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ON MAXIMAL MATCHINGS IN Qs AND A CONJECTURE
OF R. FORCADE
lvan HAVEL and Mirko KRIVANEK

Abstract: It is proved that every maximal matching in the
cube Qg contains at least 24 edges. This fact disproves a con-

jecture by R. Forcade. The seme result has been published by
J.M. Laborde ([3]), who disproved the conjecture using a com-
puter. Our proof is independent and does not use a computer.
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1. Introduction. In [1] a conjecture concerning the number

of edges of the smallest maximal matching in the graph of the
n-dimensional cube Qn is formulated.According to the conjecture,
there should exist & meximal matching in Q6 containing 23 edges.
In this paper, which is a modified version of Bﬂ , we prove that
any maximal matching in Q6 contains at least 24 edges; this fact
disproves Forcade ‘s conjecture. The same assertion was among
other results published in [3]; the author ennounced in [3] that
he had disproved Forcade “s conjecture using a computer. The
results contained in [2] were obtained independently of [3] and
without help of a computer. We believe therefore that they

could be of interest especially from the point of view

of further progress in solving the difficult problem of obtain-
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ing better estimates or determining the cardinelity of the small-
est maximal matching in Qn'

itions. Statement of results. We deal with finite
undirected graphs without loops and multiple edges. If G = (v(a),
E(G)) is such a graph, then M < E(G) is called a matching in G,
if no two edges of M are adjacent, A matching M is a maximal
matching in G, if ugm‘ holds for no matching M’in G.

For U< V(G) we put Ng(U) ={vecV(G); Jue U such that
(u,v)e E(G)} and write frequently N(U) ingtead of No(U) end
N(u) instead of N({uf).

An n-dimensionel cube Q, is a graph Q, = (V(Q,), E(Q,)), where
(Q,) = {(ul,...,un); uie{o,l}, i= 1,...,n}, E(Q,) ={(u,v);
u,vQV(Qn), u and v differ in exactly one coordinate}. Cleearly,
Q, 1s a bipartite graph for any n. n

Define further V(Q) = {u = (up,e.e,uy) € V(Q); 1%.;5 1(moa 2)f,

Ve(Qn) = V(Qn) - VU(Qn). We say that u, ve V(Q,) are of the same
parity, if either {u,v}c Vd(Qn) or {u,v} € Ve(Q,). Put 0 = 1,
1 =0 and for uec V(Qp)y u = (uj,eee,u) put @ = (Qyyeeeyy)e

Let m(Q;) = min fli(, M is & maximal matching in Q) The

following assertions are proved in |1]:
Asgertion 1, For N21, B(Qn4;) < 2m(Qy).
Assertion 2. For n>l, m(Q,) > 2".n/(3n - 1).
Assertion 3. lim m (Q)/2" = 1/3,
n-ou
The following conjecture is also stated in [1]:
Conjecture, For n > 1, a(q,) =12%n/(3n - 1[.
It follows from the trivial identity m(Q3) = 3 via Assertion 1

that m(Qg) < 24, whereas Assertion 2 gives n(Qg) > 23.According
to the conjecture there should be m(Q6) = 23; our intention
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is to prove m(Qg) = 24.

For eny matching M in Q  we define "the set X(M) of odd
vertices not belonging to M" as follows:

X(M) = {uth°?Qn); u is an end-vertex of no edge of M}.
Theorem 1. If M is a maximal matching in Q, then

(1) Izl = 2® 71 - ul,

(2) IN(X(M)) < IM,

(3) uevi(Q) =N A(V7(Q,) - X)) 2,

(4) u,veVe(Q)), u# v, IN()axO)! = IN(V) A XM =
=n - 1=>N(u) - X(M) # N(v) - X(M),

Proof. (1) Obviously |v¥(q)}= [ V()| = 2*! nolds ena
further, the end-vertices of any edge in Q, are not of the same
parity. Since no two edges of M are adjacent, (1) follows.

(2) Let weX(M),(u,v)€E(Q ).Suppose v to by an end-vertex of
no edge of M; then Ma}{(u,v)} is again a matching which o ntrg-
dicts the maximality of M. Hence ueX(M), ve N(u) — v is an
end-vertex of an edge of M, and (2) follows immediately.

(3) can be proved similarly - it follows from N(u) = X(M)
for some u ev‘(qn) that M cannot be maximal - if we choose an
arbitrary v€N(u), then M~/l(u,v)} is again a matching.

(4) Let N(u) - (M) = {u”} N(v) - X(M) ={v7; the edges
(u,u’), (v,v’) belong to M and therefore u’ # v’, g.e.d.

The following theorem disproves the conjecture from [1]0

Theorem 2. For eny maximel matching M in Q¢ , | M) 2> 24,
Proof, Let M be a maximel matching in Qg; according to
Assertion 2, IM| > 23, Assume IM| = 23. Then we obtain for
X(M) according to Theorem 1 that [X(M)! = 9 and (2) - (4) of
Theorem 1 hold as well. However, we shell show in Theorem 3

that this 1s impossible.

Theorem 3. Let X€Vo(Qq), 1X| = 9.
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Then either
(1) IN(X)I > 23, or
(2) there is ueve(Qs) such that N(u) € X, or
(3) there are u,veV‘(Qs) such that u # v, |N(u)nX| = IN(v)n XI| =
= 5 and N(u) - X = N(v) - X.
Proof of Theorem 3 is given in Part 3 of this paper.
3. The proof of Theorem 3. The proof essentially utilizes
a well-known fact that Qg 13 a Cartesian produet of Q4 and Qz.
Let us denote
A = {(uy,u5,03,4,0,0}; (up,up,ug,u,)€ V(e },

B = {(uy,u5,u3,u4,2,0}; (up,up,u5,u,) € V(Qy)},

Q
[

. {(ul,uz,u3,u4,0,1}; (u),uy,u5,u,) € V(Q4)},

o
[l

= {(“1"‘2’“3'“4'1’1); (ul,uz,u3,u4)€V(Q4)}.
Then obviously V(Qg) = AvBuC UD and Al = IBI = Ic| = ID] =
= 16; the subgraphs of Qg induced by any one of the sets A,B,C,D
are isomorphic to Q4 and there are exactly 16 vertex-disjoint
circuits of the length 4 in Q6, such that each of them contains
exactly one vertex of each of the sets A,B,C and D. Let us de-
note this set of 16 circuits by ﬂ « The sets of vertices
A,B,C,D are joined in 06 only by edges belonging to circuits
of f (e.g. there are 16 edges joining A with B, no edge
between A and D, etc.).

For uevV(Qg), u = (ul,uz,u3,u4,u5,u6) put Z(u) = u1.23 +
+ 1.\2.22 + u3.2 +uy; obviously 7¢ maps V(Qs) onto [0,15] - For

U s V(Qg) put (V) = {#(w); ueuf. Iz 1€ [0,15), denote by
ai(bi’ci’di) the vertex of 4 (B,C,D, respectively) with

w(ay) = 1 end put 3'1 = 815_3+ (The first four coordinates of
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3& are complements of those of &;; the fifth end sixth coordinates
of 3, and s, coincide). Define similarly by B a; for
1¢ [0,15].
Let us notice that the following holds: for i,j¢€ |0,15],
(ai,aj)é E(Qg) & (bi'bj) EE(Qg) & (ci,cj)e E(Qg) &= (di,dJ)e E(Qs).

From this we have e.g. 7(Nj (a4) nA) = T(Ng (by)nB) =
6 6

= see = W(Nqs(di)nD). Similar relations, which easily follow

from the structure of Q6 end its decomposition into four Q4
joined together by 16 circuits, will be used in the sequel with-
out specisal references.
The next lemma (with an obvious proof) describes some structur-
al properties of ':.,‘.
Lemma 1. (1) For any ueVd(Q4) (Ve(Q4)) there is just one
VEVU((.),4)(Ve(Q4), respectively) such that NQ4(u)nNQ4(v) =0 .

(2) For O =t = 8 define ./'/(t) by the following table:

t11012345678

L‘/(t)“046778888
Then for eny U< V(Q,)(V®(Q,), respectively), INg (DL 10D,
4

If 0 <t =8, then there is U, & VV(Q4)(V°(Q4), respectively)
such that U] = t and qu4(ut)l = @ Uglde

Notation. In the sequel we shall denote by X always & sub-
set of VY(Qq) consisting of 9 elements, i.e. X< v(Qg),
IX) = 9. For U € V(Qg), N(U) denotes NQG(U).

Let X< Vd(Qs), }X1 = 9. A characteristic vector Y (X) of

X is a vector of 9 components, \(X) = (rl,...,rg), where

.ry = Ixal, £, = [X0B), vy = Ixncl, r, = |xnDl, ry = IN(X) N A],
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rg = IN(X)nBl, ry = IN(X)nCl, rg = IN(X)nDI end rg = IN(X)I.

The set of all characteristic vectors is denoted by R, hence
R= {X(0; x = Vg, IxI = 9},
For réR, r = (rl,...,rg) the following relations obviously
hold:
(a) ry £ 8, 1 =1,...,8,

(b) r1+r2+r3+r4=9,
(c) rg + rg + rq * rg = rg.

Taking into account the obvious automorphisms of Q  and (1)
of Theorem 3, we conclude that in order to prove Theorem 3 it
suffices to show that (2) or (3) of Theorem 3 holds for any X
such that r = X (X) e R, where r meets all the following con-
ditions (d) - (j):

(a) ry > max (r2,r3,r4),

(e) if ry = r,, then rg > rg,

n

(£) if ry = ry, then 5 2 Tys
(g) ry 7 ryy
(h) if r, = Iy, then r. » Toy
(1) rg £ 23.

Let R, be the set of vectors from R fulfilling conditions
(d) - (1); it is easy to see that for re R, the following con-
dition holds as well:

(J3) T 2 L,/(rl), rg 2 max(\,‘(rz), rl), To Y max( y (r3),r1),
rg» max (§(r,), max(rz,r3)),

4’ being defined in Lemma 1. The validity of (j) follows from
an obvious identity N(X)NA = N(XNA)NAUN(XNB)nAuN(XnC)nA
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end the similar ones for N(X)NnB, N(X)nC and N(X)n D.

Let nx be the set of vectors (rl,...,rg) whose components
are nonnegative integers such thet (a) - (j) hold. R, 1is
easy to construct by an elementary combinatorial argument;

Rx = {Pl""’-’)n}’ where .Pl""’ F31 are listed below.

£ 7110877123
$, 6210866222
£ 6210876223
f, 6210867223
P 6210866323
f. 5310875323
Py 5220866222
f 5220876223
g 5220866323
Fo 5211865423
pu 4410774422
fu 4410874423
pii 4410784423
fn 4410775423
g 4410774523
fu 4320776323
Py 4311774422
fuy 4311874423
Py 4311784423
4, 4311775423
f 4311774523
py 4221766423
e 4212764623

4113744722

Suy

'
-~
n
0

]



P 4113844723
fio 4113754723
£3 4113744823
P 4104T 44722
£ 4104844723
Plo 4104754723
Pir 41047457 23

Obviously ROE Rx; as the next step in the proof, the ele-
ments of R, will be found. But first we prove some suxiliary
statements.

Lemma 2. Let X'(X) = reRy, r = (ry5ee0y7g).
(a) If ry = 4 and r5 = T, then N(ay) NA = XnA for some
1€ |o,15].
(b) If r, > 1land rg = ry or r3>, 1 and rq =1y, then
N(ayj)n A < XnA for some i€ ]_0,15].

Proof. (a) From ry = 4 and ry = 7 we have IN(XnA) nAl =7,
As N(XNK) NA € V9(Qg) nA and |VO(Q) nal = 8, aje (V¥(Qg) nn) -

- (N(XnA)nA) for some j ¢ |0,15). Further, N(ad)n(XnA) =g
and if we put a, = S’J, then N(ay) nA = XnaA.

(b) Assume bdﬁan for some j& [0,15] and at the seme time
let N(bd)'\B < N(X nA)N B not hold. Then we should have
IN(X)nBl > |XnAl, hence rg> r) « Therefore, r,21 and rg = ry

imply thet by € XnB for some 1€ [0,15] and N(b;) n B & N(X nA) n B.
Hence easily N(ai)nAC_- XnA. Similarly, such an i is to be found
also in the case ry 21, Tq = Ij.

Remerk. (a) of Lemma 2 will be used below also for sets
B,C,D; e.g. if r, = 4, rg = 7, then N(b;)nB = XnB for some
1€]0,15] etec.
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In the sequel we shall always denote by k (X being fixed)
the number of circuits from 8 , which have a vertex in common
with both XNAB and XnC.
Lemmg 3. Let ﬁ(x) =ré€R, r, = 0. Then Kk = ry + ry - Tge
Proof. From r, = 0 we have N(X)A D = (N(XnB)n D)V (N(XnC)a D),
thus |N(xaD)| = |N(XaB)aD| + [N(XxaC)aD| - |(N(XaB)aD)a
n (N(XnC)aD)|, therefore rg = r, + ry - k, g.e.d.

Lenna 4. R, & {?" ¢, €3, ?‘: ?h ?9; ?40, ?«, ?4:,
O, §19) S20, §2e) F23, 24, 912}.
Proof. The proof will proceed in several steps.
(a) none of the vectors @4, 95, 92, Pss belongs to R,. Sup-

pose on the contrary ]( (x) € {?'h 9,’ 99, p,,} for some X.
According to Lemma 3, in these cases the number k of circuits

from ﬂ having a vertex in common with both XAB and XnC 1is
given by k = r, + r; - rge Further, the following holds:

(8.1) k = r, =P rg = rq (since k = ry=p k = ry,hence " (xnB) =
= (XnC), M(N(X)aB) = M(N(X)AC) and rg = rqle

(a.2) k = ry BTy 4rg (since k = ry =p M(xnC) & M(XnB),
hence M(N(X)aC) & I{(N(X)nB) and rq $!‘5)-

(8.3) k €1y, Tq =177 =) piry, + 1) € rg (since for some

je€ [0,15] c;€XAC, bJQXnB; from rq = ry we have

N(ca)n C & N(Xn A)aC, hence N(bJ)nB & N(XpA)nB and
N({bj}uan) & N(X)aB, therefore §(r, + 1) £rg). To prove

(a) notice that r = @4, Pf, ?‘ and Pgp contradicts (a.2),
(a.3), (a.1) and (a.3), respectively.

(b) none of the vectors 1, O, belongs to R_.
) V&) Y25, Y29 [

Suppose T (xX) € {9”_, P12, 926, ?z,} for some X. In these
cases ry = 4, Ty = 8 and further either r, =1, rg = 4 end
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rq & 8 or Ty ® 1, T, = 4 and Tg < 8. Pirst we discuss

the cases r = Q5 end r = ?2,, when r, =1 end rg = 4. Let X
be such that «(X) = r. Then XnB = {b;] for some 1¢[0,15];
ry = rg = 4 ylelds N(XnA)nB = N(bi)nB and XpnA = N(ai)nA.

Thus helther t’avie N(XnA)n A nor g'ieN(XnB)n A; since rg = 8,
it has to be & € N(X)n A, hence ¢; €XnC, N(XnA)n C = N(ey)n Ce
€ N(X)nC, N(gi)n Cc N(X)n C, therefore v, = 8, which is a
contradiction. In a similar manner we proceed if r = P or
TS

(c) $15 ¢ Rye If ]Q(x) = (4,4,1,0,7,7,5,4,23) for some X,
then from r; = 4, rg = 7 according to Lemma 2(a) we obtain
that there is 1€ [0,15] such that N(a;)n A = XnA. From XnC =
= ey} we should have rg = 4 (since r,=0),but rg = 5 ; 1f
XnC = {es} for some j # 1, we should have N(X)nC =

N({cs;ycit) nC, therefore r, 2 6, which is a contradiction.
ir™j 6

(d) 494 R,. Assume on the contrary that Kx) =
= (4,3,1,1,7,8,4,4,23) for some X. From ry = 4, r5 = 7 we ob-

tain esccording to Lemma 2(a) that N(ai)n A = XaA for some

1€ [0,15]. Further, from ry =1, ry = 4 we have XaC = {ci}
and XnD = {d,}, where j6 [0,15], d;6 N(d;)AD. rg = 4 ylelds
N(XnB)nD £ N(d;)nD; let us show that "GJ. $N(X)n B, From
't\;JeN(xn B)n B it would necessarily follow that bJ, ’t;jj would
have a common neighbour in X nB, which is impossiblee Since
obviously %’J¢ N(XnD)nB = {bd}’ it would have to be

gJeN(Xn A)n B, hence gde N(a;)n A, contredicting dieN(dJ).

(e) .“:.,4 R,. Let on the contrary A']((x) =(4,3,1,1,7,7,5,4,23)
for some X. Lemma 2 (a) gives then N(ei)nA = XnA for some
1¢[0,15]. Frou T7 = 5 we have XnC = {c;} (otherwise rq > 6)

- 132 -



and it has to be XnD = {dJ} for some je [0,15] such that
(d;,d4)¢ E(Qq) (if this were not true, we should have |N(X)n Cl=
= 4). But then [d v (N(&;) nD) € N(X) a D, hence rg> 5, which
is a contraaici.ai.

(£) 26 ¢ R,. If on the contrary A (X) = (4,1,1,3,7,5,4,7,23)
for some X, then from ry = 4 and rg = 7 according to Lemma 2 (a)
N(a;)nA = XnA for some 1€ [0,15] end since rg < 6 and r; = 4,
then necessarily XnB = {b}, XnC = fc;] and further N(X)o B =
= N(bi)n BuN(XnD)nB, N(X) qC = N(ci)nCuN(XnD)nC, hence
Tg = Tqy which is a contradiction.

(8) .3 ¢ Ry« If on the contrary ;({g) = (4,1,1,3,7,4,4,8,23)
for some X, then N(ai)n A = XaqA for some ie [0,15] according
to Lemma 2 (a); the identitles r, = ry = 1 and rg = rqg = 4
imply XnB = {bi}, XaC = {ci}, XnD € N(&;)nD, therefore
IN(X)a D] € IN(X)n A|], which is a contradiction.

(h) neither §*'nor g54 belong to Ro‘ Assume on the contrary
that for some X either uK(X) =Ly OF K(X) =g Then ry =
=Ty T 4, rp =1, ry = 0 and rg = 7. According to Lemma 2 (a)
N(ay)nA = XaA for some 1€ [0,15]. If Jr(XnA) = T (XaD),
then rq = 4 and ry £ 5, since N(X)nC = (N(XnA)UN(XnD))nC
and further either rg = 4 or g 2 6 (depending on whether
XnC = {ci} or XnC # {ciS), which is a contradiction. In the
case f(XnA) # JN(XnD) we have rg >4 and ke 4, which sgain
is a contradiction.

From (8) - (h) the desired inclusion follows. It is possible
to show by constructing suitable sets X that the converse in-
clusion and therefore the equality Ro = 4 Q, ?l,?Jr!%,‘/’; 523}
holds as well.

Now we proceed to the proof of the main assertion:
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Ir _ﬁ(x) = r€R,, then X fulfils (2) or (3) of Theorem 3.
We first discuss separately three cases:
(1) Let x(X) =re {?7,%}, i.e. either r = (5,2,2,0,8,
6,6,2,22) or r = (5,2,2,0,8,6,6,3,23). Two possibilities are to
be considered: (l.a) Assume N(ai)n A c XpaA, b;€ Xn B, cye XnC
for some i¢ [0,15]. Then, of course, N(gy) € X and (2) of
Theorem 3 is fulfilled. (1.b) Let (l.a) not hold; since according
to Lemme 3 the number k of circuits from & satisfies k > 1,
then by e XnB, ¢;€ XnC for eome i€ [0,15]. But N(ai)n A<cXnA
does not hold, hence (N(by)nB) - (N(XnA)nB) # @. From r) =5,
rg = 6 we obtain [(N(by;)nB) - (N(XnA)nB) = 1. Since r, = 2,
let je [0,15] be such that j $ 1 and bje XnB. From rg = 6 we
have N(b;)n B ¢ N({b;} u Xn A) n B. Further, J(N({bslu XnA)n B) =
= J(NC{esh uXnA)n C) = T((N(XNC)uN(XnA))nC), and, since
ry = 2, also cjexnc. Hence k > 2, and consequently the case
(1.b) cannot occur for r = ¢y + Since necessarily IN(ai)n N(eJ)nAl=
= 2, we obtain |N(a,)n N(aj)n (Xn4a)| =1 end 8p € N(ai)nN(aJ),
8p ¢ Xn A for some £ € [0,15]. Further [(NCay)n ) n (XnA)| =
= I(N(aj) NA)n(XnA)l = 3, hence INCag)n X | = lN(eJ)nXl =5
and at the seme time (ai,ec), (aJ.,ae)EE(Qs); X fulfils (3) of
Theorem 3, g.e.d.
(2) Let ﬁ(x)
T7,744,4,22), or r

r € {_Sq;l gu} yi.e. either r = (4,3,1,1,
(4,3,1,1,7,7,4,5,23). According to Lemma
Z(a), N(a;)n A = XnA for some i€ [0,15] ; ry=1lendry =4

necessarily imply XnC = f{c,}. b€ Xn B would mean N(a,) C X
and (2) of Theorem 3 would be fulfilled. Assume therefore
Pi¢ XnB. Let XnD = {d4}; J 4 1 (beceuse (cy,d;) € E(Qq)).
It has to be dJeN(di) - otherwise IN(X)n C| > 5 - and there-
fore also a;e N(ay), &85€ X. Further, [XnB . {b,}| = 4,
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IN(X0Bu {b;})n Bl = 7. In e similer menner as in the proof
of Lemma 2 (a) we can show that N(bg)nB = XnBu{bs] for
some L€ [0,15]. It must be L= J (€# j would imply
|N(X)nD| > 6, since N(idj,dc})n]) ¢ N(X)n D, contradicting
rg € {4,5}). But then |N(X)n D| = 4 end therefore it is
sufficient to consider the case r = g’»,‘;,. Then XnB = N(bd)n B -
- {b)}, therefore IN(aj)n X| = lN(bJ)n X|=5; (a4by),
(bj,bi)eE(Qs). X fulfils (3) of Theorem 3, q.e.d.
(3) Let J((X) =r = (yp, Lee. r = (4,1,0,4,7,4,4,7,22).
According to Lemma 2 (a), N(aj)na = XnA, N(dd)n D=XnD
for some 1,j€ [0,15]. As r, = 1 and IN(X)n B| = rg = 4, we
have 1 = J end XaB = {b,}, therefore |N(ay)nX| = IN(dy)n X|=
= 5 and at the seme time c; ¢ X, (ay,cy), (cgdy) €E(Qg); X ful-
fils (3) of Theorem 3, g.e.d.
The remaining cases are covered by the next two propositions:
Lemma 5. Let X (X) = reRr, - {?;/ ?q},r = (Pyyeeesrg)e
If 1*7(1‘2 + 1) > rg and (F(r3 +1) > Trq, then N(ay) € X for
some i€ [0,15] and X fulfils (2) of Theorem 3.
Proof, Obviously r meets the assumptions of (a) or (b)
of Lemma 2; therefore N(e;)nA S XnA for some i€ [0,15]. Then,
however, N(b,)n B € N(XnA)a B, hence N({p,}u (XnB))nB<
€ N(X) nB. From by ¢ X it would follow ((r, + 1)< |N({by}u
U(XnB))nB|<|N(X)nB]| = rg, which is a contradiction.
Therefore b, € X, in a similar way ¢, € X, hence N(a;) € X,q.e.d.
Lemma 6. Let x(X) = reR, - {93299 » £ = (rpyeeeyrg)e
If r, = 0, then N(a;) ¢ X for some 1 €[0,15] end X fulfile
(2) of Theorem 3.
Proof. Let X be such thet x(x) = r€R, - 1§3,§4§ » T4=0.

This meens I €} 4, Sz, €, ¢, ¥ur, $us, 1] 0 in these cases
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k = ry according to Lemma 3 and further 1 < k < 3, Ty =

= max(rl, VD(r3)). According to Lemma 2, N(ai)r)A S XnA. Let
first r # p,,, then r3 = 1 and assume j€ EO,lS] be such that
XnC = {cd}. Ir N(aJ)l\A - XnA %@, then 1 #+ j and also
N(cd)n C-N(XnA)nC % @ ; this gives To > ry + 1. From
N(ci)" C S N(XnA)nC we obtain Ty 2 tf(r3 + 1), contredicting
ro = max (rl, %(rj)).

For r = (.. = (4,3,2,0,7,7,6,3,23) we proceed as follows: if
c;¢ XnC, then |N(XnC vicyf)NC|l = 6 and at the same time
IXncu {ci} | = 3, contradicting ?7(3) = 7. Hence c;€XnC and
since k = T3, we conclude thst bie XNB holds as well, therefore
N(ai) c X, qee.d.

This completes the proof of Theorem 3.
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