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LE VAN HOT

Abstract: We prove new fixed point theorems for multi-
valued mappings. Moreover, we construct a simple example
which shows that the conjecture of J. P. Penot, stated in
L8], is false. 3

Key words: Metric space, Banach space, fixed point theo-
rems, multivalued mappings.

Classification: Primary 4TH10, 47H15
Secondary 54C60

1. A fixed point theorem for multivalued mappings in
le ri aces.

Let M be a metric space with metric d,A,B being subsets
of M,x e M. Put: d(x_,A) = inf fdlxg,x):x e A%,
D(A,B) =12 >0:4=V,(B) and BeV,(A)}= maxisupid(x,B):xc A%,
sup.d(y,A):y cB¥:, where V,(A) =1yec M, d(y,¥) =2}¢ fora > 0.
Jefinition 1. Let M be a metric srace with metric d. We
say that a map F:M—>M satisfies the Caristi’s condition if
there exists a lower semicontinuous function h:M —R, = [O,m)

sucti that d(x,f)) = h(x) - h(£(x)) for all x M.

Theorem 1. Let M be a complete metric space, F:M —M
be a multivalued mapping of M into the tamily of all nonempty
compact subsats of M such that D(F(x),f(y)) <d(x,y) for all
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X34y €M. Suppose that there exists a single-valued map f:
M —> M satisfying the Caristi’s condition such that:
1) d(x,F(x)) zinf {d(£™(x)),F(£™(x)): n=1,2,...;

for all xeM, where £(x) = (fo £o...0£)(x),
n-times

2) K=§xeM, £(x) = x} is precompact.
Then F has a fixed point in M.

Proof. We claim that for each = M there exists a z,€ K
such that d(zo,F(zo))éd(z,F(z)). Let h:M—>R, be a lower
semicontinuous function such that d(x,f(x)) = h(x) - h(f(x))
for all xeM. We write x<y iff d(x,y)<h(x) - h(y). Then <
is a partial order on M. Let z be an arbitrary fixed point
in M. Put M, ={xe M:d(x,F(x)«d(z,F(z))}. Then M, is a non-
empty (ze M,) clogsed subset of M, since d(x,F(x)) is a con-
tinuous function on M. Therefore Mz is complete. Using the
same argument as in L8] one can prove that there exists a ma-
ximal element z  in M, (i.e. if xeM, and x >z  then x = 20).

Suppose that there exists anne N such that
d(fn(zo), F(fn(zo)))é-d(zo,F(zo))é:d(z,F(z))

Then £7(z )€ M,. On the other hand, we have: °
d(zo,f(zo))éh(zo) - h(f(zo)), d(f(zo), fz(zo))f:h(f(zo)) -
= h(P ) e, ™), £z ), < (™ Mz ) - nlez)).
Hence n

dlzo,eMz)) < =) alet Mz ), eH 2 )) 4ntz) - n(e(z,)),
where f°(zo) = z,. This implies fn(zo)? Zgy fn(z°)< M,. Hence
fn(zo) =2z, and it is clear that f(z ) = z e KiiM,.

Now suppose that d(f"(zo),F(f"(zo))>'d(z°,F(z°)) for
all n. Then there exists a subsequence fni{ such that

n
lim d(fni(zo), F(f 1(zo))) =d(z ,f(z)). It is easy to see
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that {fn(ZO)E is a Cauchy sequence in M. Then there exists a
n
point z_ e M such that z = lim f 1(zo), since M is complete.
Hence
ny . ny
d(zo,zw) = lim d(z,f (zo)):_h(zo) - lim h(f (zo)) £

£h(z) = hlzy),

Ry 2
1im d(f “(z.), F(f (zo))) = d(zo,F(zo))==

d(zw,F(zm)) o

I

d(z,r(z)).
This means that z e Mz and z,, = Zge Therefore 2z, = Z, and
hiz ) = h(f(zo)) = h(z ). Hence d(f(zo),F(f(zo))) =
= d(zo,F(zo)). This contradicts the assumption
d(fn(zo),F(fn(zo)))>'d(zo,F(zo)) for all n=1,2,... . This pro-
ves our claim.

It is easy to see that inf {d(x,F(x)):ixcMs =
= inf id(x,F(x)):x«;E?. Since K is compact, there exists a
point xoe‘f such that d(x,,Flx,)) = inf {d(x,F(x)):x e Mf, If
r =d(x.,F(x,)) >0, take a ye F(x,) such that d(xg,y) =
= d(xo,F(xo)) = r. Then d(y,F(y)) = D(F(xo),r‘(y))<d(x°,y) =r.
This contradicts the assumption
d(x,,F(xy)) = inf fd(x,F(x))ix s M?. Hence d(x,F(x )) =0 and
X, € F(xo). This completes the proof.

Remgrk: In [8] J.P. Penot has stated the following prob-
lem: Let M be a complete metric space, h:M—> R, be a lower
semi continuous function and F:M —> M be a multivalued mapping
of M into the family of all nonempty closed subsets of M sa-
tisfying the following condition:
d(x,F(x)) £ h(x) = inf {h(y):ye F(x))§. Does F have a fixed
point in M ?

The following simple example shows that this conjecture
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is false. )

Put M = [0,c0) with the usual metric. Put h(x) =1—_];x
F(x) =[x + HiTxT' 2x+1] for all x €M. Then M is a comple-
te metric space, h:M—>R+ is continuous, F satisfies the
condition d(x,F(x)) h(x) - infih(y):y e F(x)}, but F has

not any fixed point in M.

Proposition I. Let M be a complete metric space, h:
M — R, be a lower semicontinuous function, F:M—> M be a
multivalued mapping which maps M into the family of all non-
empty closed subsets of M. Suppose F satisfies the following
condition inf {d(x,y) + h(y):ye F(x)f < h(x) for all xe M.
Then F has a fixed point in M.

Proof. We claim that for each x€ M there exists an f(x)e
e F(x) such that d(x,f(x))£2 h(x) - 2 h(£(x)). If d(x,F(x))=
=0, put f(x) = x. If d(x,F(x)) >0, then
d(x,f(x)) + inf tdlx,y) + 2h(y)iyer(x)f =2 inf f d(x,y) +
+ h(y):y e F(x)t = 2n(x).
It follows that inf {d(x,y) + 2h(y):ye F(x)7 < 2h(x). Then the-
re exists a point £(x)e F(x) such that d(x,f(x)) + 2n(fe(x)) =
£ 2h(x). This proves our claim.
According to Caristi’s Theorem there exists a point xoel( such

that Xy = f(xo)sF(xo). This completes the proof.

Corollary 1(S.B. Nadler [7]). Let M be a complete met-
ric space. If F:M—> M ig a multivalued contraction mapping
which maps M into the family of all nonempty closed subsets

of M, then F has a fixed point,

Proof. Let D(#(x),f(y))= kd(x,y), where 0<k<1. Put
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n(x) = ghp d(x,F(x)). Then

inf fdlx,y) + h(y)iy=F(x)? = inf {dx,y) + $hp d(y,F(y)):
tys £(x)] =in£ falx,y) * 3 - D(F(x) ,F(y)) iy e £(x)F
£infddle,y) + o k d0Gy)iye FOOT = o dlx, F(x)) = h(x).
By Proposition 1, F has a fixed point in M.

Corollary 2. Let M, h, F be as in Proposition 1.

1. If d(x,F(x))4£h(x) - sup<{ h(y):ye F(x)°, then F has
a fixed point in M.

2. If D(-x:,F(x))=h(x) - inf+ h(y):ye F(x) , then the-

re exists an x_e M such that f(x ) =:x_ .
o o o

Proof. It is clear that F has a fixed point in M, becau-
se inf . d(x,y) + hiy):y= F(x)7 = d(x,r(x)) + sup h(¥(x)) and
inf < d(x,y) + nly):y= f(x)] - D x ,F(x)) + inf s hiy):y= pix) .
To prove 2, it is sufficient to note that for each x- M there
exists a point f(x)e F(x) such that
D(-x’,f(x))<h(x) - inf: h(y):ye F(x) = 2h(x) - 2h(f(x)).

By Caristi s Theorem there exists a point Xy € M such that Xp =
= f(xo). Then D(-fxo ,F(xo)): 2h(x,) - ?h(f(xo)) = 0. It fol-

lows that F(xo) = Jxo'. This completes the proof.

?. A_fixed point theorem for multivaiued mappings in
Banach gpaces

Definition 2. Let X, Y be topological spaces, F:X- »Y

be a muliivalued mapping. We say that ¥ is upper semicontinu-
ous at xe X if for each open set G< Y, r(x)< G there exists
a neighborhood U of x such that for each x ¢ U we have f(x )<

< G.
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Theorem 2. Let X be a Banach space, C<X be a convex
closed nonempty bounded subset of X, F:C—> C be a multivalu-
ed nonexpansive mapping which maps into the family of all
nonempty convex closed subsets of C. Suppose that there ex-
ist a function w:R,—> R, which is nondecreasing and w(t)>
>0 for all t>0, a function ¢:C-C—> R weakly continuous at
8, ¢(8)>0 and a mapping ¥ :C-C— <€ (X*), where ¥ (X*) deno-
tes the family of all nonempty closed subsets of the dual spa-
ce X*, weakly-strongly upper-semicontinuous at ©, (@) is
compact, such that

d(x,F(x)) + d(y,F(y)) = w (Il x-yii ) ¢ (x-y) - Vs(x-y)
for all x,y € C, where "f’s(") = sup {I<{x*,x> | x*& y(x)}. Then
F has a fixed point in C.

Proof. By the boundness of C, there exists a number M>0
such that CcBy, = {xeX:lixl < M¢ Hence C-C<B,y. By the stan-
dard argument there exists a sequence fxnﬁ < C such that
d(\xl,l,Fan))<-,1—1 for each neN. Since ix,} is bounded in X, fx.}
is weakly precompact. Then there exists a weakly Cauchy subnet
{xso(i)i te1 Of 'ian where @ :I—> N. Then it is clear that the
net {ui,;j}(i,,j)clxl where uy g = (1) ~ Xa(y) converges weak-
ly to ®.

We claim that lim llui,Jli = 0. Suppose that it is false.
There exists a number r >0 such that for any (i,j)e I<I the-
re exists an €(i°,3)eI=I, (1,57) 2(1,j) and I uy g = r.
Since ¢ 1is weakly continuous at € we have lim (p(uihj) =
= @(8) = k >0. Let 7:X—> X*™ be a canonical embedding map
of X into its bidual space X**. Since {t(ui,‘j)& is bounded

in X** {'r:(ui J)E is an equicontinuous family of mappings
’

- 142 -



from (X¥, Il « I ) into R. Since {x (ui ‘j)i converges pointwi-
’
se to @ on X* and % (0) is a compact subset of X* by Theorem
4.519, chapt. III) it follows that iy J)f converges u-
’
niformly to © on y(©). Then there exists an index (io,,jo)e
¢ I~T such that for (1,3)e IxI, (1,J)= (io,.jo) we get
>3, : * = *
g(“i,‘j)’4 k and l(t(ui’d),x > '<x’“1,,j>lé
ﬁ% k o (r) for all x*ey (6). Since y is weakly-strongly
upper-semicontinuous at € and fuy J} converges weakly to @,
’
there exists an index (il,jl)e I~I, (11,31)2 (io,.jo) such

that:

" (ui,J),ew (8) + ‘—‘ﬁ‘—%’— B’{(e), where B"l‘ ={x*e X*: | x*¥I £ 1%

for sll (i,j)eI=I, (1,3)=(i;,J;). Then
"Vs(“i,j) = sup {I< x",ui“j)l ix¥e qr(ui“j)} £

£ sup 1| <x"‘,ui“]->| :x¥ € y(o) + l_(_]%c%x_'_)_ B{(e)f £

£ sup { 1€ x*,ui’g)\ ix¥e y(0)% +1—‘-f—‘g7(ﬁn)- sup{I< x"‘,ui’dﬂ :

cexe iz ednl o kaulr) jig, g2 kadr)

for all (i,§)e IxI, (1,§) =(i3d))~

Take n,m€ N such that % + %1< 3—4"2;-(-5)— Choose ize Xy 122 11,

i,Z J§) such that ©(1)Z max § n,m§ for all ie I, 1% i,. Take
(13,33)6 IxI, (13,33)2 (i,,i,) such that ““13,33“ 2 r., Then

d(x5°(13)’F(x5‘>(13))) + d(XP(J:;),F(Xp(J]))) z

LRI LT R LR
Hence
1 1

1. >
R nt Iy et M EM T e L

— k el 1
» d(xst‘(JB),F(XQ(J:;)))« % k wlr) - ——‘:J:l =5 k ¢hr).

This contradicts % + 7:' % k~{r) and this proves our claim.
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H is analytic, then F is lower semicontinuous provided it has
a Souslin graph (Theorem 7). This version of the Souslin-graph
theorem is based on ideas due to Frolfk [7] and [6].

2. A t lowe micon 1t .« Almost
continuous mappings were considered first, as it seems, by
Blumberg [3] and Block and Cargal [2], under unlike names. The
term "almost continuity" was used by Bradford and Goffman [4].

Let X and Y be topological spaces and f a mapping of X to
Y (£:X—> Y).. Given x €X, f is said to be almost continuous at
x if for each open set V in Y containing £(x), xe Int D(£ 1(V)).
Here D(E), where Ec X, denotes (as in [10]) the set of all
points x° of X that are of second category in X relative to B
(i.e. UNE is of second category in X for each open Usx”).
This definition of almost continuity is equivalent to those
given in the above-mentioned papers, and can be extended, in
a natural way, to multifunctions. By a multifunction F of X to
Y (F:X—>Y) we mean a function which to every point xe X as~

signs a subset F(x) of Y (not necessarily closed or nonempty) .

Defipjtion. A multifunction F:X—> Y is almost lower se-

micontinuous at x if for every open set V in Y

x eF-l(V) implies x < Int D(F—I(V)).

Here the inverse image F-l(v) denotes, as always, the set of
all x’ satisfying F(x’)n V+0.

The set of all points x of X such that F is almost lower semi~
continuous at x will be denoted by Ly{F); in case L(F =X,
F will be called almost lower semicontinuous. Thus, F is al-

most lower semicontinuous if and only if for every open set V
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in Y
FLev)c Int DIFHV)).

Let L(F) stand for the set of all points xe€ X such that F is
lower semicontinuous at x, i.e. x€ Int FL(V) for all open

VcY intersecting F(x). Notice that

LB(F)nF-l(Y) c Int D(FL(Y)) c Int D(X)
and

L(F} A F (¥} A Int DIXDC L (F),

while obviously X\F_l(Y)CL(F)ﬁLE(F). In particular, if X is
a Baire space (i.e. X = D(X)), then L(F)c La(F). If F is al-
most lower semicontinuous, then F~1(Y) is a Baire space (in
itself).

The usefulness of the property of almost lower semiconti-
nuity stems from the fact that it is automatically satisfied
under some category-type assumptions, while, on the other hand,
it is a convenient starting point to the Souslin-graph, closed
graph, open mapping and Blumberg theorems.

The following theorem extends some observations from L3,
2] and [4].

Theorem 1. Let F be a multifunction of X to Y. If the
space Y is second-countable, then

(1) The set La(F) is residual in X;

(11) the restriction FILB(F):La(F)—¥ Y is almost lower
semicontinuous. More generally, for each residual set AC L.(F),

F|A is almost lower semicontinuous.

Proof. (i) Let iV} be a base for Y. A point xcX is
not in L (F) 1f and only if there is n such that xe oy
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ALMOST LOWER SEMICONTINUOUS MULTIFUNCTIONS AND
THE SOUSLIN-GRAPH THEOREM
M. WILHELM

Abstract: Almost continuous mappings and almost lower
semicontinuous multifunctions are investigated. A Souslin-
graph theorem for multihomomorphisms with values in an ana-
lytic space is proved.

Key words: Multifunction, almost lower semicontinuity,
Souslin-graph.

Clagsification: 54C60

1. Introduct . The term "almost continuity" is used
here in the sense of Bradford and Goffman [4]. We show that
each almost continuous mapping having the Baire property and
taking values in a regular space is continuous (Theorem 4).
It follows that each almost continuous mapping having a Sous-
lin graph and taking values: in an analytic space is continu-
ous (Theorem 6).

We define and investigate "almost lower semicontinuity"”
of multifunctions. Under category type assumptions certain
multifunctions possess automatically this property (Theorems
1,2,3).

Let F:G—> H be a multihomomorphism with Fl = 6. 1f
G is of second category and H 1is separable or Lindelof, then
F is lower semicontinucus iff it is lower-Baire (Theorem 5).

If G is inductively generated by second category groups and
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Since 1lim lui'dl =0, it follows that {x9(1)§ is a Cauchy

net in the strong topology. Therefore {xp(i)} converges

strongly to an x¢ C. Then for 1 €I, we have

d(x,F(x))é hx - xc(i)’l * d(x@(i),f‘(xp(i))) +

* DUFtxg (), F(x)) €2 ) x - o)t * Sty

Hence d(x,F(x)) = 0. It follows that xe F(x) and this comp-

letes the proof.

1]

L2]

[3]

[4)

(5]

6]

t7

[ 8]
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and x ¢ Int D(F-I(Vn)). Thus

L (F) = xxmf;qu'l(vn),\rnt D(FLev )1,

Each set of the form E\ Int D(E) is of first category because
D(E) \ Int D(E) is closed co-dense and E \D(E) is of first ca-
tegory by the Banach category theorem (cf. [10]). Hence La(F)
is residual.

(11) Let Ac L_(F) be residual in X. Put E = F-l(vn).
Then

AnD(E) = An D(ANE)C Dy (ANE)
and

xe AnInt D(E)c Int,(AnD(E))c Int,D,(AnE) for x€ANE,

which shows almost lower semicontinuity of F|A.

By a graph of a multifunction F:X—>Y we mean the set

Gr F = {(x,y)iye Fx)}c X=X,
In the following the letters G, H stand for topological groups.
We say that F:G - >H is a multihomomorphism if Gr F is a sub-
group of G=H. For multihomomorphisms we have the following

simple criterion of almost lower semicontinuity.

Lepma 1. A multihomomorphism F:G—>H is almost lower
semicontinuous if (and only if) for each neighbourhood V of

ey the inverse image F-l(V) is of second category in G.

Proof. Let V be a symmetric neighbourhood of ey and put
E=FL(V) and U = Int D(E). Since ENU i3 a first category
gset in G (by the Banach category theorem; see the previous
proof) and E is of second category (by the hypothesis), the
set U is non-empty. This implies that e; e Int D(EH(VP)) be-

cause
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ege U2c Int ((DCF (W 2y e Int DUFL(VI2) = Int DIF (V).

Thus ege La(F). If now x¢ F_I(V), where V is open in H, then
eg€ F—l(Vy-l), where ye F(x) nV; hence eje Int D[F-l(\!'y-l)],
and 80 x ¢ Int DILF T(vy 1)l x) = Int DLFH(V)1; xe L (R,

Now we need a generalization of a lemma of Pettis [13]
for multihomomorphisms. First a definition ([131). A subset
E of H is 6-bounded in H if for every neighbourhood V of ey
there exists a sequence {y }c B such that E c,n(;,, ¥V o Vyp.
Each separable or Lindelof (in particular, & -compact) subspa-
ce E of H is S-bounded in H, If H is metrizable, the three
notions (6 -boundedness, separability and Lindelof property

of EcH) coincide.

Lemmg 2. Let F:G—>H be a multihomomorphism such that
F(G) is &-bounded in H. If F1(H) 1s a second category set in

G, then so is F1(V) for any neighbourhood V of ey

Proof. Given open V>ey, choose{yn}cF(G) so that F(Glc
(29 — -1 o
C/n.L:j’I YV Vyp. Choose x e F l(yn). Then F ~(H) =m\:.J,, x B v
uExn, where E = F-l(V). Hence E is of second category in G.

Lempa 3 ((13)). If H is &-bounded, then each set EcH

is &-bounded in H,

0
Proof. Let H =m\=J,| ¥V wVy,, where V is a neighbourhood
of ey and 1y} c H. Choose h,];ellnynv whenever possible (neNl)
and hie EnVyn whenever possible (neNz). Then

1ok, =1
R Cm,Lg-J?\l4 ynv um.\eJvayn = .'n,\'eJNq L V"r)l\eJN)_W

Since V=2ey was arbitrary, E is 6’-bounded.

2
hn'

If now H is & -bounded, then F(G) is & -bounded in H

- 151 -



(Lemma 3) and the lemmas Nos. 2 and 1 may be applied, provid-
ed F-l(H) is of second category. Thus we get

Theorem 2. Let F be g multihomomorphism of G to H, whe-
re H 18 & 6-bounded group (e.g. separable or Lindelof), If
F i) is of second category in G, then F is almost lower se-

micontinuous.

For linear multifunctions the assumption of 6 -bounded-
ness of the range space may be omitted and the proof reduced.
Let S and T be topological vector spaces; F:S—> T is g line-
ar multifunction if Gr F is a linear subspace of Sx< T,

Theorem 3. Each linear multifunction F:S—> T such that
Fl(r) 1s of second category in § is almost lower semicontinu-
ous.

(23]
Progf. Let V be a neighbourhood of Op. Since T =, nv,

- o« _ -
Flr) = U, nF l(V). Hence F~1l¢v) 1s of second category in §
and we apply Lemma 1.

That is all about "automatic” almost lower semicontinui-
ty. Now we will consider the question, when almost lower se-
micontimiity (resp. almost continuity) implies lower semicon-
tinuity (resp. continuity). For mappings we have a quite sa-

tisfactory answer:

Theorem 4. Let X be g Baire space, and let Y be a regu-
lar space (even not necessarily To)' A mapping £:X—> Y ig
continuous if (and only if) it is almost continuous and has

the Baire property.

Proof. Let xe £ 1(V), where V is open in Y, Choose open
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set Wc Y with £(x)e W and WcV. Since f is almost continuous
at x, xcU = Int (£~ 1(W)). Let ueU; we will show that f(ule
¢ V. Let Z be an open neighbourhood of f(u). Since f is al-
most continuous at u, u€ Int p(£71(2)). Hence Une(z) 18 &
second category set in X. Since f has the Baire property, the-
re exists an open set Gc X such that GAf-l(Z) is of first
category in X. Now UNnG is of second category in X. It fol-
lows: that f-l(w)/nG is of second category in X. Hence f-l(w)n
A£1(2) is of second category in X, which yields WnZ+ 0.
Thus we have proved that f£(u)e W.

The theorem cannot be extended to multifunctions, with-

out additional assumptions.

Example 1. Each of the following multifunctions is al-
most lower semicontinuous and lower-Baire (i.e. F'l(v) has
the Baire property whenever ¥cY is open), but not lower semi-
continuous.

(a) F(x) =41} for xe INQ and F(x) =@ for xe InQ
(I =10,1], Q - the rationals); F:I—> I is single-valued.

(b)) F(x) = Y for xe INQ and F(x) = {1} for xe InQ,
where Y is the discrete space 10,1%; Fly) = 1.

(¢) (cf. [5]). Let I = P,uP,, where P; are dense and
co-dense G, - -sets in I, and let g be the natural mapping of
the space Y = Pl@ Pz onto I; g is continuous and almost open

(i.e. g(Ulc Int D(g(U)) for each open UcC Y). Define F = i

An analogue of Theorem 4 for multihomomorphisms holds
true. To see this, let F:G—> H be an almost lower semiconti-
nuous lower-Baire multihomomorphism, and consider the induced

mapping £:X--> Y, where X = F'l(H) and Y = H/F(ec) (Y need not
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be a To-space of a group). The assumptions of Theorem 4 are
satisfied (Y is regular by [9; 5.19, 5.20]). Hence f is con-
tinuous. Since the quotient mapping w:H—>Y is open (cf.
L9; 5.17)), this implies lower semicontinuity of F:X —>H,

X is a second category subgroup of G having the Baire proper-
ty; by the Banach-Kuratowski-Pettis theorem (cf. [1l; Theorem
11, [10; 13.XI) and [13; Theorem 1]), X is open in G. Hence
F:G@ — H 1is lower semicontinuous. Thus, in view of Theorem 2,

we get

Theorem 5. Let F be a multihomomorphism of G to H such
that F-1(H) is of second category in G. (i) F ig lower semi-
continuous if (und only if) it is almost lower semicontinuous
and lower-Baire. (ii) Suppose the group H is &'-bounded (e.g.
separable or Lindelof). Then F is lower semicontinuous if (and

only if) it is lower-Baire.

For linear F, (ii) holds with no assumption on the range

vector space (by Theorem 3).

3. Souslin-graph theorem. A T3-space'Y is said to be an

analytic space (or a K-Souslin space) if there exists a Polish
space X and a compact-valued upper semicontinuous multifunc-
tion & of X onto Y (Frol{k L6]; for some equivalent defini-
tions see [6] and [8]). Each analytic space is a Lindelof
space, hence paracompact and normal (cf. [ 6] and [ 8]).

By a Souslin set, in a glven space, we mean the result of per-
forming the Souslin operation (A) (denoted also S) on a sys-
tem of closed sets in the space. Since the collection of all

sets having the Baire property is closed under the operation
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(A), each Souslin set has the Baire property (cf. [10]).

L. Schwartz [15] proved that if S and T are locally con-
vex spaces, S - ultrabornological (1.e. inductive limit of
Banach spaces), T - continuous image of a Polish space, then
each borel graph linear map f:S—> T is continuous and each
continuous linear map g:T 3933 S is open.

Frolik [7) proved that if G is a vector space which is
inductively generated by second category vector spaces and
H is an analytic locally convex space, then

(1) each Souslin-graph homomorphism f:G—> H is conti-
nuous.

Martineau [11] proved, among other results, that if G is
a second category analytic group and H is an analytic group,
then each continuous homomorphism g:H Eﬂig-G is open; Perez
Carreras [12]showed that the theorem remains true if G is not
necessarily analytic.

In this section we shall show that if G is inductively
generated by second category groups send H is an analytic
group, then the statements (1) and (2) hold, where

(2) each Souslin-graph homomorphism g:H 2233.3 is open.
The main tools are Theorem 5 and the following lemma due to
Rogers and Willmott [14] (a nice proof is given in Frolik
[7; Lemma 1]).

Lepma_4. Let F:X—> Y be a multifunction, where Y is
an analytic space. If Gr F is a Souslin set in X=<Y, then F
is upper-Souslin (i.e. FL(A) is Souslin whenever A is clo-
sed), and hence upper-Baire.

Combining the lemma with Theorem 4 we get
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Theorem 6. Let X be a Baire space, and let Y be an ana-
lytic space. A mapping f:X—> Y is continuous if (and only
if) it is almost continuous and its graph is a Souslin set
in X>< Y,

Example 1 (c) shows that an almost lower semicontinuous
Souslin-graph multifunction F:X—> Y need not be lower semi-

continuous, even if X is compact, Y Polish and Gr F closed.

Lemma 5. Each upper Baire multihomomorphism F:G—> H is

lower-Baire,

Proof. Let ¢ be the canonical mapping of H onto H/F(eG).
Let V be open in H. Since % 1s open and continuous, the set

F(V) = FH N Pl "Ha/pteg) \ ¢ (D1
has the Baire property in G.

If F is lower-Baire and F(eG) is compact, then ¢ is clo-
sed (cf. [9; 5.18]) and, consequently, §f is upper-Baire. With-
out the compactness assumption, the converse to Lemma 5 is

not true.

Exgmple 2. Let Ho be a closed normal subgroup of Hy G =
=H/H , ¢ :H—> G the canonical quotient mapping and § = _c,o'l:
G —H; F 1s even lower semicontinuous and has a closed graph.
Nevertheless F need not be upper-Baire (it is upper-Baire pro-
vided H is analytic; see Lemma 4). Take for instance H = Rde
and H ={O?de, where R; denotes R (the reals) endowed with
the discrete topology. Choose a set A in R which has not the
Baire property and put K =+ (x,x) € Hixs A%; K is closed and
F k) = a.
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Now we are in a position to derive the Souslin-graph theo-

Trem.

Theorem 7. Let F:G—>H be a multihomomorphism, where H
is an analytic group. Assume that

(1) FL(H) 1s of second category in G; or

(11) F-l(H) = G and the topology on G is inductively gene-
rated by homomorphisms h_ :G, —> G, where G, : € A} is a fa-
mily of second category groups.
If Gr F is a Souslin set in Gx< H, then F is lower semicontinu-

ous.

Proof. (i} Follows from Lemmas 4, 5 and Theorem 5 (ii).

(ii) Fix any e € A. By Lemma 4, F is upper-Souslin; hen-
ce Fo h  1s upper-Souslin, and so upper-Baire. Lemma 5 shows
that Foh_ 1s lower-Baire. By Theorem 5 (ii), Fe h is lower

semicontinuous. Since o~ was arbitrary, the assertion follows.

Clearly, Theorem 7 yields the statements mentioned in the

passage before Lemma 4.
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