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When approaching the theory of models in the light of
the alternative set theory, we have a choice of several pos-
sibilities how to carry out our investigation. One of the
ways is to follow the classical theory of models and to re-
formulate its results into the alternative set theory. This
way proves to be technically successful though in the same
time it may be the reason why it seems uninteresting., We
are trying to adopt an alternative view towards mathematics
as a whole ami therefore the aim of the following article
is to examine the new possibilities the alternative set the-
ory introduces into the ‘theory of models.

One of the new approaches is to differentiate the io-
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dels on set (discreate) and proper semiset models. The the-
ories not having set models (but having semiset ones) de-
mand transcendence; these theories are "complex" ones. On
the other hand, the theories having a set model can be con-
sidered as "simple" ones. Let us give one example; the the-
ory of fields of characteristic zero has a set model (but
not finite) whilst the theory of ordered fields of charac-
teristic zero has no set model.

The structures can be enriched about the topological
problematics. We can investigate which structures are com-
pact, the continuous motion can also be studied.

This article touches only a narrow part of the proble-
matics, The whole field of problems of the model theory in
the alternative set theory leaves a vast field for further

study.

1. In order we might talk about models we must at
first define the notion of a language and a structure,

Let &£ be a given class of relation symbols, function
symbols, and constant symbols. Assume that every relation
symbol and function symbol of £ has a natural number o« as-
sociated to it; in such a case this relation or function
symbol is said to be o-ary. Then ¥ is called a language.
Assume that the equation symbol is in every language and
the empty set O is not a symbol in any language.

Similarly as in the classical model theory we can con-
struct the class of formulas Lz of the language £ (contain-
ing formulas of an arbitrary length - over N; this comstruc-
ction is made - for a certain language - in [2), the genera-
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lization t® an arbitrary language is obvious). A formula
is said to be finite if it has a finite length and contains
only finite-ary relation and function symbols. The class
of all finite formulas of a language & is denoted by FL£ .

A class ¥4 is called a structure in a lenguage &£ if
9, is a coding pair {K,S)> so that: K={0}u £ , S"§0} %0
(A=S"{0% is called the universe of ¥ ), if p is an «-ary
relation symbol of & then S™i{p} is o« -ary relation on A,
if £ is an « -ary function symbol of &£ then S"{ff is an
& =-ary function on A, if ¢ is a constant symbol of &£ then
S"{c} is a constant in A. For any symbol s of ¥ we shall
denote sql' =s"{s}% (the interpretation of s in %L ) for simp-
licity. Let us presuppose that the equation symbol is inter=-
preted by the absolute equality. (This mtion of a structure
is more general as in [21,)

A structure 9 in the language $£ is said to be a set
structure if there exists a set expansion &£’ of £ (i.e.&’
is a set) and an expansion ' of t to £’ such that ‘@’ is
a set. For set structures we use letters 91, 7n gese o The
satisfaction relation &= is defined (see [2]) between set
structures and any formulas, and between any structures and
finite formulas. The notion of elementary equivalence, ele-
mentary substructure and ‘isomorphism is defined as in the
classical model theory with respect to finite formulas.

A theory is.any collection of finite formulas. A formu-
la ¢ is provable in a theory T (T+ ¢ ) if there exists a
proof (of an arbitrary length) of ¢ in T. A finite formula
@ is finitely provable in T (T b ¢ ) if there exists a
proof of ¢ in T which has finite length and contains only
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finite formulas, A theory T is consistent (finitely consis-
tent resp.) if not every (finite) formula of the language
of T is (finitely) provable in T.

The two simple properties hold:

1) IfT+9@ amd W= T then M = -

2) If T+, 9 and YL = T then €& Eg.

This means every theory having a set model is consistent
and every theory having any model is finitely consistent.
By the G3del’s theorem, every finitely consistent (at most
countable) theory has (at most countable) model,

As there is no natural definition of the satisfaction
relation between non-finite formulas and ariaitrary structu-
res, we have no semantical characterization of consistent
theories (in contrast to finitely consistent theories). But
in the alternative set theory finite formulas, finite proofs
and finite consistency are in the centre of interest (and
for these analogical results from the classical model theo-
Ty hold ), and non-finite formulas and proofs givé us addi-
tional implements.

For an illustration consider the following example. lLet '
o be an infinite natural number., Let &£ be the language
‘e
Cg41i B<xtui Co¥Cc§ . Then T is finitely consistent
theory (it has a two point model) but not consistent because
The,=c, & Co¥ ¢, « Thus T has no set model.

containing constant symbols Cpofor B 4o ., Take T= {

-From now on every language will be at most countable
with only finite-ary symbols. It follows that ¢ in £ ie

& set structure iff, ¥/ has a set universe and the interpre-
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tation of any symbol of £ in ¢ is a set.

Theorem. Every finitely consistent theory has a fully
revealed model, )

Proof: Take any model 4 of the theory. let €®* be
the revealment of ¥4 (see [31). Then ¥ = ¥*.

Theorem. Every finitely consistent theory has a model
with a set universe.

The proof follows from the preceding theorem and from
the axiom of cardinalities.

From now to the end of this first section assume that

every language contains no function symbols.

Theorem. A theory T has a set model iff every finite
T°c T has a set model.

The proof follows immediately from the prolongation axi-
om.

Lemma. Let ¥/ be a countable structure. Then there ex-
ists & sequence of set structures 1M ;ne FNt such that
m, < mn+15 % for allnmanmd ¢= U { M ine€ FN§,

Proof. Let A={a ;neFN{ be the universe of ¥ . Take

M= {ao,...,an’; the universe of %! .

Theorem. Let T be a finitely consistent theory having
only Z,-axioms. Then there exists a set model of T.

Proof. It is sufficient to prove this theorem for a fi-
nite T and moreover, we may assume T={@! where ¥ is a fi-
nite X ,-formula. Let €L be a countable model of T and
U= UL jneFNi. 48 U =g and g is =, there ex-
ists a finite number n such that Mnh P .

Let T be the theory of linear order without endpoints.
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Obviously T has no set model and T has TT,-axioms. This

means we cannot get a stronger theorem.

Corollary. Let T have Z ,~axioms only. If T is finite-

1y consistent then T is consistent.

Corollary. Let &4 be a countable structure. Then the-
re exists a set structure WL 2 ¢ such that for all =,-
formulas g(x,-) and all 8, €A, if 9% = ¢ (a,+) then
B = ¢ (a,-).

Theorem. ILet T be a finitely consistent theory in a

language containing only symbols for unary relations, equa-
tion and constants, Then T has a set model.

Proof, Assume T is finite. We can replace every const-
ant symbol in T by one point unary relation symbol, so assu-
me we have no constant symbol in our language £ . Let Rl"”
seeyR; be a list of all unary relation symbols in £ . Add
new unary relation symbols Rp+11¢++sRyp @nd axioms (V x)
(Ry(x) = Ri(®¥), i=l,...,m. Let T’ be this new theory in
&’ . Then T’ is finitely consistent. Set w= fu;usf,...
cees2m¥&lul=m}. For uew denote Fu(®) = /\  Ri(x). Take
U a countable model of T’ and % a fully revealed model of
Th( ). We may assume ¢ < & , If § is any structure in
£’y let C =iajacC %8 ¥ .(a)t for uew. as & is fully
revealed, there exists @ such that ¥4 € WL = % and M,z
tuew} is a partition of M. For all uew we have Iﬂf&Bu and
we are able to construct an isomorphism F from 97 onto &

such that for uew, F"M,=B,. It follows %! }= T,

Remark. Assuming T is finite satisfying the assumptions
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of the preceding theorem there exists a finite model of T
because the model %1 constructed above can be arbitrary
small infinite.

We know there are only a few theories having a set mo-
del. The question is how is it possible to approximate semi-~
set models by set structures. We know every finitely consis-
tent theory has at most countatle model and every cOt;ntab-
le structure is a sum of a sequence of set structures. Let
us try to approximate countable models by these set structu~
res. The following theorem holds.

Iheorem. Let YL be a countable structure, ¥ = U{# ;
ne FN§ be a sum of increasing structures. Let % be a finite
formula, ¢ = (Vxl)(EIyl)...(er)(Byr)tf(xl,...,xr,_yl,...
...,yr) where ¢ is an open formula (possibly with parameters
from ¥ ). Then the following are equivalent

l) U =¢9

2) (ny)(3kyp)ee. (Vn) Gk) U = (Vxy € M ) Ayy ek ).
oo (¥x,6 llnl)(ayrslht)v (where ¥ in 2) can be replaced
by W, memax{ing,...,n ,ky,..0,k } or any W 2 U).

Proof. Assume at first M to be a finite set and X to
be. a normal formula of AST., Then the two facts hold.

Fact 1. If (k£k‘% % (x,k)) — 7,(x,k’), then
(Vxe M) @) 3, (x,k)= (@K) (Vxe M) 5, (x,k).

Proof, Assume (Vxe<M)(@k)jz (x,k). Let £:M—> FN be a
function such that (Yxe M)y (x,f(x)). Take k=max(f"M). Then
(Vxe M)y (x,k).

Fact 2. If (n’4n% y(y,n))—> 7 (y,n"), then
Ay e M)(¥n) g (y,n)=(Vn)Q3ys M) x (y,n).
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This fact follows immediately from the fact 1.

Let us turn to the proof of the theorem. We use an in-
duction on r. The statement @ = % is equivalent to
Vp ) (¥xye unlmxl)ey'le N ) A= (Vxp) Eyy)... (Vx,) @y, )y .
Using the fact 1 we get an equivalent statement
(an)le)(Vxlc lnl)(ilyle llkl) U = (sz)Gyz)... (Vg.)Gyr)qr .
This statement is equivalen'q by the induction hypothesis to
(an)le)(Vxls Ilnl)G]yle Ilkl) (Vnz)sz)...(Vnr)Gl%)

) LN .
U = (szeli,,2 Qy,ye "‘z) Vx, s lhr)(ayre "x,.””
By successive using the facts 1, 2 we are able to move the
block (Vxle Hnl)Gyle Ikl) behind ¢ k= . We have got an

equivalent statement
(an) (Elkl). -« (¥n,) Gkr) U = (Vxls linl)Gyls llkl). oo

eee(¥Vx, 6 lnr)(ayre lg%hr .

Let us notice now what would happen if we took func-
tion symbols in our languages. Let ¥ be a structure with
the universe FN and the successor function. Then % has no
set substructure, thus ¢ cannot be expressed as a countab-
le sum of a chain of set structures. From the similar rea-
son the theorem about theories having only Ez-axiome wouldl
hot hald (take the theory of linear order with the succes-
sor function).

2, Let us enrich our structures with topological pro-
perties. By a topology we mean in this article an equivalen-
ce relation which is.a a-class. In this and next section

let us restrict to structures with a set universe (every
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finitely consistent theory has such a model). In contrast
to the first section we admit function symbols in a langua-
ge.

Let YL be a structure in a language £ , ~ a topolo-
gy on A, The symbols &, 3,... denote finite ordered sequen-
ces of points of A. If a= (al,...,an> ’ b-(bl,...,b ? then
&~b means a;v b & ... & a,~b . A function F on A is conti-
nuous in ~ if for all &, b, if E~Db then F(&)~ F(b). ¢ is
said to be continuous in ~ (or ~ is continuous in L) if
the interpretations of all function symbols of & in Y are 4
continuous in A~ and for any relation symbol R of &£ diffe-
rent from equation and all &, b, if @~b then ¢ = R(F) =
=R(b).

Theorem. For every set structure 9 there exists a
coarsest topology continuous. in %1 and moreover, this topo-
logy is a countable inte?section of set equivalences.

Proof. Let {R jne FN}, {F ;nc FNJ be a list of all re-
lation and function symbols resp. of the language of %! . For
all n take 6,=41<{a,b)e Ilz;(Vié n)(VEl,Ezel)(m o= Ri(a-l,
a,dy) =R @,,b, d,))} and define a™Z v ire (Yn)(<a,b> 6 ),
Now define by induction a~b iff <a ybe Il2 a~p ., b iff
{a,b ) €@ %a~ b& (Vi An)(le,dze u)(r (dl,a az)~

~nF. (dl,b d2)) and define a 2% p iff (Vn)(a~ )+ Then
f?‘, is the requested topology.

We know now that every set structure keeps its own con-
tinuous topology. The question is for which structures there.
exists a continuous equivalence of indiscernibility (i.e.

compact topology).
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Theorem. Let %1 be a set structure in a language con-

taining symbols for unary relations, unary functions, const-
ants and equation only. Then there exists a totally discon-
nected equivalence of indiscernibility continuous in %L .

Proof. We shall show that the topology 27: described
above is compact, First we show the topology w is compact,
Every unary relation divides M into two parts, thus 4;13&/,,‘,
is compact where ’m,n is the reduct of % to the language
containing the n-th relation symbol only. The topology t’_?;z
is the intersection of ﬂﬁt/m ‘s and thus compact. Now we are
able to show by induction that every ~-, is compact. Assu-
me ~-. is compact and take ucM infinite., There exists an
infinite Uy € u such that for all a,be u, we have a L’;’f b
and aNnb. Let {vﬂ i(3€ <% be a partition of u; into monads
by the set equivalence ~n+1+ It is sufficient to show that
for some Bew |, Vs 1is infinite. Assume A is finite for
all 3 € « . Let v be a selector of the partition {vﬁ y B€
e ¥ . As uy is infinite, the set v is infinite. For a,be
€v, a*b we have af)<rn+1b and (i< n)(an(a)OGnFim(b)).
For a¢ v define g(a)=(F‘;m(a),...,an(a)> " L.et(Mn+1, ~ >
be the n+l-th power of the space (M,~n> » ~~v is the product
topology. For a,bev, a%b we have g(a) X g(b) and thus the
set g"v is an infinite set in the compact topology~s, a con~
tradiction. Finally, the topology ,?37' is an intersection of
the topologies ~n @nd so compact.,

The following theorem shows that we are not able to

prove anything more about the topology 1’3’ .

Theorem., Let ~/ be a topology on a set M such that ~
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is a countable intersection of set equivalences. Then

1) There exists a set structure % with the univer-
se M such that ~ is the coarsest topology continuous in
m .

2) Moreover, if ~~ is compact then we are able to
construct the structure in 1) with unary relations only.

Proof. Iet ~r be an intersection of set equivaiences
S,» neFN.
1) Take the language with binary relation symbols Pn’ ne
¢ FN and the structure M such that %= P,(a,b) iff
{a,bres,.
2) Assume ~ is compact. Then any S, is compact, too, and
thus any equivalence S, has only finite number of monads.
Let 4vy;ke FN} be the list of all monads in all Sn's. Take
the language with unary relation symbols Pn, ne FN and the
structure %l so that Ml = P (a) iff ae v,.

3. Let us consider now the following situation. Ima-
gine an observer observing some structure from some place.
The observer can distinguish distances among points in the
structure (described by a metric). Now imagine the observer
is continuously moving. Then the distances among points are

in a continuous motion.

Definition. 1) Let A be a set, @ ,_(o' two metrics on
A. A set sequence 1@y ;o £} is said to be a motion of
an observer from @ to @’ on A in the time 2% if o= P,
9 =P, Pu 2Py,  for x 63 , where = is the Eucli-

dean equivalence of indiscernibility and Poc é_ﬂ:c +] heans
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Poc (a,b) 5§>cc+1(a,b) for all a,be A,

2) Let Y be a structure with a set universe A @ ’S"’
two metrics continuous in £ (i.e. €% is continuous in the
topologies generated by these metrics). A set sequence
Tp. ¢ £B7 is said to be a motion of an observer from p
to p“on ¥ in the time ¥ if 1Pc ;¢ £19% is & motion of
an observer from @ to So’ on A in the time *» and for all
o« % 7%, ¥ is continuous in @ *

Consider {Soac ;< £} ig a motion of an observer on
Yl . What is the comnection between the structures %/Po )
%/S"’-.?s (i.e. factorstructures w.r.t. the topologies gene-
rated by these metrics) ? One can prove that there is an in-
finite « such that ®o ;Pcc « But we shall prove there need

not be any connection between metrics Por Pos *

Lemma, Let @ be a metric on a set A, Then there ex-
ists a metric So* on A and a motion of an observer {9>,c;
« 453 from @ to o* on A such that the three eonditions
hold:
1) SD*(a,b)él for all a,beA
2) 9i41¢a,b) £ P, (a,b) for «c < 2* ,a,bea
3) all metrics @, ,cc £ 2% generate the same topology.
Proof. For a,be A define Sb*(a,b)=min i1, p(a,b)}.
Sa* is a metric generating the same topology as © .« The mo-
tion of an observer we construct by induction. Take Pz P -
Take an infinite d’ such that 0" > 1412 ang assume P i®
constructed. Define for a,bgca

P«(a,b) - C%.. if @ (a,b)- %, 2 e*(a,b)

@w‘_l(a,b):
Sod:(a,b) otherwise ,
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Now define @ ,,(a,b)=
_mn{E e s @ o+1(8ys8yy)i € Nka =a&a(3-—h &Yy <(3)
(qre A)¢.

It is easy to see that P31 is & metric, @ ,,(a,b) £

£ @y (a,b) and de"'lé ©. + It is easy to prove by induc-

tion on o¢ that p¥*(a,b) £ @, (a,b) for all a, b. Take 7 >
-4 max-[go (a,b) -go"(a,b); a,bcA}, B3 =2.0+1 and the

construction of the @ s stop at @n.g « We show g)"‘é

2 Pn.d’ + If not, then for some a,be A, ¢* (a,b)+ -]= <

< @’zf (a,b), thus for all < <7.d, p*(a,b) ‘-50«.(& b)-
a" » 80 @ *(a,b) < P (a,b) £@(a,b)- 7 , & contradic-

tion with the choice of 7« Define [ SD*

Theorem. Let ¥/ be a structure with a set universe,

continuous in metrics [ $°’ « Then there exists a motion
of an observer from @ to @’ on ?L . Moreover, if both o
gz' are compact then every member of this motion is a com-
pact metric.
Proof. By the preceding lemma we can suppose both fo ’

So' < 1. We construct a motion of an observer from ® to
SO +e  as follows. Take o infinite. Define (@, (a,b) =

= p(a,b)+ 7 ®’(a,b), a,beA, o £07 . Denote x-{oc, = 0%.
For « & X, Pg(a,b)20 iff @ (a,b)=0 and for « & X, < £,
(0x(a,b)=0 iff e(a, b)+0” (a,b)20. Thus for x & X, @x gene-
rates the same topology as @ does amd for « & X, @ gene-
rates the same topology as gom' does (which is the inter-
section of topologies generated by @ and p' ). That is why
¥ is continuous in every [P Similerily we construct a

motion of an observer from pto p+e’ . It @, p’ are com-
'S

- 735 -



pact then ®© +So' is compact and every member of the motion

is compact.
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