), as n —» oo .
The derived results can be summarized in the following

theorem:

Theorem 2.2. If (2.4)-(2.6) and AR are satisfied then

the asymptotic distribution of Sn given by (2.3) is normal
ny 1

with parameters O and .= ef;i 5 qz(u)du both under {P_ 3 and

Q3.

From the assertion of this theorem one can see that no
simple linear rank statistic Sn generated by a square-integ-
rable function performs suitable test statistics for testing

o0
problems 4 Hn,An} n=1°

Now we shall formulate the assertion on the asymptotic

properties of S (£) and Sg(f) given by (1.2) and (1.3), resp.
Theorem g.;. If AR assumption is satisfied then
1) Sn(f)‘«.‘? Z‘ o, an(Rni,f)I{F(yJ-q-k §*1<F(yd’3')j’
+ opn(l), n—>o ,0<y<d;
2) L(S (NP )—>  NO,T¥(£)), n-—>e0,
§C(Sn(f)\Qn)——>w N(I¥(£), IX£)), n-—»eo;

3) the asymptotic maximum power for {Hn,A sn-l is reached

by the rank test with the critical region (with level oC):
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s () z 37 - (12,

If, moreover, the function .pf(u)=f'(£‘-l(u))/f(F-l(u)), ue
€ (0,1) is expressible as a sum of monotone functions then

1,2,3 remain true if we replace S (f) by Sg(f).

The proof is postponed to Section 3.

In other words, the assertion 1 of Theorem 2.3 gives
that the test statistics Sn(f) and S:(f) are asymptotically
equivalent to the statistics depending only on the ranks ly-
ing in the neighbourhoods of F(y;),...,F(y,).

As an application consider the two-sample case. Let
(xm,...,me) and (Xle,...,Xth) be independent random
samples of size m and n, from the distribution F(x-(N 1n N)™1/2)
-1/2

/2 1=1,...,m;0y,=
=0, i=l+m,...,N. Consequently, for min(m,n)—>c0 and n/N —
N
) §
—A ,Ael0,1): N igﬂ agl1,f) — 0,
N N

— =2 = - -1
2, 0y FPP— A(-A)/2, =N =, 6y,

and F(x), resp., N=n+m, i.e. eNi=(N i1n N}

which together with Theorem 2.3 implies (under assumption AR 1)
= -1/2 _ &
-1,?4 ag(Ryy,£) (N 1n N - ag(Ryy f) T4 Flyy —7)
< RM(N+1)'1< F(yfy)} + opn(l), n—>cow , 0<yg<d
LCE oyl ,0) (N 10 072 | B —> ¥0,1/22.(1-2) TX(D),
n—> o0,
(5 ag(Ry,,2) (N 1n N)"H21Q) —>  NVI7ZA(I-X)1%(£)
L2y ag'Byysf n N " ’
1/2(1-2) P¥(£)), n—>e0 .

3. Proof of Theorem 2.3. Let us start with treating
sn(f). Decompose a (i,f) as follows (for n larme enough):
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(3.1) a (1,£)= anlv(l,r)'# aw(i,f)' en}”(i,f), Y=l,...,n;
i=l,...,n,

2
anlv(i,f)ﬂjAE'E o (xm)/f(xw)l{lx(i)-y J=
<le, |1n1’4lo =i,
B2y (1 8)= E e (X(q)/2(xqy) T00,) 1nl/4(10y7L) <
< lX(i)-le 1n llen) -l},
Bn3y(1,0)= B2 (X(4))/e(x () I{lx(ﬂ-lezln‘liew)‘l,
J=l,...,x}.

By direct computation we get

(3.2) 3p 1, 2 e R0 0L 1o 12 1n1/4 1o, 17

¥ o2 -1
(3.3) varPn‘ff__‘."{' Oni18n3s Ry 03 = 0(=, 62, Inle ,177).

The assumptions ensure that the functions

1x

gJ(x) = &

'T;j'm if Ix=y5l<d” , §=1,...,x

=0 otherwise J=l,...,k,
are bounded. Using this faect and taking into aceount (3. 2),
(3.3) we arrive at the following:

(3.4) s (f) = 21en1 804 ( R oj02) + °P (1), n—> o0,
where

X -1 1/4 -1 .
&y (2, £) '4@43“‘(»)‘3,1' I{le 1107 %g ()7 < RIS A
-1 -1
£1n""le 1711,
Thus it suffices to treat E 4 Oni nZi(Rni’f)

By simple considerations we get that there exists a constant

D (not depending on n,» ) such that
'12 anZv(i £)£D lnlei) Y=1,...,n,

max | an2v(1 £)l2D nl/2 1n llonil-l. »=1,...,n.
1444N
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This together with Lemma 2.1 in [1] yields

(3.5) varp 1.5, 0, (%, (B, £)-sk, (LUn] 01,00} =
= 0% 0, max lak,(,0) i E ax (s,0)1/2) -
=03 62, 17219 171,

where U]_,...,Un is the random sample of size n from the uni-

form distribution on (0,1).

Now, ;§4 ©,4 8ro4([U;nl+ 1,£) 1s the sum of independent ran-

dom variables. The asymptotic normality follows now in the

classical way. It remains to show
(3.6) %1_%-:0varl,nf{é":4 61 8553 CUn] + 1,£)3 = I¥(g).
Put for i=1,2,...,n
Yiw = 1F -y, 1™ e e, ut 416,41 15 () -y 12
e 17 g1,k
= 0 otherwise.

By a careful investigation we obtain

3.1 Tm 3. 6fy € (aky, (Luyble1, )= wi(([0,n]+1)/ (ne1))2he

v 1 !
e 5 a2 =1 % * * D 11\ 2 n
£ 3% ooy 0T E v - i) oy )T
e Wl 1-0) " Vqut = o,

Further, using the same arguments as in the proof of Lemma

V.I.6.a in [2] it can be shown that

%
2 5=l =
im _?31 6p4tn T =

N ‘l
1 *2 3 _ *2 -
7 >o0 1= 52 Y1 Frg J’; yi“(wldui= o.

The last relation together with (3.7) implies (3.6). Combin-
ing (3.4 - 3.6) together with the asymptotic normality of

* \
-i=§4 enianu([vin,*l,f) we have

(s, ()] P)— N0, IXF)), n —» e
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This fact together with the contiguity of {Qn} to {Ph} implies
L(sp(e)p)) —> ¢ ML), T%(2)), n—3 00
Assertion 3) is an immediate consequence of 2). Assertion 1)
follows from (3.4) and (3.6).
The proof of the results on Sg(f) is very similar (a 1it-
tle bit simpler) to that on Sn(f) 8o that it is omitted. Q.E.D.
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