

Werk

Label: Article **Jahr:** 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0020|log65

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 20, 4 (1979)

(P)-SETS, QUASIPOLYHEDRA AND STABILITY Jiří REIF

Abstract: In this paper the property (P) of convex subsets of normed linear spaces defined in [7] is characterized in terms of the relative openness of affine maps. As an immediate consequence we obtain that any finite dimensional compact convex (P)-set K is stable, that is (see e.g. [4]) the midpoint mapping $(x,y) \longrightarrow \frac{1}{2}(x+y)$ is relatively open on $K \times K$. Also, we characterize in the class of normed linear spaces 1_1 -products which are (P)-spaces.

 $\underline{\text{Key words}}$: Normed linear space, (P)-set, stable set, quasipolyhedral set.

Classification: 46B20

If it is not stated otherwise, our notation and terminology is that of [5].

Let X, Y be topological spaces, $f:X \longrightarrow Y$ a mapping, $A \subset X$ a subset and $x \in A$. The mapping f is said to be relatively open on A in x if f maps each neighbourhood of x in A onto a neighbourhood of f(x) in f(A). The mapping f is relatively open on A [relatively open respectively] if f is relatively open on A in each $x \in A$ [f is relatively open on X].

Brown [3] characterized normed linear spaces for which the metric projections onto all finite dimensional subspaces are lower semicontinuous and called them (P)-spaces. For a list of (P)-spaces we refer the reader to [2].

According to Wegmann [7] a normed linear space X is a (P)-space if and only if the closed unit ball K of X has the property (P), i.e.: for any $x \in K$ and $z \in K$ such that $x + z \in K$ there exists a neighbourhood U of x in K and c > 0 such that $y + cz \in K$ for any $y \in U$.

We present here

(1) Theorem. Let K be a closed bounded convex subset of a normed linear space X. Then K has the property (P) if and only if for any normed linear space Y and any relative- ly open linear mapping $T:X\longrightarrow Y$ such that $\dim T_{-1}(0)<+\infty$, T is relatively open on K.

Before proving we formulate

(2) Lemma. Let K be a closed convex subset of a normed linear space X. Then K has the property (P) if and only if K has the following property (we denote if (P_1)): for any $x \in K$ and $x \in K$ such that $x + z \in K$ and any $\varepsilon > 0$ there exists a neighbourhood U of x in K such that $y + (1-\varepsilon)z \in K$ for any $y \in U$.

Proof. Suppose that K satisfies the condition (P) but not the condition (P₁). Thus there exists some $x_0 \in K$ and $z \in X$ such that

$$x_0 + z \in K$$

and a sequence $\{x_n\}_{n=1}^{\infty}$ of elements of K such that x_n tends to x_n but for $s_n = \sup\{t \ge 0; x_n + tz \in K\}$ there is

(ii)
$$\lim_{n} \sup_{n} s_{n} = s < 1.$$

By choosing a subsequence we can suppose that s_n con-

verges to s. Then for $u_n = x_n + (1-n^{-1})s_n z$ we have $u_n \in K$ by definition of s_n and u_n converges to $x_0 + sz$. By virtue of (i),(ii) and the property (P) of K (applied to $x = x_0 + sz$) there is c > 0 such that $u_n + c(1-s)z \in K$ for large n which is the same as $x_n + \lceil (1-n^{-1})s_n + c(1-s)\rceil z \in K$. However (ii) implies $(1-n^{-1})s_n + c(1-s) > s$ for large n which contradicts the definition of s_n .

The proof of Theorem (1). Let K have the property (P), T be as in (1) and $x_0 \in K$ be arbitrary. Suppose T is not relatively open on K in x_0 so that there exists a neighbourhood U of x_0 in K and a sequence $x_n \in K$ such that $T(x_n)$ tends to $T(x_0)$ but $T(x_n)$ has no inverse image in U for any $n \ge 1$.

Since T is relatively open on X there exist $\hat{x}_n \in X$ such that $T(\hat{x}_n) = T(x_n)$ and \hat{x}_n converges to x_0 . As $T_{-1}(0)$ is finite dimensional we can suppose $\hat{x}_n - x_n$ to be converging to some $x \in T_{-1}(0)$, hence x_n converges to $x_0 - x \in K$ (K is closed). By virtue of Lemma (2) we can apply the property (P_1) to $x = x_0 - x_0$ so that $x_n + x_n \in K$ for some sequence x_n converging to one. The sequence $x_n + x_n \in K$ converges to $x_n \in K$ but $x_n + x_n \in K$ is an inverse image of $x_n \in K$ in K, a contradiction.

For proving the other implication suppose $x \in K$ and $z \in X$ be such that $x + z \in K$. Of course we can suppose $z \neq 0$. Denote $\mathcal{E} = \frac{1}{3} \| z \|$, N the linear span of z and $T: X \longrightarrow X/N$ the factorization mapping. Since T is relatively open on K by our assumptions the image of the \mathcal{E} -neighbourhood of x + z in K contains a \mathcal{O} -neighbourhood of T(x+z) = T(x) in T(K) for some $0 < \mathcal{O} < \mathcal{E}$.

Let U be σ' -neighbourhood of x in K. Then for any $y \in U$ we have $||T(y) - T(x)|| < \sigma'$ since ||T|| = 1. Hence T(y) has

an inverse image u in K such that $\|u - (x+z)\| < \epsilon$. Of course u = y + cz for some constant c because of the definition of T.

Hence $\|\mathbf{cz} - \mathbf{z}\| < \varepsilon + \|\mathbf{x} - \mathbf{y}\|$ so that $3 \varepsilon |1 - \mathbf{c}| < \varepsilon + \delta' < 2\varepsilon$ which implies $c > \frac{1}{3}$. Thus $\mathbf{y} + \frac{1}{3}\mathbf{z} \in K$ and the proof is finished.

(3) <u>Corollary</u>. Let K be a closed bounded convex subset of a finite dimensional space such that K has the property (P). Then K is stable (see the introduction).

Proof. The subset $K \times K$ of $X \times X$ is easily seen to have the property (P).

For example any finite dimensional polyhedron of any convex body the boundary of which contains no non-trivial segment has the property (P) (cf. [3] and [7]). Also any (QP)-space in the sense of [1] is a (P)-space ([7]).

We present here a definition of a (QP)-space which is equivalent to that of [1], however more convenient for our aims.

(4) <u>Definition</u>. Let X be a normed linear space, Kc X a convex subset and $x \in K$. We shall say that K is (qp) in x (quasipolyhedral) if there exists $\sigma' > 0$ such that if $x + h \in K$ for some $h \in X \setminus \{0\}$, then $x + \sigma' \frac{h}{\|h\|} \in K$. We shall say that K is (qp) if it is (qp) in any $x \in K$. A normed linear space X is said to be a (QP)-space if the closed unit ball of X is (qp).

It can be seen easily that a convex set K is (qp) if and only if it is locally conic in the sense of [6].

Clearly (closed) halfspace is (qp) and the intersection of a finite number of (qp)-sets is again (qp). Compact (qp)-sets are exactly finite dimensional polyhedrons since the extreme points of a (qp)-set K have clearly no cluster point in K.

For any set I the space $c_0(I)$ is a (QP)-space and also the product of (QP)-spaces in the sense of c_0 is again a (QP)-space ([1]).

Now we formula te

(5) Theorem. Let $\{X_i\}_{i\in I}$ be a family of normed linear spaces, card I>1, dim $X_i\geq 1$ for any $i\in I$ and let X be the product of $\{X_i\}_{i\in I}$ in the sense of $l_1(I)$. Then X is a (P)-space if and only if the set I is finite and X_i is a (QP)-space for any $i\in I$.

Proof. If the set I is finite and X_i is a (QP)-space for any ieI, then X is a (QP)-space ([1]) and thus X is a (P)-space ([7]).

On the other hand suppose X is a (P)-space. Then the set I is finite ([2]). The rest of the proof is an elementary calculus using the definitions.

Thus Theorem (5) gives examples of normed linear spaces which are not (P)-spaces.

As to the stability of (qp)-sets we have

(6) Proposition: Any bounded (qp)-subset of a normed linear space is stable.

The proof follows immediately from

(7) Lemma. Let X, Y be normed linear spaces, $T:X \longrightarrow Y$ a linear mapping, KCX a bounded convex set and x \in K. Suppose T(K) is (qp) in T(x). Then T is relatively open on K in x.

Proof. Denote y = T(x). Let $\sigma > 0$ be such that $y + \sigma \|h\|^{-1}h \in T(K)$ whenever $y + h \in T(K)$ for some $h \neq 0$. We can suppose the diameter of K is positive. Let $\varepsilon > 0$ be arbitrary such that $\varepsilon < \text{diam } K$. We show that T maps ε -neighbourhood of x in K onto at least ∞ -neighbourhood of T(x) in T(K) for $\infty = \varepsilon \sigma'$ (diam K)⁻¹.

Let $\mathbf{v} \in \mathbf{T}(\mathbf{K})$ be within ∞ from \mathbf{y} , $\mathbf{v} \neq \mathbf{y}$. Then for $\mathbf{w} = \mathbf{y} + \mathbf{v} + \mathbf{$

References

- [1] AMIR D. and DEUTSCH F.: Suns, moons and quasi-polyhedra, J. Approximation Theory 6(1972), 176-201.
- [12] BLATTER J., MORRIS P.D. and WULBERT D.E.: Continuity of the set-valued metric projection, Math. Ann. 178(1968), 12-24.
- [3] BROWN A.L.: Best n-dimensional approximation to sets of functions, Proc. London Math. Soc. 14(1964), 577-594.
- [4] CLAUSING A. and PAPADOPOULOU S.: Stable convex sets and extremal operators, Math. Ann. 231(1978), 193-203.
- [5] DAY M.M., Normed linear spaces, Springer Verlag Berlin-Heidelberg-New York 1973 (third ed.).
- [6] HARAZIŠVILI A.B.: On the locally conic sets (in Russian), Soobšč. Akad. Nauk Gruzin.SSR 80(1975), 29-32.
- [7] WECMANN R.: Some properties of the peak-set-mapping,

J. Approximation Theory 8(1973), 262-284.

Katedra matematiky VŠSE Nejedlého sady 14, 30614 Plzeň Československo

(Oblatum 18.4. 1979)

