

Werk

Label: Article Jahr: 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log18

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

23,1 (1982)

TWO-VALUED MEASURE NEED NOT BE PURELY \mathcal{L}_{o} -COMPACT Bohdan ANISZCZYK

Abstract: The conjecture of Z. Frolík and J. Pachl ([2]) stated in the title is true (purely $\#_0$ -compact measures were introduced in [2]).

Key words: Purely & o-compact measure.

Classification: 28Al2

This note is closely related to the paper "Pure measures" by Z. Frolik and J. Pachl ([2]). We answer in the affirmative the conjecture stated there [2, 4,2(c)] and in the title of this note. For the definition of a purely \Re_0 -compact measure see the above mentioned paper. Our measure will be defined on a special 6-algebra, we call it $\Re(I)$, and we will describe it now.

Let I be any index set. For $J\subseteq I$, p_J denotes a canonical projection of $\{0,1\}^{T}$ onto $\{0,1\}^{T}$. \mathcal{A} denotes the 6-algebra generated by the family of sets $\{p_{+1}^{-1}\}(1):i\in I\}$. Let $X(J)\subseteq \subseteq \{0,1\}^{T}$ be the set of points all but finitely many coordinates of which are zero. Put $\mathcal{B}(I)=\{A\cap X(I):A\in \mathcal{A}\}$.

The following properties of $\mathfrak{B}(I)$ are easily established. For any set $B \in \mathfrak{B}(I)$ there are a countable set $J(B) \subseteq I$ and a set $B \subseteq X(J(B))$ such that $B = p_{J(B)}^{-1}(B) \cap X(I)$. If two points $x,y \in X(I)$ are different only on coordinates not in J(B) then

either $\{x,y\} \subseteq B$, or $\{x,y\} \cap B = \emptyset$.

Two further properties of $\mathfrak{R}(I)$ are a little less obvious.

- (i) Any 6-algebra generated by a countable subfamily of $\mathfrak{B}(I)$ has countable many atoms.
- (ii) $\mathfrak{B}(I)$ satisfies the continuum chain condition (i.e. any family $\mathcal{F}\subseteq \mathfrak{B}(I)$ of nonempty pairwise disjoint sets has cardinality at most continuum the cardinality of the real line).

Proof. (i) Let $\mathcal{C} \subseteq \mathcal{B}(I)$ be the smallest 6-algebra containing a family $\{C_1, C_2, \ldots\} \subseteq \mathcal{B}(I)$. Let $A_1 = p_{\{1\}}^{-1}(1)$, and $\mathcal D$ be a 6-subalgebra of $\mathcal A$ generated by a family $\{A_1: i \in J\}$, where $J = J(C_1) \cup J(C_2) \cup \ldots$. J is countable. Any atom of $\mathcal D$ is of the form

 $\bigcap \{A_{\underline{\mathbf{1}}} : \underline{\mathbf{1}} \in K \} \cap \bigcap \{\{0,1\}^{\underline{\mathbf{I}}} - A_{\underline{\mathbf{1}}} : \underline{\mathbf{1}} \in J - K\},$

for some $K \subseteq J$. Only countably many of these are not disjoint with X(I) (those with K finite), so the G-algebra $\Im \cap X(I) = \{D \cap X(I): D \in \Im\}$ on X(I) has only countably many atoms. $\mathscr C$ is a G-subalgebra of $\Im \cap X(I)$, then it has only countably many atoms, too.

(ii) Let $\mathscr{F}\subseteq\mathfrak{B}$ (I) be a family of nonempty pairwise disjoint sets. For any $B\in\mathscr{F}$ take the set $A(B)=p_{J(B)}^{-1}(p_{J(B)}(B))$. A(B) belongs to \mathscr{A} and $\mathscr{F}=\{A(B):B\in\mathscr{F}\}$ is a family of nonempty pairwise disjoint sets (if $B_1,B_2\in\mathscr{F}$, $B_1\cap B_2=\emptyset$, then $p_{J}(B_1)\cap p_{J}(B_2)=\emptyset$, where $J=J(B_1)\cap J(B_2)$, and $p_{J}^{-1}(p_{J}(B_1))\supseteq A(B_1)$, i=1,2). But for \mathscr{F} it is known that it satisfies the continuum chain condition

[1, Theorem 3.13]. This ends the proof.

We say that a measure μ defined on $\mathfrak{B}(I)$ is given by a point if there is $x \in X(I)$ such that $\mu(B) = 1$ in case $x \in B$ and $\mu(B) = 0$ otherwise.

Let \mathbf{x}_0 denote a point each coordinate of which is zero. The answer to the above mentioned Frolik-Pachl conjecture is given in the following

<u>Proposition</u>. If $card(I) > 2^{c}$, where c stands for the continuum, then the measure μ defined on $\mathfrak{B}(I)$ by the point x_0 is not purely \mathfrak{B}_0 -compact.

Proof. Assume, a contrario, that $_{(}\omega$ is purely κ_{0} -compact. There is an κ_{0} -compact algebra $\kappa \in \Re$ (I) satisfying

(1)
$$\mu(B) = \inf \{ \sum_{i=1}^{\infty} \mu(R_i) : \sum_{i=1}^{\infty} R_i \supseteq B, R_i \in \mathcal{R} \} \text{ for } B \in \mathcal{B} (I)$$

Put

 $\mathcal{R}_0 = \{ \mathbf{R} \in \mathcal{R} - \{ \emptyset \} : (\mathbf{R}_1 \subseteq \mathbf{R}, \ \mathbf{R}_1 \in \mathcal{R} \ \text{imply } \mathbf{R} = \mathbf{R}_1 \ \text{or} \ \mathbf{R}_1 = \emptyset).$ $\mathcal{R}_0 \text{ contains pairwise disjoint nonempty sets, hence by (ii)}$ is of cardinality at most c.

Claim. For any $R \in \mathcal{R} - \{\emptyset\}$ there is $R_0 \in \mathcal{R}_0$, $R_0 \subseteq R_0$. Suppose not. There is a set $R \in \mathcal{R}$ such that R and all its nonempty subsets belonging to \mathcal{R} can be divided into two nonempty sets contained in \mathcal{R} . Let R(O), $R(1) \in \mathcal{R} - \{\emptyset\}$ be two disjoint sets such that $R = R(O) \cup R(1)$. If we have a family $\{R(e_1, \dots, e_i) : e_1, \dots, e_i \in \{0, 1\}, \ i=1, \dots, N\} \subseteq \mathcal{R}$ satisfying

$${R(e_1, \dots, e_i, 0) \cap R(e_1, \dots, e_i, 1) = \emptyset}$$

$${R(e_1, \dots, e_i, 0) \cup E(e_1, \dots, e_i, 1) = R(e_1, \dots, e_i)}$$

for i< N, then in each set $R(e_1,\ldots,e_N)$ we can find two its subsets $R(e_1,\ldots,e_N,0)$, $R(e_1,\ldots,e_N,1)\in\Re$ -{ \emptyset } disjoint and with sum equal to $R(e_1,\ldots,e_N)$.

Let $\mathscr C$ be the $\mathscr E$ -algebra generated by a family $\{R(e_1,\ldots e_i):e_1,\ldots e_i\in\{0,1\},\ i=1,2,\ldots \mathfrak F\mathscr R-\{\emptyset\}\ \text{satisfying (2).}\ \mathscr C$ is obviously countably generated. Any sequence e_1,e_2,\ldots where $e_i\in\{0,1\}$, defines an atom of $\mathscr C$ -namely $\mathscr C$ - $\mathbb R^{(e_1,\ldots,e_i)}$ -nonempty because of compactness of $\mathscr R$. So $\mathscr C$ has uncountably many atoms which contradicts (i). This contradiction proves the claim.

With each set $R \in \mathcal{R}$ we can associate a family $\{R_i \in \mathcal{R}_o : R_o \in R\}$. By the claim different sets have different families, then there are at most 2^c many sets in \mathcal{R} . While for any set \mathcal{R} in \mathcal{R} is countable, the set $\mathcal{R} = \mathcal{R}$ has cardinality at most 2^c . For any $i \in I$ is equal to 1. By (1) there is a countable family $\mathcal{R}_i = \mathcal{R}$ which covers \mathcal{R}_i and does not cover the point \mathbf{x}_o . There is a set $\mathbf{R}_i \in \mathcal{R}_i$ containing a point \mathbf{x}_i , the point which differs from \mathbf{x}_o only on the i-th coordinate. Hence i must belong to $\mathcal{L}(R_i)$, and then I = J. This implies $\mathrm{card}(I) \leq 2^c$. This contradiction with assumption of proposition ends the proof.

Remarks. A little modification is needed to show that the proposition is true for any measure on $\mathfrak{B}(I)$ defined by a point. It may be shown that any 0-1 measure on $\mathfrak{B}(I)$ is defined by a point. Property (i) implies that any measure on $\mathfrak{B}(I)$ is at most countable sum of two-valued measures, so everyone is pure ([2, Lemma 2.2]) and hence \mathfrak{F}_0 -compact

([3, Corollary 4]) but none is purely κ_0 -compact.

References

- [1] W.W. COMFORT, S. NEGREPONTIS: The theory of ultrafilters, Berlin-Heidelberg-New York, Springer 1974.
- [2] Z. FROLÍK, J. PACHL: Pure measures, Comment. Math. Univ. Carolinae 14(1973), 279-293.
- [3] J. PACHL: Every weakly compact probability is compact,
 Bull. Acad. Polon. Sci., Sér. Math. Astronom.
 Phys. 23(1975), 401-405.

Instytut Matematyki Politechniki Wrocząwskiej, 50-370 Wroczaw, Polska

(Oblatum 14.8. 1981)