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Introduction. The purpose of this paper is to describe
a topology on a function space which is useful when a relay
and its generalization are studied [1, 2]. A relay can be
considered as a non-linear operator from the set of real-va-
lued continuous functions defined on a compact interval I to
the space of two-valued right-side continuous functions defi-
ned on I equipped with the metric g(f,g) = J"Itf(t) - g(t)ldt.
It is obvious that a relay is not a continuous operator if RI
is endowed by the compact-cpen topology. The topology consi-
dered in this note is one of the simplest topologies in which
relay and its generalizations are continuous operators. In
this note basic properties of the set Yx endowed with this

topology are examined.
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§ 1. Notati the defin n th vel topo=

logy

l.1. Let X be a topological space and Z be a covering
of it. The star of a set ¥ in £ is defined to be the set of
all Z ¢ £ intersecting Y and will be denoted by st (Y,%).

Let us remind the definition of the hyperspace of lower
semicontinuity. See also [3). Let X be a topological space.
The hyperspace H_(X) of lower semicontinuity is defined as
follows: the underlying set of H_(X) is exp X where exp’X =
=exp X - {0} and {st (U,exp’X)|YAU%0, U is an open set}
is a local subbase at Y in H_(X),

For purposes of this paper let us denote H°(X) the spa-
ce formed from H_(X) by adding of an empty set. Local bases.
of the points from exp X are the same as in H_(X) and the lo-
cal base of the empty set is one element set § exp X}.

The set of all continuous maps on a topological space
Y we shall denote !x. For a point ye Y we shall denote gpy
the mapping on YX into H2(X) defined by qay(f) = f-l(y).

1.2. Definition. The level topology (L-topology) on the
set !x is the topology projectively generated by the family
{‘K’y;yey‘

It is useful to know how the local subbase of the level
topology on Yx looks. Let fe rx, yYe€Y and Q be a neighbor=-
hood from the local subbase of g>y(f). We shall denote the
neighborhood of f determined by these parameters by W. We
may suppose qay(f) to be a non-void set. Its neighborhood Q
is st (G,exp X), G being an open set with a non-void inter-
section with g)y(t). A mapping gGYX is an element of W iff
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the set g?y(g) is an element of Q; this is equivalent to
g-l(y)r\ G40. Let x be a point in G such that f£(x) = y. The
set G may be considered as a neighborhood of X. Then a map
g is in the neighborhood W iff in the neighborhood G of x
there is a point x  such that f£(x) = g(x’). Thus V(x) being
a neighborhood of a point x in X and U(V(x))(£) being the
set -{ge!x\ there is x~ in V(x) such that g(x’) = £(x)}, we

can describe the local subbase in fe!x as follows:

Proposition. The local subbase in f is formed by the
family {U(V(x))(£) | x is an arbitrary point in X and V(x) is
an arbitrary neighborhood of xj.

1.3. Proposition. Let Y be a Tl-space. Then the space
Yx endowed with the L-topology is Tl’ too.

Proof. Let f,ge’!x, f4g and geU(V(x))(£f) for an ar-
bitrary point x €X and its arbitrary neighborhood V(x). Then
there is a net {xy(y) e V(x) | V(x) € ¥(x)% for each x€X, V(x)
denoting the local base in x, such that g(xv(x)) = f(x). The
net converges to x and it follows from continuity of g that
the net {g(xv(x)) | V(x) € ¥(x)% converges to g(x). Since Y
is a Tl-space, ever); constant net has an only limit point
and therefore f(x) = g(x) for each x € X. This contradicts
the assumption that f4g.

1.4. Remark. No stronger separation axiom is possible
to prove for the space Yx endowed with the L-topology. This
statement becomes self-evident as soon as one realizes that

any open subset of rx is a dense subset of Yx.
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§ 2. The defin h vel topol 0 t

vergen a its ba r

2.1l. Definition. The level topology of compact conver-
A gence (LCC-topology) on YX is the topology projectively ge-
nerated from the L-topology and the topology of compact con-
vergence on v,

Speaking in the rest of this paper about a space Yx of
continuous mapping we shall always mean that the topology on

this space is the LCC topology.

2.2, Proposition. If the space Y is a Tl-space then the
space Yx is also a Tl-space.
Proof. Any space projectively generated from Tl-spaces

is a Tl-space.

2+.3. The aim of this paragraph is to prove providing
that X, Y are Tychonoff spaces and X is moreover a locally
compact space that Yx is a Tychonoff space. Two preparatory
lemmas will be proved first.

If X and Y are completely regular spaces, their topolo-
gies may be projectively generated by families of pseudomet-
rics. Let us suppose the topology of X is generated by the
family S = { &, ., and of Y by the family R ={gy3; p.
The local base of a point x& X are sets V(d7, {6k{§=1)(X) =
={yeX|vk = 1,...,m is 6 (x,y) < &'} for all real positi-
ve o and all finite subfamilies of S. The local base of a
mapping fe YX are sets Ule ,K, {5:1%?:1, {w( o"j, -(r)‘g}:il)
(xd)lljzl(f) = «\ge.Ylei =1l,.s0,n 18 @©;(£(x),g(x)) <€ for

x€K and for each j = 1,...,m there is x‘; such that
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....j £ r -
bk(xj’xj)<°j for each k = l,...,mj

for each real positive ¢ , each compact subset K of X, each

and g(x‘;) = f(xj)&,

finite subfamily of R and each finite ramily of points from

X together with their arbitrary neighborhoods.

Lemma. Let the topology on the set X be projectively
generated by the family of pseudometrics S = 16, ¢ oc A®

Let xeX and V = V(J', 183 ilzl)(x) be a neighborhood of X.

Then VciyeX | for each k = 1,...,m is & ,(x,y) =d9 -

n
J
S and any € > O there is y eV such that aj(y,z)é € for

Proof. Let z&V. For any finite subfamily {65, of
j=1,e..,n. If the subfamily 4 Gkiﬁﬂ is chosen then
& (x,2) = &, (x,y) + 6, (y,2)<o + e for k = 1,...,m and eve-

ry positive € . Thus sk(x,z) < ¢J” and the lemma is proved.

Lemmg. Let X, Y be Tychonoff spaces, X be locally com-
pact, £e¥¥, Ule,K, ¢, V(16,30 1)(x))(£) = U be a neigh-
borhood of £ such that V(J',{e& 3y-;) (x)cV(x) and V(x) is a

compact neighborhood of x. Then for €’ < g and J < o is U=

UCe” K, @,V(d”, 46 3=, (X)) (£) c UL
Proof. Let geUl. e shall show at first that there is
a point ye& X such that &, (x,y)<d for k = 1,...,m and £(x)

n

g(y). We know that V = V(J“,4 6k’s§=1)(x)cizcx | 8, (z,x)£

&' for k = 1,...,mbc V(e , {63 ) (x)c V(x) and that V is

N

a compact set. Assuming f£(x) is not in g(V) there exists a
neighborhood of the set g(V) which does not include £(x).
Choosing this neighborhood and the set V as parameters of a
neighborhood of the mapping g, we have got the neighhorhood
of g which has an empty intersection with U(e’,K,p V(G
@31, (x))(£) and this is in a contradiction with the
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assumption that g is in Ul'
It 1s e well-known fact that ©(£(x),g(x)) < € for each
x €K and thus ge U,

Corollary. Let the spaces X, Y be the same as in the
preceding lemma. Let fe Yx, U(e ,K, {piiril:l),
m
fv( JJ,{dg}kgl)(xj)_’c?:l(f) = U be a neighborhood of f such
m
that the inclusion V( oy io iy d)) (x D e vix,) 1o valid for
each § = 1,...,m and V(XJ) is a compact neighborhood of the

point xJ. Let us denote ‘

U, = U(re kK, {101}:___1,{?(1' I, -le‘ﬂf:il)(xj)f?ﬂ)(f), for a
real positive number r. Then for r from the interval (0,1) is
U,cU.

Proposjtion. Let X, Y be Tychonoff spaces ard X be a
locally compact space. Then X is a Tychonoff space.

Proof. Let £ be an element of YX, A be a closed subset
of s o and do not let f be in A, There is a neighborhood of f
which fulfils the assumptions of the above corollary and
which has an empty intersection with the set A. It will be
denoted again U. It is 'ﬁch for re(0,1) and if se (0,1)
and r<s, then U,c Ugc U,

The function F:YX—s [0,1] is defined so that Flg) =1
for gc!‘x\U and F(g) = inf{rc¢ (0,1) | ge U,%¥ for geU. Then
F(£) =0 and F(A) = 1. The Proof of continuity of that func-
tion is similar to that for the function from the Urysohn
lemma. Hence the complete regularity of the space !x is pro-

ved. Using now the proposition 2.2 i3 the proof completed.

2.4. Proposition. Let (X,6) and (Y,®) be metric spa-
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ces. Let (X,8) be &-compact and locally compact and let
(Y,©) be complete. Then the space X is a Baire space.

Proot. At first a few words about notations used in
this paragraph. The local base of Yx will be a modification
of the local base from the previous paragraph. Using the
fact that Y, X are metric spaces, the notation may be simp-
Lifted: UCe K, (o Ax 35 )))(e) = fge ¥loex),ex))< g
x< K and for each § = 1,...,m, there exists xJ such that
g(xj) = f(xj) and 5’(x3,xj) <d3.

Substituting < for < in the above notation the modi-
fied local base is obtained. An element of this new base is
denoted: T (e X, (o ix 35 1)) (D).

Let g be an element of U = Ul e ,K (d‘,ixJ}m_l))(f).
Let us denote {xJ(U,g)§J=l an arbitrary set of the cardina-
lity m and such that for each j = 1,...,m it includes an e-

lement xj for which g(xj) = f(xJ.) and 6’(xj,xj)=o

for

The local compactness and the & -compactness of the spa-

ce X implies existence of the increasing sequence of compact
subsets of X the sum of which is X.

Let ‘iHiiT__,l be a sequence of open and dense subsets of
¥, £ be a mapping from Y¥ and U = e K, (& i x 30 ()
be its neighborhood from the local base. To prove that
is a Baire space, a mapping he U must be found such that

v
h eic\.1 Hy.

The density of Hl implies that there is hle Hl such
that hle U. There is a neighborhood of h1 included in Han
as this intersection is an open set. This neighborhood Ul =

= U( 61,1(1 1 (d7 4 J*;]-l))(hl) may be chosen such that
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n
€, <e/2, ~ixJ(U,hl)§"‘ Cfo}J =€ Kcky, d)<07/2

and for each x4(U,h;) holds: ix |6‘(x,xJ(U,hl )<diic
cix I6‘(x,xJ)<d'f .

Analogously there is a mapping hze Uln H and there is
its neighborhood included in Ulﬂ Hz. This neighborhood U
= Ule 21Ky ,(d'z,ixJ}J 1)7(h;) may be chosen such that

e 2,2
2 < €)/2, -[xj(Ul,hz)}J=1c{xJ§J=lc Kiz,l(ilc Kiz, o< d /2
and that for each x?]I(Ul,hz) holds: {x |6(x,x§(Ul,h2)) <

< J2§C{x I6(x,x§)< 5'15. Analogously are defined mappings
hn and their neighborhoods U for all natural n.

Thus there is a sequence -{U } =1 Such that Un+1cU for
every n€ N. This sequence forms a base of a filter F and
this filter is a Cauchy filter in the uniformity of compact
convergence of YX. The rilter ¥ converges to a mapping h.
It will be shown that h is the mapping which is sought.

Let U = Ule Kk, ,(cfn,{ngm'_‘l))(hn) be a neighborhood
from the sequence {U sn-l' For each x‘j the sequence -lzk§ k=0
will be constructed by induction such that 2z, = xJ and sup-
posing the element 2y has been defined, the element Zy4y €
)§ 0+

otk (g Jr_xlk 1s chosen such that &(zy,z,,,)<

€y U By
£y ard hoe(Z) = hn+k+l(zk+l)' The sequence 42]({0;:0
is a Cauchy sequence and is included in the closed cfn-ne:lgh-
borhood of the point xg. There is a limit point z of this
sequence lying in this neighborhood.

Showing that h(z) = h (xJ) it is proved that for each
xj there 1is xg such that d(xJ,x’J‘ ) £ and h(x.r; ) =
= hn(x,j)' To show that h(z) = hn(xJ y 1t 1is surficient to
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prove that @(h(z),h J)) = 0. It is true that @(n(z),
hn(x )) £ p(n(2),hlz)) + @ (n(zy) hm_k(zk) +
+ @(h ., (z)) ,hn(xj)) = @ (h(z),h(z)) + E(h(z),n ., (z),
be cause hnﬂ:(zk) = hn(xg). The terms @ (h(z),h(z})),
S'o(h(zk),hn_,_k(zk)) converge to zero as k — + cc because h
(=7

is a continuous mapping and because the sequence 'ihn+k}k=0
converges to h in the topology of pointwise convergence.
Thus (@ (h(z) ’hn(xj)) = 0.

It is left to prove that (@(h(x) ,hn(x)) £ £, for each
xe Ki . As a limit point of the filter ¥ is also a cluster

point of this filter, h is an element of U Tl -fge!x'
@ (hy(x),g(x)) = €, for xeKi -

Let us sum up what has been proved. It has been proved
that heUnCU for each natural number n and that UnC Hn.
v
Hence h 54.'04 Hy N H.

2.5. In this paragraph it will be proved that the spa-
ce RR is separable. At first we shall remind the definition

of a piecewise linear function and a well-known lemma.

De t . We shall call a continuous function f from
R into R piecewise linear if there is a finite set Sg such
that for each x € D(£)~ Sp neighborhood of x can be found
on which the function f is linear.

Lemma. Let £:(T,,Ty;)—> R be a continuous function.
Then for each € = O there is a piecewise linear function
8g:LTy, Ty} —> R such that gglT) = £(T) 18¢(Ty) = £(T,) and

sup 1 £(x) - gx) < <-
Ta»T‘!]

-97 -



Pr tion. For each feR® and each neighborhood U of
f in the LCC-topology there is a piecewise linear function
gel.

Proof. It may be supposed that U = U(g ,K,( J,{xJ}?zl))
(£), X = [To,Tll,{xJ}?=1c K and x;<...<x . Then on the in-
tervals [xJ,xj+1] for j = 1,...,m = 1 and on the intervals
[To,xll, [xm,TIJ there are piecewise linear functions posses-
8ing the properties of the function 8 . Concatenation of
these functions produces a piecewise linear function defined
on the interval [To’Tf]‘ A new piecewise linear function can
be defined on R such that its restriction to the interval
CTO,Tl] is identical with the former function and that this

latter function is an element of U.

Proposition. Let Q denote the set of all plecewise 1li-
near functions fe.RR such that Sf's are subsets of rational
numbers and coefficients of linear parts of these functions
are also rational numbers.

Then

i) Q is a countable set

11) Q is a dense subset of the subspace of all piece-

wise linear functions.

Proposition. The function space RR is separable.
Proof. The countable set Q is dense in the subspace
of all plecewise linear functions and this subspace is den-

se in the space RR. Hence Q is a dense subset of RR.

2.6, The aim of this paragraph is to prove that the

local character of RR is countable and that generally the
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space Yx is not normal.

Propogition. The local character of the space RR is
countable.

Proof. Let Ef denote the set of strict local extremes
of fe.HR, ¥ system of all closed intervals which ends: are
integers, Ry the union of E; and of the set of rational num-
bers. Then the family {U(1/n,x,(1/n,{xJ}‘;=l))(f)| nel,
{xd}?=lc R, and K& X § 1s countable and forms a local base
at f.

Lemmg. The set of all constant mappings in YX is clos-
ed. The subspace formed by this set is discrete.

Proof. The set of all constant mappings is closed in
the topology of compact convergence and thus also in the
LCC-topology. The second part of the lemma follows from the
definition of the LCC-topology.

Proposi tion. The space RR is not normal.

Proof. As RR is separable, there is only a continuum
of continuous real functions defined on RR. If the space RR
were a normal one, it would have to be at least ZC of con-
tinuous real functions defined on RR in order that each con-
tinuous function defined on the set of all constant mappings

may be extended on the whole space RR.

2.7. In this paragraph the arcwise connectedneas of
the space XR will be examined. The final result is that pro-
viding X i1s an arcwise connected space, the space XR is also
an arcwise connected. The final result will follow from se-

veral propositions which will be proved at first.
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Let £:R—>X be a continuous mapping. The mapping F:
: [0,/21—> XX 15 defined such that providing t < /2
F(t)(x) = £(0) for ixl<tg t

£(x - tg t) for x>tg t

n

£(x + tg t) for x<-tg t
and for t = &/2 is F(&r/2)(x) = £(0).

Proposjtion. The mapping F: [0,sr/2] — R 4 continu-
ous in the L-topology on the space XR.

Proof. Let t el0, /2] and U = U( & yixg} '1‘=1) is a neigh-
borhood of F(t). A neighborhood V of the point t is sought
for which F(V)c U.

At the first part of the proof it will be assumed that
t+7/2 and will be proved that supposing u €[0, /2) is such
that 1tg u - tg t | <o, then there is x4 for each i = 1,...
eesyn such that Ix; - %31<J and F(u)(xi) = F(t)(xi).

Let x; from the set {x} ?=l be chosen. Without loss of
generality it may be supposed that xiZ O. Then either
1) x;£tg t or 2) x> tg t.

Ad 1) F(t)(x4) = £(0) and either X44 tg u and thus
F(u)(xi) = £(0) or x3> tg u and x_{ may be set equal to tg u.

Ad 2) F(t)(xi) = f(xy - tg t) and xi may be set equal
to (x4 + tg u -~ tg t). Then x£>tg u and F(u)(x;_) =
= f(x{ - tgu = f(xi - tg t).

Continuity of the function tangens on the interval
[0,a/2) implies there is a neighborhood V of t such that
for each ueV is ltgu=-tg tl < J.

The second part of the proof is for t = & /2. Then the
neighborhood V is the set fu el0, /21| tg u>x; for every
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i= 1,-.-,“30

Propogition. The mapping F is continuous in the topo-
logy of compact convergence on XR.

Proof. Let us define mappings &:[0, w/2)=R — X,
&(t,x) = F(t)(x), w:l0,a/21<R—>R, for t*s/2 is
@(t,x) =0 if Ixl<tg t, P(t,x) = (x - tg t) if x>tg t,
@(t,x) = (x + tg t) if =x>tg t and for t = /2 1s
@(ar/2,x) = O, The mapping ¢ is continuous and thus ® =
= fo @ 1is also continuous. Using the theorem of exponenti-

al correspondence gives the required result.

Propogition. The mapping F is continuous in the LCC-
topologye.

Proof. It follows from the properties of the projecti-
vely generated topology.

Let ge XR, X, € R. Let us define a mapping G:[o, /2] —
—> x® guch that providing t+a /2

G(t)(x) = g(xo) for | x = xolé tg t

glx - tg t) for ix - xo\.>tg t
glx + tg t) for Ix, - x|>tg t
and for t = /2, Glar/2)(x) = glx,).

Proposition. The mapping G is continuous in the LCC-
topology.

Corollary. Let feXR, geX‘R and £ = const (g(x,)).
Then there are continuous mappings G:[0, #/21—> B and H:
:10, /23 —> X such that G(0) = g, G(s/2) = £, H(O) = £
and H(sr/2) = g.

Proof. The map G is the mapping from the preceding
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proposition and H = G o y where y(t) = /2 - t for t e
€L0,x/2]).

The corollary may be also stated as follows: Let £, g
be mappings from XR. If £ is a constant mapping and if the-
re 1s a point x eR such that £lx,) = g(x,) then the map-
pings f and g lie in the same arc-component of the space XR.

It follows from this formulation that mapping f and g
from XR are in the same arc-component if there is a point
X,€ R such that £(x.) = g(xo).

Proposition. If the space X is arcwise connected, then
the space xR is arcwise connected.

Proof. Let f, g be mappings from XR. Let us choosa
points X, and Yo x°#=yo. Arcwise connectedness of X implies
there is a mapping he X® such that nix)) = f(xo) and h(yo) =
= g(yo). The mappings f and h are in the same arc-component
and also the mappings g and h are in the same arc-component.
Thus f and g are in the same arc-component and the space xR

is arcwise connected.

Corollary, If the space X is arcwise connected, then
the space XR is connected.

2.8. Various algebraic operations are possible to de-
fine pointwise on the space Rx. It is easy to verify that
the operation f—s =f is in the LCC-topology continuous.
Let us now consider the operation of addition. If this ope-
ration were continuocus, the Space RX would be a topological
group. That it is not the case, demonstrates the following
example. In this example even the space X is the space of

real numbers, i.e. the space possessing a lot of nice topo-

- 102 -



s is a Ty-

logical properties, implying for example that R
chonoff space.

Let £ and g be two different constant mappings from
BB, Let U = Ule K, (d {xd 1)) (£,
V = V(% ,L,(§ ,{ysjey))(g) be their arbitrary neighbor-
hoods from the local bases. There are £f'e U mnd g'e V such
that £'> £ for xeR - {xifg___l and g'> g for x€R -{yi l:lll=1
and 4x{¥]_ A 1y{ jo; = O- Thus £” + g’>f + g for all real
numbers and £~ + g' cannot lie in any small enough neighbor-

hood of £ + g.
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