#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1979
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0020 | log60

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20, 4 (1979)

VALUATIONS OF STRUCTURES
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Abstract: This paper is a contribution to the develop-
ment of the alternative set theory. A typical special result
among those presented is the following: let Q= {a,f) be a

set-semigroup and let /Q = <Q,f/Q2) where QSa is a ¥ -
class be a substructure of & . Then there exists & set-map-
ping h:a — RN(= 0) (RN(= Og is the class of non-negative ra-
tionals) such that h(f(x,y))<h(x) + h(y) and h(x)= O=xeQ
holds for each x,yc a. (As usual, we write 2=0 if | zi<n
for all finite natural numbers n.)

We present more general result s; namely, they concern
some richer structures than that of a semigroup, deal also
with proper classes, and the universe Q of the substructure

Q/Q is a 6~ or I -class.
As a consequence of our results we obtain a metrization
theorem.

Key words: Structure, valuation, 6 -class o -class
metriza%ion. ’ ’ ’ ’

Classification: 02K10, 02K99, 08A05, 54J05

§ 0. Introduction. Great numbers of important structu-
res are constructed in the alternative set theory by using
&-classes., For example, real numbers are constructed as fac-
tor-classes of the & -equivalence = on the class RN of ra-
tional numbers. (See LV].) The topological structure is com-
prehended as a i -equivalence on a set-theoretically defin-
able class. In this paper we study structures which are des-
cribed by using 6'-classes and s -classes only. Let us explain
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our problems .u more detail on the structure (az, ~ > , whe-
re a is a set and ~ is a % -~equivalence on a. Using some ide-
as of the proof of the classic metrization lemma, we can pro-
ve that there is a set-mapping h:az—> RN(20) (RN(=>0) deno-
tes the class of non-negative rationals) such that h(x,z) <
£h(x,y) + h(y,z), hix,y) = h(y,x), hix,y)20=x~y, h(x,y) =
= 0=x = y hold. (h is called metric of ~ on a.) We can say
that h is a valuation of az in RE(Z 0) such that h respect
(in the sense mentioned above) the following couples of ope-
rations: the operation s (the composition of pairs) and + :
the operation Cn of converse and the identity mapping Id. Mo-
reover, the values of all elements of ~ are exactly in
Lz0]={xeRN(>0);x20%, We shall describe a class of struc-
tures of the type <A,F,E>, where F is a binary function and
E is a unary function, such that the following statement holds:
if Q is a set-structure of this class and Q./Q is a substruc-
ture of U with the universe Q, which is a & -class, then the
pair {@,QA/Q> is valued in <{EN(Z 0),+,Ia y{[20],+,1a>)
by a set-mapping similarly as a set-metric of ~ on a values
«e?,0,00>, <, o,0nd>in KRN(= 0),+,Ia% ,<[ > 01,+,Ia>.

Note that we do not work with set-structures only but
the structure (’ mentioned can be generally a structure from
a standard system % and the universe Q of the substructure
Q/Q can be a sr'm-or a 6®Pl-class. Then we construct a valu-
ation of the pair {Q,, A/Q) as a class of #%.
(For the notions of the standard systems and arm-and gPL.
class see [M1].)

Let us mentione one consequence of our general results.
Recall that x2y iff for each set-formula ¢ (z) in FL we have
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¢(x)=@(y). The following statement holds: there is & met-
ric of = on V which is an element of a revealment Sd" of
the codable class Sd.v. of all set-theoretically definable
classes (i.e., roughly speaking, there is a "formally set-
theoretically definable" metric of 2= on V. (For the notiom
of the revealments see [S-V 1],) ‘

Further results concerning the problems of valuations

will be presented ip another paper.

§ 1. Preliminaries

1.0.0. We use usual definitions and notions of the al-
ternative set theory and definitions, notions and symbols
introduced in [M1]. We ﬁhall use results obtained in LM1].

1.0.1. Throughout this paper let %% denote a standard

system.

§ 2. e-structures. Valuations

2.0.0. By a structure we mean a mtn+l-tuple (| =
=<L,Fi,Rj) iem,jens» MR €FN, where, for each icm, F; is a
a(i)-ary function, dom(Fi)=Aa(i), F{Aa(i)s A, a(i)e FN anq,
for each je m, RJ-EAb("), b(j) € FN,

We say that a class B A is a universe in @ irf, for

each iem, F;Ba(i)e B holds. A substructure of the structure

Q. is a structure {B,F; B‘(i),Rjan(j)> iem,:kn where B

is a universe in O . We denote the substructure presented by

Q./B. If there is no d anger of confusion, we write <B,Pi,Rj>

instead of (B,Fi/‘Ba(i),Rjan('j) > iem, jen®

2.0.1. A covariant (contravariant resp.) e-structure

is a structure {A,F,E) where F is a binary function, E is a
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unary function and the following holds: (1) F is associa-
tive on A,
(2) EoE =14
(3) F(E(x),E(y)) = E(F(x,y))
(F(E(x),E(y)) = E(F(y,x)) resp.)
holds for each x,ye¢ A.
An e-structure is a covariant or a contravariant e-strue-

ture. An e-structure Q4 =<A,F,E> is a commutative e-structu-

re iff F is commutative on A .
Then (. is covariant and contravariant simultaneously. An e-
structure {A,F,Id) is covariant. It is contravariant iff it
is commutative. Let ( =<A,F,E> be an e-structure. We defi-
ne the binary relation on A as follows:
x<, =(3z€eA)(F(x,2z) = y).

If there is no d anger of confusion, we shall write simply <i-
instead of <

Proposition. The relation <3, is transitive on A,

2.0.2, Examglee:l. (1) A structure <A,F) is a semigroup
iff {A,F,Id) is a covariant e-structure.

(2) <N,+,1aY is a commutative e-structure.

(3) Let RN(Z0) = {x€RN;x20%, RN(>0) = {x € RN;x > 03.
{ RN(Z 0),+,Id> and <RN(>0),« ,-1> are commutative e-struc-
tures.,

(4) We put, for XeN, X, ={2%; <e 3. {N,, * ,Ia) is
a commutative e-structure.

(5) ILet a be a set, a$0. Then {P(a),u ,Id> , <P(a),n,Id)
are commutative e-structures.

(6) We define the mapping FO: (V3 {0})2——> V2u {03 as

follows: F°((x,y>, <u,v)) =<{x,v) (0 resp.) iff y = u (y+u
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resp.) and FO(w,0) = F°(0,¥) = 0 for each We Vou {03.

F° is an associative function on Vau-i 03 and, consequen-
tly, (V2 403,F°,1a) is an e-structure, which is not commu-
tative. Let R be a tramitive relation. Them <R u{03,F°14)
is an e-structure and the following holds:
(YueRviO})(a<w0)& (VueRU{0})(0O=<au=u = 0).

2.0.3. lemma. Iet <A,F,E) be an e-structure. Let A,

A, be classes such that A S A S A and EF,E]](AO,AI) hold. Let
Q:i. = E"AinAi for i = 0,1.

Then Q. < AOE le-Al and, for i

€Q.

0,1, Feicq), E"q<

Proof. The relation Qijs4y, i = 0,1, is obvious. 1) We
prove that A ¢ Q. Let x¢ A, . We have E(x)cAl, x<Ay and x =
= B(E(x)). Thus xcA)NE"A). 2) We prove that F"Q2sQ, Let
x,y€Q,. Thus x,y¢ A) and x = E(u), y = E(v) hold with some
u,ve A . We have F(x,y)c A, F(u,v)eAl and F(v,u)eAl. Thus
F (x,y) = F(E(u),E(v))<c E"A, holds. We deduce from this that
F(x,y)e AJNE"A;. 3) Let us prove that E"Q; € Q; holds for
i=0,1. Let xe€Qy. Then xe¢ Ai and there is a y<4; such that
x = E(y). Consequently, E(x)e¢ A;N E"A; holds.

2.0.4. Let O be an e-structure. Let Q, B be universes
in @ . The triple <Q, 0/Q,Q/B>is called a triad over @, .
Let Q.(Q,B) denote this triad. A triad of the type 6% (or a

6™ —triad) is a triad Q(Q,B) such that Q.c® , B e Wt

and Q is a 6’m-c1aas, We define a triad of the type a%® (op
a o =triad) analogously.

Examples. (1) <N,+,Ia> (FN,{03), <N, ,Id) (FX,,41%)
are 6'°-triads.

(2) Let a be a set, a4 0 and let Q be an ideal on P(a).
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Then {P(a),v ,Ia> (Q,{0%) is a triad. Suppose, moreover, that
Q is a & (of resp.)-class. Then the triad presented is a € -
triad (ar-triad resp.).

-]

(3) The equivalence 2 on RN is defined as follows:

(Vx,y € BN)(x2y=(V n)(lx-y|< % v(x>n&y>n)v (x<-n&y<-n)).
We put (2 0] = {ycRN(> 0);y=203. Then
{RN(Z0),+,Id> ([=01,{03) is a x° -triad.

2.1.0. Let @ =<A,F,E>, G = <K,F,E> be e-structures.
A mapping H:A —> 1 is called valuation of Q i_z_x_.(’f, iff for
each x,y< A holds:

H(F(x,y))<Ty F(H(x),H(y))
H(E(x)) = E(H(x)).

Let 0.(Q,B), &(Q,B) be triads. A mapping H:A — % is ¢alled
valuation of the triad (.(Q,B) in the tried 4(&,B) iff H is

a valuation of @ in § and we have for each x<A:
xeQ=H(x)e §, xeB=H(x)< B.

Example. The mapping H:N —> N,‘, sending o« to 2% is a
valuation of (N,+,Id > (FN,40%) in {Ny,s ,Id> (FN,,{1%).

Proposition. Let 4 be am e-structure and let ~<iq, be
reflexive on A. Let (,(Q,B) be a triad over (. and let A’c A
be an universe in (), .

(1) Q/A°(QAA°,BAA’) is a triad over a/ia’.

(2) Identity mapping Id is a valuation of Q/A°(Qna4°,
Bn4A’) in Q.(Q,B). ’

Proof. (1) follows from the fact that QnA’ and Bn4’
eére universes in Q/A°. (2) Identity mapping is & valuation
of OL/A® in Q, (by using of the reflexivity of <, ).

Proposition. Let (= (Z,f,f) be a commutative e-struc-

ture and let &(6,5) be a triad. Suppose that there exist
- 686 -



. ~ ~ o~
points a, q, bek such that b= q< a and beB, q6Q-B, a e
< i4. |

Then, for each triad 7’ , there is a valuation of ¥ in
0 @,B. |

Proof. Let H be a mapping, defined as follows:
H(x) = b=x<B, H(x) = q=q€Q-B, H(x) = a=x e A-Q, where

{A,F,E>(Q,B) = T , The H is the required valuation.

§ 3. Valuation lemmas

3.0.0. We shall prove two lemmas which have the impor-
tant role for the construction of valuations of Vm-triado
and 'er-triada. At first, we introduce the following defi-
nition: let Q.= <A,F,E) be an e-structure and let B be an uni-
verse in Q4 . A 6-string (ar-string resp.) R is called 6 (ar
resp.)-string in O over B iff B = R(0), A = R(dom(R)-1) and
WF,F3] (R(e¢),R(e0+1)), E"R(c¢) < R(og) holds for each « s
€ dom(R)-1 (A = R(0), B = R(dom(R)-1) and [F,r3]l (R(cc +1),
R(cc)), E"R(oc) € R(eG) holds for each oce dom(R)-1 resp.),
where F, w3 — a is the funct?on satisfying Fy(x,y,z) =
= F(F(x,y),z).

3.0.1. ¢€’-valuation lemma. The following holds in the
sense of @ : Let 4 be an e-structure and let B be an univer-
se in (L . Let Q be a &-string in QL over B and let £+1 =
= dom(Q).

Then there is a valuation H of the triad ( (B,B) in
<¥,+,Ia> ({0%,10}) such that Q(c¢)s{x €AH(X)L2%3
£Q(ec+1) holds for each « e § -

' =valuation lemma. The following holds in the sense of
M : Let Q be an e-structure and let B be an universe in Q.
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Let Q be & o/ ~string in . over B and let §€+1 = dom(Q).

Then there is a valuation H of the triad Q(B,B) in
{RN(Z0),+,1a> ({03,f03) such that Qlec+l)e{xec A} H(x) 2
£27*1)3 ¢ q(c) holds for each o e €.

The & -valuation lemma follows from the &'-valuation
lemma. Really, let G be a valuation of (L(B,B) in
{N,+,Id)> (403,403) such that ng-w)s{xc A; G(x)£2%3c
SQ(g-(owl)) holds for each o € € . We put f=§=-oc . Thus,
U =txed; 6x)£2F"P1cQ(B-1) nolds for cach 12 pag .
The required valuation is the mapping H = 27 §-G.

3.0.2. The proof of the g.-valuation lemma,

I. A path in A is a function t such that dom(t)e N and
rng(t) €A. We comstruct the function [F) with domain

Vi3 £ <ot 35 e« B & B e dom(t)}} t 48 a path in A3

by induction over N: J

[(PI(t,{ot,0)) = t(x)

LFI(2, <o, 341)) = F(IPI(t, {ec, B)),t( B +1)).
We shall write mere simply [F)(t, , 3) instead of
[PI(t,4ax, B ). |

Lemma 1. Iet t be a path in A, & ¥+l <« 3 edom(t).,
Then '
[FI(t, ¢, 3) = F(LFI(t,c » ), [F1(t, 341, B#))
holds,

This follows by induction on B-cc.

Let t be a path in A, dom(t) = 2*+1, We define the path
T with dom(%) = 2§ +1 as follows: tee) = t(P=cg).
'1‘?':12—-9 A is the function so that f"(x,y) = F(y,x) holds for
each x,y eA. [¥] is defined similarly as [F].

The following lemma can be proved by inductionoen B-oc.
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Lemma 2. Let t be a path in A, dom(t) =% +1. Then
LPI(tee,®) = [F1(t, 5= (3,9-c)

holds for each o < (3 £ 4%. '

II. We put for each xeA: Go(x) = min {« £ § ;x€Q()F.
Thus, Gy is a function, Gq:A—> N, and we have G(x)£c = x6
6Q(xx), < Gq(x)=x¢Q(e¢) for each o & € . We shall write
more simply G instead of G,. The index Q denotes only that GQ
is constructed from Q and this notion will be used in 3.0.3.

We define the function @¥, G*:A —> N, as followa:
@*(x) = 0 iff xeB, a%x) = 2%X) jpr reup,
Let t be a path in A. We put

VQ(t) = =/ { 6*%(x);xe rng(t)?.

We shall write more simply 7 instead of 7'.. ¥ is a functionm,
rng(V )& N,
We deduce from the definition of 7 that VU(t) = 0O=rng(t)cB
and V(t) = 0 — (Vec, B e dom(t))(x &3 — [F)(t,x,B)eB).

Let t be a path in A, dom(t) = o"+1, Writing [F1(t)
(tFi(t) resp.) we mean [F1(t,0,4%) (LF1(t,0, ") resp.). Note
that whenever [FJ(t,oo,(;) appears, then we assume that
{t,<o0, (35> is an element of dom([FJ]). We use the similar con-
vention for the terms [FJ(t), [¥1(t,x,p), 1FI(L).

lemma 3. Let z<A and suppose that [FI(t) = z. Then
(x) V() #0— 2%2) g5 (e
holds,

Proof. By induction on dom(t).

(1) Suppose that dom(t) = 2, Assume, for example that
G(t(0))£ G(t(1)). Thus G(z)£ G(t(1)+1 holds and we have
2%(2)4 2. 20t (1)) 12 4 (1) ¢ B then G(t(1)) = 0 and, conse-
Quently, G(t(0)) = O, We deduce from this that t (0) € B, which
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is a contradiction. Thus, t(1)¢ B holde and we have
2-26(“1))52-((}*&(0)) N 2G(t(l))) = 2.7(t).

(ii) Suppose that the statement (%) holds whenever
dom(t) £ 3 +1 and (3+12 3 is fixed. Let t be a path in A and
let dom(t) =f3+2., Let [F1(t) = 2 and assume that Y(t)$0., We
shall prove that 2%(2)2 2.7(t) nolds.

We put ¢ = 7'(t). Let 0" be the maximal natural number
such that 27< c. If o > § -1 then 20(8) 2€. Mo
£ 2.c and, consequently, the statement in question is proved.
Assume J'< f£-1.

(o) Suppose that G*(t(0))£%. Let e N be a maximal

number such that

L5 * < &
V(t Ag+1) =cc§o 0¥ (t(c )4 5

Obviously, 0< y & B . Moreover, O#G*(t('av +1))4 ¢ and
Al
«,.§+2 @*(t(x)) 45 . We put z, = [FI(t,0,), 33 = [F1(t,+

+2, B+1).

Suppose that q’éo G*(t(c )) $0. We deduce from the induction
hypothesis that ZG(')42-% = ¢c. Thus, the following relatiom
holds:

(x) G(zl)"dv . It is easy that
(% x) G(t(+1)) o7 . We deduce as above that
Chax) G(zy) £ o

p+1

*
follows from d=§+2 G*(t(ec))* 0.
The relations (%), 6k*), (%*%® hold too in the case if
4

¥ pes
» = * = = =
¢§DG (t(<)) = 0 or x:%n G™(t(c¢)) = 0. We have z = [FI(t)

= F(F(z,t(7+1)),5y) = F3(31,t(7 +1),5,) and FjQ3 (9 QW*1).
We deduce from this that z €Q(d +1). Consequently, G(z) £J°+1
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holds, and
2%(2), 41 L 5592 5 ¢ = 2. (1)
follows immediately. ‘

() Suppose that G*(t(o))>§-. Then G¥(t((3 +1))£§
Thus, G*(t(o)) = G*(t(3 +1))< § holds. We have [FI(t) = z =
=[FI(t) (by using the lemma 2). We deduce similarly as :l.n tho
case (o) that 2%2)4 2.¢ holds.

III. The following definition of the function H:A—> N
is justified:

H(x) = min £7°(t); LFI(t) = x3.
We shall prove that H is the valuation in question.
(a) H(x) = O=x€ B. Suppose that H(x) = O. Then there exists
a path t in A such that H(x) = 7/(t) and [F](t) = x. Thus, x<B
holds. Suppose that xeB. We have G*(x) = O and H(x) = O fol-
lows from the relation H(x) <« V' ({<x,0>3) = a¢¥x) = 0.
(®) Q(ee)s4ixed; H(x)42%3 s Q(oc+1) holds for each < € § »
At first, we prove that
(x9) xeA-B —> 271 20(X) L f(g) £20(x) 54,

Proof. Let t be a path in A such that [F](t) = x and
U(t) = H(x). We have V(t)+0 and, consequently, 2~1. 28(x)
47V (t)£H(x). The statement (><>) follows from this and from
the relation H(x) ¢ ¥ (§<x,053) = 6™x) = 2%(X), ye are pro-
ving (b). Let xeA be such that H(x)& 2 and x €B. We have
2@(x)-1, H(x) 4 2" and, consequently x€ Q(cc+l) holds. Conver-
sely, let xe Q(oc)-B. We have G(x) £ < . We deduce from this
that H(x)< 20(¥)g 2%

(e) H(F(x,y))&H(x) + H(y) holds for each x,y€A. This fol-
lows immediately from the construction of H.
(a) H(E(x)) = H(x) holds for each xe A.

"= 691 -



We shall prove (d) by using the following lemma.

Lemma 5. Let t be a path in A, dom(t) =48 +1, and let
wsfeah, (1) WEet) £ H(t).

(2) If Q is covariant then [FJ(Eot,ac,p) = B([F1(t,c,3)).

(3) If Q& is contravariant then [FI(E °t,u,pB) =
= E([F)(t,H-3,%-)). .

The proof of this lemma is straghtforward and we omit it,

- We prove that
(g) H(y) £ H(E(y))
holds for each y< A. Suppose that E(y) = x. Let t be a path
in A such that [F1(t) = x and V'(t) = H(x). Assume covariant
O . Then [FI(Eet) = E(LFI(t)) = B(x) = Y. Assume contrava-
riant A . Then [FI(E<T) = E([FI(t)) = B(x) = ¥+ We have
V(EekR) £ V(Bot) £ V(t) = H(x) and, consequently, (o) is
proved., We deduce from (O ) that

H(y)<H(E(y)) £H(E(E(y))) = H(y).

Thus, the statement (d) is proveé. The proof of, the & -valu-
ation lemma is finished.

3.0.3. Remark. (1) The valuation H from the previous
proof is defined as follows: {x,y>eH=ycA4&x = min{TfQ(t);
[F1(t) = x}. Thus, there is a noimal formula &’(x,y,X,Y) of
the langpage FL such that

{x,y>€H = ®"(x,y, 0, 7)-
The function ’U‘Q is comstructed by a normal formula again.
We deduce from this that there exists a normal formula
® (x,y,X,Y) of the language FL, satisfying
(x,y>¢B = & (x,5,0,Q).
(2) Let Q, Rbe G-artings in 4 over B, where B is an

universe in an e-structure (L= {A.F.E) . Let dom(Q) = dom(R)
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and suppose that Q(« )< R( ) holds for each oc € dom(Q). We
put
i =x,y; & (x,y, 4,3, HE =<x,¥>; & (x,y, A,R)3.
Then H¥(x) £ H9x) nalds for each xea.

Proof. Let x be an element of A. Then GR(x),éGQ(_x).
(For GQ see the previous proof.) We deduce from this that
'U’R(t) % VQ(t) for each path t in A. The required proposi‘tiom

follows from this immediately.

§ 4. Scales for Gm-triada and J'rm-triadg

4.0.0. A triad J’ is called scale for the type 6 Pt
(7 resp.) iff T’ is a 69 (ar° resp.)-triad and, for each
- n oA .
triad ' of the type 6" (o % resp.), there exists a valua-
tion H of ¥ in 7 such that He w .
4,0.1. Theorem

(1) The triad {N,+,Id) (FN,{03) is a scale for the type

6%t

(2) The triad {RN(20),+,Id> ([> 01,103) is a scale for
the type er .

Proof. ILet (I =<A,F,E) be an e-structure and let
7 (Q,B) be a 6™ _triad over Q « We have [F,ET (Q,Q). Thus,
there is a 6 -string S of Q, S e, and Be S(0) < S(ec)=A,
[ F,ET (S(¢),S(cc+1)) holds for each oc+l € dom(S). (This fol-
lows from [M1] 2.1.0). Put, for each « ¢ dom(S),

{x,0t?€ P=xeS(ec)n E"S(cc)

We deduce from 2.0.3 that P'is a 6 -string of Q and
BEP(0)SP(ec)E A, F'P?(cc) € P(ec+1), E"P(ec ) Ploc) hold for
each «+1€dom(P), Evidently, P is an element of %% . Let

d’e N-FN be such that 24 < dom(P). Let R be a relation, satis-
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fying: dom(R) = d'+1, R"{0} = B, R"{d'} = A, 1o <d—>
—> R} =P(2«). It is easy that Re 7 and R is a & -
string of Q. Moreover, R is a G -string in @ over B. We de-
duce from the 6 -valuation lemma that there is a valuation
He M of &(B,B) in <N,+,Id> ({03%,{03) and x€Q=(3n)
(H(x) £ 2®) holads. Consequently, H is a valuation of Q4.(Q,B)
in <N,+,Ia> (FN,{03}) and the part (1) of the theorem is pro-
ved. The part (2) can be proved quite analogously as the part
1).

4.0.2. Remark. Let ((Q,B) be a triad and suppose that
Q € say, Bs Sdy. Assume that Q is a 6'-class which is not a
&%-class. Then there exists a valuation H of 2(Q,B) in
{N,+,Ia) (FN,{03) and He SdY. But no valuation of 4(Q,B) in
{N,+,1a> (FN,{0}) is an element of Sdy. ‘

Proof. The existence of a valuation, which is a Sd"-
claaa follows from the previous theorem (because Q.(Q,B) is
a 6’ -triad).

Suppose that there is a valuation of Q(Q,B) in
<{ N,+,1Ia) (FN,{0}) and let Hc¢ Sdy. Let § & N-FN. Then R =
=Ux,ot?; Hx)< v &xxe§? is a 6-string of Q and Re Sdy.
Thus Q is a &°-class, which is a contradiction.

4.1.0. Let Q be an equivalence on a class A. The map-
ping H-Aa——> RN(> 0) is called metric of Q on A iff the fol-

lowing holds for each x,y,z € A:
H(x,z) £H(x,y) + H(y,2z), H(x,y) = H(y,x), H(x,y)= 0=<x,y>eQ,
H(x,y) = 0=x = y.

Metrization theorem. Let Q be an equivalence on A,

Ac® , and let Q be 8 ™" —class. Then there exists a met-
ricHof Qon A, He %L.
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Proof. ILet E°:VPu<{ 0} — v2u {03 be the mapping defi-
ned as follows: E°(<x,y>) =<y,x?, E°(0) = 0. Then Q =
= <a%ud 03, F°, E°) is a contravariant e-structure and J” =
= 4(Qu403, {{x,x7;x€AIu{0}) is a P triad. Let G & O
be a valuation of 7’ in {RN(Z 0),+,Ia> (L203,10}). A met-
ric in question is the mapping G/'Az.

Corollary. (1) There exists a metric H of 2 on V so
that He sa¥.

(2) There is no metric of 2 on V which is an element
of Sdy.

Proof. (1) follows from the metrization theorem. (2)
follows from [M1], 1.0.7 and from 4.0.2. (For the equiva-

lence = see also § 0.)
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