

Werk

Label: Article **Jahr:** 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0020|log8

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 20, 1 (1979)

ON ORDER TOPOLOGY OF SPACES HAVING UNIFORM LINEARLY ORDERED BASES R. FRANKIEWICZ, W. KULPA

Abstract: It is shown that a dense in itself topological space X which has a uniformity with a linearly ordered (with respect to star-refinements) base of uncountable cofinality is an ordered topological space.

 $\underline{\text{Key words}}\colon$ Order topology, linearly ordered base of uniformity.

AMS: 54F05, 54E15

A class of topological spaces which have uniformities with linearly ordered bases (shortly, with uniform 1.0. bases) contains all metrizable spaces. The topology of a metrizable space is induced by a uniformity with a countable base linearly ordered (with respect to the star-refinements of coverings). Herrlich [1] has proved (and Lynn [3] for separable metric spaces) that for each metric space X with dim X = = 0, the topology of X is induced by a linear order. Our result can be treated as an extension of the results of Herrlich and Lynn. If a space X has a uniformity with 1.0. bases then X is metrizable or X is paracompact, dim X = 0, and X is a dense subspace of the limit of am inverse system over well-ordered set of discrete spaces [2]. Consequently, if X is dense in itself, then the topology of X is an order topo-

logy.

If a space X with a uniform 1.0. base of uncountable cofinality has "many" isolated points then we do not know if it is true that the topology of X is an order topology. We can apply proof that such a space is a GO-space, i.e. a subspace of an order space. The special case, every topological group with linearly ordered base of neighborhoods of the neutral element is orderable, was proved in [4].

Lemma 1 [2]. If a space X has a uniform 1.0. base B of an uncountable cofinality, of $B > \Re_0$, then for each family $\mathcal R$ of open sets with card $\mathcal R$ \prec of B , the intersection $\cap \mathcal R$ is an open set.

Proof. Let $x \in \wedge \mathcal{R}$. For each $G \in \mathcal{R}$ let us choose a $P_G \in B$ such that $\operatorname{st}(x,P_G) \subset G$. Since $\operatorname{card} \{P_G : G \in \mathcal{R}\} < of$ B, there exists $P \in B$ such that $P \notin P_G$ ($P \notin Q$ means that P is a refinement of Q) for each $G \in \mathcal{R}$. Hence $\operatorname{st}(x,P) \subset \cap \mathcal{R}$. Thus $\cap \mathcal{R}$ is an open set.

From Lemma 1 it follows that if a space X has a uniform 1.0. base B with cf B > $\#_0$, then each G_{σ} subset is open in X, consequently, dim X = 0 [2]. Indeed, let $\{V_i : i = 1, \ldots, k\}$ be a finite functionally open covering of the space X. There exists a functionally closed covering $\{F_i : i = 1, \ldots, k\}$ such that $F_i \subset V_i$, $i = 1, \ldots, k$. Each F_i is a G_{σ} set, so it is clopen set. Put $U_1 = F_1$ and $U_j = F_j - \bigcup \{U_i : i < j\}$. The family $\{U_i : i = 1, \ldots, k\}$ is an open covering of X, $U_i \subset V_i$, $U_i \cap U_j = \emptyset$ for i = j, $i, j = 1, \ldots, k$. Thus dim X = 0.

<u>lemma 2 [2].</u> Each topological space which has a uniform l.o. base is paracompact.

Proof. Since each linearly ordered set contains a cofinal and well-ordered subset we may assume that $B = \{P_{\infty} : \infty < < \gamma \}$, $P_{\infty} \not\vdash_{x} P_{\beta}$ iff $\infty > \beta$, is a well-ordered with respect to the star-refinements uniform base for X. Let P be an open covering of X. Define $Q = \{st(x, P_{\infty+2}) : st(x, P_{\infty}) \in u, u \in P, x \in X \}$. The covering Q is a star-refinement of P. This implies that X is a paracompact space.

Lemma 3 [2]. If a space X has a uniform 1.0. base with cf B > x_0 , then it has a uniform 1.0. base B' consisting of open coverings of order 1.

Proof. Let B = {P $_{\infty}$: $\infty < \gamma$ }, $\gamma = \text{cf B}$, be a well-ordered uniform base on X. Define zero-dimensional base B' = {Q $_{\infty}$: $\infty < \gamma$ }. Since dim X = 0 and X is paracompact, there exists an open covering Q₁ ξ_{∞} P₁ and Q₁ is of order 1. Let us assume that Q $_{\infty}$, $\infty < \beta < \gamma$, are defined. By Lemma 1, there exists an open covering P such that P ξ_{∞} P_{\beta} and P ξ_{∞} Q $_{\infty}$, $\infty < \beta$. Let Q_{\beta} \text{P} be an open covering of order 1.

Theorem. If a dense in itself space X has a uniform l.o. base of uncountable cofinality, then there exists a linear order on X inducing the topology of the space X.

Proof. Notice that T is an infinite set, then there is a linear order \prec on T such that each $x \in T$ has elements x - 1 and m + 1 in a sense of the discrete order \prec . Indeed, let \prec be an arbitrary linear order on T, then the lexicographic order on $T \times Z$, where Z is the set of integers is a discrete order. Since card $T = \text{card}(T \times Z)$, hence T has a discrete order without the first and the last element.

Let B = $\{P_{\infty} : \infty < \mathcal{F}^{\frac{1}{2}}, \mathcal{F} = \text{cf B}, P_{\infty} \succeq_{k} P_{A} \text{ iff } \infty > \beta,$

be a uniform well-ordered base consisting of open coverings of order 1. For each $x \in X$ put $x(\infty) = u \in P_{\infty}$, such that $x \in u$, and for each $u \in P_{\infty}$ let $\pi(u) = \{v \in P_{\infty+1} : v \in u\}$. Since X has be isolated point, without loss of generality we may assume that for each $u \in P_{\infty}$, card $\pi(u) \geq \kappa_0$.

Now, assume that for each $u \in P_{\infty}$, $\infty < \mathcal{F}$, it is chosen a discrete order < (without the first and the last element) on $\sigma_{\Gamma}(u)$ and let us assume that it is given a discrete order < on each P_{β} , where $\beta < \gamma$ is a limit ordinal.

Define a linear order on X. For each x, $y \in X$ let us put x < y iff x(x) < y(x), where $x = \min \{f \in \mathcal{F} : x(f) \neq y(f)\}$.

Now, we shall show that the topology induced by the order < is equal to the topology of the space X. Notice that $B^* = \bigcup B$ is a base for the topology of X. Let $z \in u \in P_{\infty}$, $\infty < \infty$. There exist $z(\infty + 1) - 1$, $z(\infty + 1) + 1 \in \pi$ (u). Choose x, y \in X such that $x(\infty + 1) = z(\infty + 1) - 1$, $y(\infty + 1) = z(\infty + 1) + 1$. Notice that $(x,y) \in u$. Now, consider an interval (x,y) and $z \in (x,y)$. There is the least ∞ , $\beta < \gamma$ such that $x(\infty) \in z(\infty)$ and $z(\beta) < y(\beta)$. If $\alpha \neq \beta$, then $z(\beta) \in (x,y)$. If $\beta \neq \infty$, then $z(\alpha) \in (x,y)$. But $z(\alpha)$, $z(\beta)$ are open neighbourhoods of the point z. Thus the topologies are equal.

References

- [1] H. HERRLICH: Ordnundsfähigkeit total-diskontinuierlicher Räume, Math. Ann. 159(1965), 77-80.
- [2] A. KUCIA, W. KULPA: Spaces having uniformities with linearly ordered base, Prace Nauk. Uniwersytetu Slaskiego, Prace Mat. 3(1973), 45-50.

- [3] I.L. LYNN: Linearly orderable spaces, Proc. Amer. Math. Soc. 13(1963), 454-456.
- [4] P.J. NYIKOS, H.-C. REICHEL: Topologically orderable groups, Gen. Top. Appl. 5(1975), 195-204.

Uniwersytet Śląski Instytut Matematyki ul. Bankowa 14, Katowice POLSKA

(Oblatum 14.3.1978)