

Werk

Label: Article Jahr: 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0023|log14

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

23,1 (1982)

ON RECURSIVE MEASURE OF CLASSES OF RECURSIVE SETS A. KUČERA

Abstract: It is shown that any class of recursive sets $\{\varphi_h\}_{n}: n\in\mathbb{N}\}$ where h is a function of degree a such that $g\cup Q \neq Q$ has Q-measure zero (Q-measure is a recursive analogue of the product measure on 2^N).

<u>Key words</u>: Recursive set, recursively enumerable set, degree.

Classification: 03D30, 03F60

It is known that the recursive sets are not uniformly recursive. C. Jockusch [4, Theorem 9] observed that there is a function h of degree $\leq a$ such that $\mathcal{G}_{h(0)}$, $\mathcal{G}_{h(1)}$,... are precisely the recursive sets iff $a \cup 0 \geq 0$. In this paper we prove that any class of recursive sets $\mathcal{G}_{h(n)}$: $n \in \mathbb{N}_3$ where h is a function of degree $\leq a$ such that $a \cup 0 \geq 0$ even has 0-measure zero. The concept of 0-measure is an effective analogue of the product measure on 2^N . It was introduced by 0. Demuth [1] for constructive real numbers and plays the important role in constructive mathematical analysis (see, e.g., [2]).

Our notation and terminology are standard. In particular we use the letters i,j,k,n for elements of $N=\{0,1,\dots\}$. We identify subsets of N with their characteristic functions.

A string is a finite sequence of O 's and 1 's. Strings may also be viewed as functions from finite initial segments of N into $\{0,1\}$. We use the letters \mathscr{C} , \mathscr{C} for strings, ℓ h(\mathscr{C}) is the length of \mathscr{C} and $\mathscr{C} * \mathscr{C}$ is the string which results from concatenating \mathscr{C} and \mathscr{C} . A subset A of N extends \mathscr{C} (A $\supseteq \mathscr{C}$) if the characteristic function of A extends \mathscr{C} . We assume that the set of all strings is effectively Gödelnumbered so that we can apply notions of recursion theory to strings. For functions f, g we say that f dominates g if $f(n) \geq g(n)$ for all but finitely many n. Let \mathscr{G}_n be the n-th partial recursive function in some standard enumeration of all partial recursive functions.

We shall use the Martin's result [6] that there is a function f of degree a which dominates every recursive function iff a' ≥ 0 ". We shall also use the following straightforward modification of the result.

<u>Lemma</u>: For any degree b and for any class $A = \{\varphi_{h(n)} : n \in \mathbb{N} \}$ of recursive functions where h is a function of degree b which dominates all functions of A.

We shall use a special case of the concept of O-measure (see [1]).

<u>Definition</u>: A class $\mathcal A$ of subsets of N has $\mathbb C$ -measure zero if there exist a recursive sequence R_0,R_1,\ldots of r.e. sets of strings and a recursive sequence y_0,y_1,\ldots of constructive real numbers (i.e. recursive reals) such that for every n

1) the real number $\sum_{\mathfrak{S}\in\mathbb{R}_m}2^{-i(h(\mathfrak{S}))}$ is equal to y_n and $y_n\leq 2^{-n}$,

2) for any set A, A ϵ $\mathcal A$, there is a string $\mathcal E$, $\mathcal E$ ϵ R_n, such that $\mathcal E$ \subseteq A.

It should be noted two important facts in the definition:

- i) $\sum_{G \in \mathbb{R}_m} 2^{-\ell h(G)}$ is required to be equal to a constructive real number for every n,
- ii) y,,y1,... is required to form a recursive sequence.

Zaslavskij and Cejtin [8] proved that the class of all recursive sets has Q-measure equal to 1. More information on the role of Q-measure and some survey of constructive mathematical analysis can be found in [2].

Theorem: If a is a degree such that $a \cup 0 \not = 0$ " then any class of recursive sets $\{\varphi_{h(n)}: n \in \mathbb{N}\}$ where h is a function of degree $\leq a$ has 0-measure zero.

<u>Proof.</u> It follows from [8] or from [5] that there is a r.e. set S_{0} of strings such that

- 1) $\sum_{G \in S_0} 2^{-\ell h(G)}$ is less than $\frac{1}{2}$,
- 2) for every recursive set A there exists a string \mathcal{G} , $\mathcal{G} \in S_0$, such that $\mathcal{G} \subseteq A$,

(i.e. there is a recursive binary tree T without infinite recursive branches such that the usual product measure on 2^N of the class of all infinite branches of T is greater than $\frac{1}{2}$). It should be noted that the real number $\sum_{G \in S_0} 2^{-\ell h(G)}$ is recursive in ℓ but it cannot be equal to any constructive real number (see [8]).

Let S_0, S_1, \ldots be a recursive sequence of r.e. sets of strings such that for every n $S_{n+1} = \{ \vec{n} * \tau : \vec{n} \in S_n \& \tau \in S_0 \}$.

Let $\{\mathcal{G}_{n,k}: k \in \mathbb{N}\}$ be a recursive enumeration of \mathbb{S}_n for every n (all \mathbb{S}_n are, of course, infinite). It is easy to verify that $\sum_{\mathcal{G}} 2^{-\ell h(\mathcal{G})} < 2^{-(n+1)}$ for all n.

Further, for any recursive set A we can effectively find a recursive function α such that for all n $A \supseteq \mathcal{C}_{n,\alpha(n)}$. So, let g be a recursive function such that if ϕ_n is a recursive set then $\varphi_n \supseteq \mathcal{G}_{k, \mathcal{G}_{\hat{\mathcal{Z}}(n)}(k)}$ for all k, n. Now let a be a degree such that $\underline{a} \cup \underline{0} \not \stackrel{*}{\Rightarrow} \underline{0}^{-}$ and h be a function of degree $\leq \underline{a}$ such that $\ \{arphi_{h(n)}\!:\! n\!\in\! \mathbb{N}\}$ is a class of recursive sets. We use the function g described above to form the class of recursive functions $\mathfrak{B} = \{ \varphi_{g_{n}^{i}(n)} : n \in \mathbb{N} \}$. The function gh is obviously of degree $\leq \frac{a}{2}$. By the theorem of Friedberg [3] (or [7] § 13.3) there is a degree b such that $b' = a \cup 0$. By the lemma there is a function f of degree $\neq b$ which dominates all functions of the class ${\mathcal B}$. Since ${\mathfrak h} \not= {\mathfrak Q}$ ", there is a recursiwe function σ which f fails to dominate. Thus, for all n, $\mathcal{G}_{gh(n)}(k) \leq \sigma'(k)$ for infinitely many k. By the properties of g we have $\mathcal{G}_{h(n)} \supseteq \mathcal{F}_{k,\mathcal{G}_{g,n,n}}(k)$ for all k, n. Let R_0,R_1,\dots be a recursive sequence of r.e. sets of strings such that for every n $R_n = \{ \mathscr{C}_{k,j} : k \ge n \& j \le \mathscr{O}(k) \}$. It follows that for all i, n there is a string $\tilde{\sigma} \in R_n$ such that $\varphi_{h(i)} \supseteq \tilde{\sigma}$. Further, it is easy to construct a recursive sequence of constructive real numbers y_0, y_1, \dots such that for all n $\sum_{\sigma \in \mathbb{R}_m} 2^{-\ell h(\sigma)}$ is equal to y_n and $y_n \leq 2^{-n}$. Thus, the class $\{\varphi_{h(n)}: n \in \mathbb{N}^2\}$ has Q-measure zero.

References

- [1] O. DEMUTH: The Lebesgue measurability of sets in constructive mathematics, Comment. Math. Univ. Carolinae 10(1969), 463-492 (in Russian).
- [2] O. DEMUTH and A. KUČERA: Remarks on constructive mathematical analysis, Logic Colloquium '78 (Boffa, van Dalen, McAloon editors), North-Holland, Amsterdam, 1979, 81-129.
- [3] R.M. FRIEDBERG: A criterion for completeness of degrees of unsolvability, J. Symbol. Logic 22(1957), 159-160.
- [4] C.G. JCCKUSCH: Degrees in which the recursive sets are uniformly recursive, Canad. J. Math. 24(1972), 1092-1099.
- [5] C.G. JOCKUSCH and R.I. SOARE: Π_1^0 classes and degrees of theories, Trans. Amer. Math. Soc. 173(1972), 32-56.
- [6] D.A. MARTIN: Classes of recursively enumerable sets and degrees of unsolvability, Z. Math. Logik Grund-lagen Math. 12(1966), 295-31C.
- [7] H. ROGERS: Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.
- [8] I.D. ZASLAVSKIJ and G.S. CEJTIN: On singular coverings and related properties of constructive functions, Trudy Mat. Inst. Steklov. 67(1962), 458-502; English transl. Amer. Nath. Soc. Transl.(2)98(1971), 41-89.

Matematicko-fyzikální fakulta, Universita Karlova, Malostranské nám. 25, Praha l, Czechoslovakia

(Oblatum 9.9. 1981)