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NEGATIVE POWERS AND THE SPECTRUM OF MATRICES
Z. DOSTAL

Abstract: A proof is given that for each natural k and
each nxn complex valued regular matrix A, we can write
i-1
A ’

m
-k _
4 ’L:Sq By K
where 9, | may be expressed by rational functions w; _x of
’
the eigen@alues of A. Explicit expressions for w, _y Wwere

’
found. We have applied these results to obtain estimates for
the norms of negative powers of transformatioms on an n-dimen-
sional normed space with constrained spectrum. These estima-
tes represent considerable strenghtening of results of J. Da-
niel and T. Palmer.
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1. Introduction. It is a simple matter, via the Céyley-
Hamilton theorem, to show that the k-th power for each inte-
ger k of an axn matrix A can be represented as a linear com-
bination of the matrices I, A, Az,...,An'l. The coefficients-
in these combinations are known rational functions of the co-
efficients appearing in the characteristic equation of A
{1, 5, 9, 10]. The last coefficients being elementary symmet-
ric polynomials of the eigenvalues of A, we can write
(1) A¥ = %1 vi,kAl *

where Vi o Day be exoressed by rational functions Wi g of
’ L

the eigenvalues of A. For k>0, W; | are known polynomials
Lk 4
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[4, 7, 11), they proved to be useful in studying the rela-
tions between the norm of iterates and the spectral radius
[3, 4, 6, 7, 11).

It is the purpose of the present paper to give explicit
expressions for wi,k for negative values of k and to apoly
them to obtain estimates for the norms of negative powers of
transformations on an n-dimensional normed space with con-

strained spectrum.

2, Definitions and preliminaries. Let n be an arbiatrary

but fixed integer. For i = 1,...,n, we shall define the poly-

nomials
e, e e
= - 1. 72
E; = By(Xgy000,%)) = e ‘%%Mi X X e e exy
€t t &= 4
and
a; = a5(xq,0e0,x)) = (—1)n'1En_i+l(x1,...,xn),

where X yeeeyX, 8re considered as indeterminates. Hence

(x = x ) x = X5)e0ulx = %)) = " - 8 = 85X = ..0 - anxn'l.

Put

1/a, for i = n
bi(xl,...,xn) = o T
- ai+l/a1 fori=1,.0.,n -1,

Far each i, 1¢ién, and kén - 1, we shall define ratio-
nal functiors w3k = wi,k(xl"“’xn) by the recursive rela-

tions
m

=, b.w

- Yik T3 O3t

with initial conditions

(3) Wi (Bpreneixy) = cri,k+1, Okkbn - 1°
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To prove that w; . are the functions spoken about in the
’
introduction, suppose that A is a regular operator on an n-
dimensional linear space, and that the eigenvalues of A are

Prireees ©ne Note that the polynomial

- G0 “ i-1
£x) = x" =, 2 a;(Pg,..., @)X

is the characteristic polynomial of A and that, for i = 1,...,n,

LA bi' It is now a simple consequence of the Cayley-Hamil-
’
ton theorem that
m ;
-1 _ i-1
(4) A ‘4,?‘4 bi(gbl,..., Pp)ATT,
so
k. % i=1
(5) A —i§4 wi,k(gol""’Pn)A

holds for X =n - 1, n- 2,...,0, -1, To prove (5) for k< -1 by
induction, suppose that £< -1 and that (5) is satisfied for
k=R+1, 2+ 2,...,n -1, Put ﬁi = bi(pl,...,pn) and
. +
’)i,k = wi,k(?l""’ Sbn). If we multiply (4) by x2+1 and use

the induction hypothesis, we successively get

A9 -

o 1 m
An =5 ﬁ'Ax+ 'a‘.%q (Ai §,§4 ’)J',Bu

) il jm
= ‘gw (a%a Pi"i,hi) A= = 3"-24 ”J'JAJ B

For kg n, the polynomials w; , may be defined [1, 3, 6]
’

by
(6)  W; yun =:,,.£4 8% k+j-1, i =1,...,n
and (3).

3. General expressions. Put

-21 -



T = T(Xqyeee,Xy) = . . . s .

and note that

by by ees by, by
s 1 0 se O 0
0 0 ... 1 0
If
w1,k LPIR" coe LA
W1,k+1 w2 k+1 see ¥pk+l
We =1. . wem
- ¥1,k+n-1 Y2 k+n-1 s+e Y k+n-1
we have by (2) for kéor
Wey = T W
and by (6)
Wy =T W

for k& 0. Since W, = (d"i’j) = I, we get

w, =%

k
for each integer k.
For kZn and i = 1,...,n, the polynomials w; , may be ex-
’

pressed [4, 7, 111 by
(7

= n-i o3
Wi e (XpseeesXy) = (-1)‘1+..'*‘wa_&+4(q(el,...,en)-l)xl o2

n
C“-'IO cee xn ’
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where q( el,...,en) denotes the number of eJ- different from
ZEero.
We shall use this result to compute the negative powers
of Te
Put D = ( o . 1) end note that DL = p Simple compu-
i,n-i+l °

tations show that
(8) 71 (x x_) = pr¥(1/x 1/x,)D
l’..l’ n 1,'!-’ n

for k0. Comparing the entries in the first row of the mat-
rices in (8), we get
(9) wi,—k(xl""'xn) = wn-i+1,k+n—l(1/xl""’llxn)
for i =1,...,n and k20,

We have proved the following theorem:

Theorem 1. Let A be a regular. operator on an n-dimensio-
nal linear space, let the eigenvalues of A be P1ree+ @, and

let k >0. Then

-k &, i-1
(10)  ATF =&, Wik @rreeey @A
where
= i-1
(11) wi,-—k‘?l""’ @n) = (-l)e,+--.+e§h+é-1(q(el"“'en)-l)
-e -e
e;80 @1 l"'?nﬂ'"

Note that Wik is a polynomial in l/‘o 1""’1/S°n and that
the sign of all the coefficients in this polynomial depends on
i on1y~. For the polynomials wi,k' k&n, this result was known
earlier; it was suggested by Professor V. Pték [ 6] and first
proved by the late Professor V. Knichal (unpublished).
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4. gp 1a7%|, (A] and 4"} |g . In this section, we
shall concern with problems of a nsture similar to that rai-
sed by J. Daniel and T. Palmer in[2]).

Let X be an n-dimensional linear space, let P(X)) be
the set of all norms on X and let i.(xn) ve the algebra of
all linear operators on X,. If Ae L(Xn) and.psP(xn), then we
shall denote the operator norm of A in the Banach snace (xn,p)
by p(A). The spectral radius of Ae L(ln) will be denoted by
Aty .

Theorem 2. Let O< R, 0<B. If A¢ L(X,), re P(X,), p(A)€B
am lA'll‘ 6 R, .then for each kgi
€12) a7 %) g L%‘q (kfi-! (k+n-1) pi-lgeti-1,

i-1 n-i

Proof: Det. R,k,p and A satisfy the assumptions of the
theorenm and let ?1""' son be the eigenvalues of A. Since
ja-1 l¢ = R, we have /1 @4l & R. A1l the coefficients in (11)

being of the same ‘sign, we can write
n; i-1
-k - ( se e )A é
p(A™F) = p (‘_24 ik ®12°°*' Pn )

(13) :
] 424 \wi’_k(llR,..'.,l/R)lB"'l

To finish the proof, it is enough to evaluate "i,-k(l/R"“
eseplfR). This may be done directly or via (9) and results of
[4).

In {2], J. Daniel and T. Palmer proved,that for each B>0,
there is a number S (B) such that AeL(X), pe P(X)), IA'll‘ &
61 and p(A) @B implies p('l'"l)‘ Sn(B). Their result is a spe-
eial case of the theorem 2. Let us state the quantitative re-

finement of their result as a corollary:
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Corolery 1. Let B>O, A€ L(X,), pe P(X), 1Al & 1
and p(A)& B. Then

(14) pA”) g (B + 1)® - 1)/8.

Proof: Put k = R =1 in (12).

Now we are going to show that for small r and B = 1, the
formula (12) gives the best possible bound.

Denote by Bn — the comples n-dimensional vector space,

)

the norm (x|, of the vector x = (X75¢00,%,) being defined
by the formula

lx!_ =, max | x.
® irdg,m 1‘ ‘

Regarding a matrix A = (aij) as an operator on Bn ® Ve
’

may write
A \ = mgx E | a. .
l (-] . 1 1 ‘ .

Theorem 3. Let O« rgzl/“ - 1land k21l. Put oy = (-1)n-i

n n-i+l .
(n-i+l) r y 1 =1,...,n and

e 1 0 o
0 0 1
T= | . as ke wee .
0 0 0 1
[ 8 ®2 %3 . o« |,

Then
= -1 =
|T|~- 1, |T ‘6’ =1/r
and
[T7lg = max{147K) , A LB, )y 1Al 81, (A7 1/rgs

5, (550 (5m02) st
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Proof: Let r and k satisfy the assumptions of the theo-
rem.

1f r&2Y/® -1, then

”» n n-i+l n
= _3 r = (1L+r) - 1lé&l
&321 | eyl i_g1(n 1+l) ’
so that |Tl“ = 1.
Note that the polynomial

£(x) = x" - .ﬂ .t = (x - )P
ez 1
is the characteristic polynomial of T. All the roots of the

equation £(€ ) = O being equal to r, we have [T-ll = 1/r.
) ’ (4

Since the first row of the matrix RE

is equal to
wi’_k(r,...,r),...,wn’_k(r,...,r),
we have

k+i-2)(k+n-1

lT-k‘Q = ‘%4“”1’_]((1‘,...,!’)‘ = i%;‘ ( i-1 )( el ) /l‘k+i-1.

The rest follows from the theorem 2.

For special norms it is possible to get far lower bounds.
For instance, N.J. Young has proved [12). that for the Hilbert

norm |+| and R>O0,
sup {IA"1:a €L(X ), 1A1 &1, 1A g & RY= F°,
while, by the theorems 2 and 3, for RE(2Y/ - 17!
sup §p(A™1):peP(X ), ACL(X ), p(A) &1, 147 ¢ & RY =
= sup {17l , sAGL(B ), 1AL, & 1, IATg & R}=
= (1+ R% -1,
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