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Abstract: In this gaper there is introduced a method
of constructing endomorphic universes satisfying certain con-
ditions dealing with their location in the universal class,
for instance endomorphic universes separating two classes.

Ke* words: Alternative set theory, endomorphic univer-
se, prolongation, revealed, d efinable, reserve.

Classification: Primary 02K10, 02K99
: Secondary 02H13

We assume the reader to be familiar with the first two
chapters of the book [V]. When using results from elsewhere,
we recall them.

We are going to study endomorphic universes, introduced
in the last chapter of [ V], A clases A is an endomorphic uni-
verse iff there is an endomorphism F such that F"V = A, the
function F being an endomorphism iff its domain equals V and
for each set-formula 9(x1,...,xn) of the language FL and each
Y1seee¥y, the following holds

9(31,...311) = 9(!(’1)’ooor(’n))c

Endomorphic universes observed from inside can play the

role of the universal class and are variously located in it.
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For our method the following equivalent characteriza-
tion of endomorphic universes, which can be found in the pa-
per [S-V 1], will be essential.

A class A is an endomorphic universe iff the conditions (EUa)
and (EUb) are satisfied
(EUa) If ¢(s) is & set-formula of the language FL, then

we have (3x) ¢ (x) — (3Ix e A) o (x) .

(EUb) For every countable function Fc A there is a set-func-
tion £ in A prolonging F, i.e. Fc P,

We shall concern us with the location of endomorphic uni-
verses in the universal class. In the first section we introdu-
ce the concept of reserve and we present all that is necessary
for our method. We demonstrate this method by constructing an
endomorphic universe separating two classes X, Y if the reser-
ve of the former with respect to the later is revealed. In the
second and third section we deal with conditions under which
the reserves are revealed and we show some applications of the
posaibility to separate classes by an endomorphic universe. In
the' end we present two more complicated examples, namely a con-
struction of a non-revealed endomorphic universe intersecting
the class ~ -FN for each infinite 7* and a construction of a
monotonous countable sequence of endomorphic universes having
Def as its intersection.

) Now we recall for convenience some frequently used con-
cepts from the Alternative Set Theory.

4 class X is called revealed if for each countable sub-
class Y there is a set u such that YeucX. Each set-theore-
tically definable class is revealed. If 9(x,X) is a normal
formula of the language FLV then the class {z; 9(z,2)} is re-
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vealed for each set-theoretically definable z.
An intersection of at most countably many revealed classes
is a revealed class, If -ixn;ne FN} is a sequence of non-empty
revealed classes such that xn+19 % for each n, then N -i%;
ne FNY is a revealed and non-empty class.

The set y is said to be definable from the class X iff
there is a set-formula <(s) of the language PLx'such that

(3!3) 9(z) & g(y).

The class of all sets definable from X is denoted befx. An
ordered pair is definable from its elements and conversely.
If{M_  ; > ¢ T} is a sequence of classes, where T is either
FN or ) and M c lﬂ if e« £ 3 , then De
= U{Deflldf“’ e T3,

TUiM jaems™

We suppose that W is a fixed well-ordering of the typc'
L. of the universal class V. Each proper initial segment

with respect to such ordering is countable.

I.

Theorem 1. Let ¢ (x) be a set-formula of the language
FLy. Then the class ix; ¢ (x)§ is either finite, in which ca-
se it is a subclass of Defy, or it contains at least count-
ably many elements from Defx.

Proof. Let F be a one-one mapping of N onto V definab-
le by a set-formula of the language FL. The sets x, aatiaﬁ-
ing

9 (X & (YY) (g (y) — (3m<n) (y=xx) v (F L)z F(x )))
are definable by a suitable set-formula of the language le.

The theorem follows.
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Corollary. Let I-Dofx. Then X satisfies the condition
(BUa).
We define the reserve of X with respect to Y for each X, Y as
follows:
Rev (X,Y) ={x; DeZy, sx3 " Y = 03,

Theorem 2. The following statements hold:

(a) Rsv (X,Y)nY =0,

(b) !-u{!§;§¢ K} — Bsv (X,Y) = N {Rsvy (X,Y_f); £ e K},
(¢) DefynY = 0= Rev (X,Y)40 = Rev (X,7)2 Defy,

(@) Xex,&Ye Y,—> Rev (X),Y,)c Rev (X,Y),

(e) xecResv (Xuis},Y) = <{x,z> ¢ Rsv (X,Y),

(f) Let X= U4 X ine FN, Y= U{Y jne FN{ with € Xy Tps Yon

for each ne FN. Then Rsv (X,Y) =N{Rsv (X,,X,);ne FNE,

Proof. The statements (a)-(e) are trivial. (f) follows
from the fact that for each x

Defo{x}n! =y {Dof&u{x}n!n;nsl’l}.

This can be seen by considering de Morgan laws because m<n
implies
l)efx‘lu ix3" xnebef&u ix3" Ype

Theorem 3. Let Rsv (X,Y) be a revealed class and 2 an
element of Rsv (X,Y). Then Rsy (Xu{g},Y) is a non-empty re-
vealed class.

Proaf. The classes I)etxu 1z} 8nd Y are disjoint because
s is an element of Rsv (X,Y). By the theorem 2¢ Rsv (Xy{s},Y)

is non-empty.
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By the theorem 2e Rsv (Xu{s3},Y) = (Rsv (X,Y))"{s}. This is a
revealed class because Rsv (X,Y) is revealed.

We note that the part (b) of the following theorem is
dispensable in this first section.

Iheorem 4. (a) Let Rsv (X,Y) be a non-empty revealed
class, cc € ) and H a function defined on o« n 2 such that
H((3) is either O or an element of Rsv (Xou B*3,Y) for Bexn
n{l .« Then the class Revy (Xu H"«x »Y) is non-empty and revea~
led.

(b) Let Rsv (X,Y) be a non-empty and revealed class and
Rev (X,{y}) revealed for each y. Let «c be an element of - Q
and H, G functions such that dom (H) = n 0. , dom (G) ¢
€ N, H(B) is either O or an element of Ray (XUR" ,Y v
VG"B ) forBecn )l and G(3) is not an element of the ciaql
DetXuE"(p, +1) Yhenever G is defined for 3. '

Then the class Rsv (Xu H"« ,Yu G"x ) is non-empty and revealed.

Proof. We proceed by transﬂ.nite induction,

(a) For y =0 the class Rsv (Xu H"» ,Y) equals Rsv (X,Y) and as
such it is non-empty and revealed. Let us assume that it is true

for <y £ x .

If » is a limit number in Q. , let {fpincFN} < Q be a
sequence such that Uifi, "0 ;ne N} = yn 2 , By the theorem
2f Rsv (XuH"y,Y) is the intersection of the monotonous sequen-
ce of non-empty and revealed classes Rsv (Xu H"3,,Y) and the-
refore it is non-empty and revealed, too.

If o is a successor then the desired property of
Rsv (Xu H"%,Y) follows from the inductive assumption and the
theorem 3 because H(/-1) is either O or an element of
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Rsv (XuH"(y -1),Y).
(b) The steps for O and a limit number ¥ ere the same as
above. Let y be a successor and Rsv (XuH"(y -1),YuG"(y -1))
& non-empty and revealed class., The same is true about
Rev (XUH"y,YUG"(y~1)) by the theorem 3. If G is not defi-
ned for 4 - 1 then the proof is complete.

In the other case G(9 -1) is not an element of Defx“H"J'.
The theorem 2c¢ implies non-emptiness of the class
Rsv (X,1G(y -1)%) which is moreover by our assumption reveal-
ed. Obviously, H(B) is an element of Rsv (Xv H" (3 ,4G(g -1)%)
for each €y n N . Thus the class Rsvy (XUH"y ,§G(y -1)3)
is non-empty and revealed by (a). By the theorem 2b the class
Rsv (Xu H"). »TUG"3 ) is the intersection of th’e reserves of
XuH"y with respect to YuG"(4 -1) and 1G(y -1)¢. Consequent-
1y, it is non-empty and revealed. (Each non-empty reserve con-
tains Def.) '

let iF, ;¢ € 17 be a fixed sequence of at most count-
able functions such that each such function FcV occurs here
uncountably many times. Actually, there is no such object in
the extended universe, but we can imagine that we are working
with a suitable coding pair because the system of all countab-
le class‘es is codable. In the same sense we use sequences of

classes elsewhere, too.

Theorem 5. ILet{M_;x ¢« 0} be a sequence of classes,
M, = Def.w for each o« and M, < ll,3 if ¢ < 3 . Suppose that
for each o« the following holds: if E. is a subclass of M
then F, has a prolongation in !’C"'l? i.e. there is a set f in

ld:+1 such that fo2F, .,
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Then the class M =U{M_; cc € 0} is an endomorphic uni-
verse.

Proof. By the corollary of the first theorem M satis-
fies the condition (EUa), because M = Defy. Let F<M be a
countable function. Obviously, there is «c e ). such that Fc
cM_ and 2« with F = Fﬂ . Consequently, F has a prolon-

gation in l(h,l‘ill. We have proved the condition (EUb)}.

Theorem 6. Let Rsv (X,Y) be a revealed and non-empty

class. Then there is an endomorphic universe A such that XcA
and YNnA = 0,

Proof. We shall define a function H for « « 2 such that
H(cc) is the first element (w.r.t. W) in the class Rsvy (X u
U H"x ,Y) prolonging E, if F, is a subclass of Derm‘;w and
H(ee) = 0 in the other case.

It follows immediately from the theorems 2c and 4a that
we can proceed byy transfinite recursion, because the classes
Rsv (XUH"x ,Y) remain revealed and contain Defy mw.,

) The class A = Defy g»p i® an endomorphic universe by the
theorem 5 (we set M_ = DefoH.w). By the theorem 2a the clas-
ses A and Y are disjoint, because A is constructed to be &

subclass of Rsv (X,Y),

II. This section is devoted to some important properties
of the classes Rsv (X,Y) and Defy. We shall use a lemma des-
ceribing the structure of these classes. The lemma is rather
technical and requires the following notation.

For each set-formula g (y,xl,xz,...xn) of the language FL let

Ty’ '{(y,xlyhltﬁ) ’ 9(y,x1)'¢'§l)&(Vl)(g("xl,.oo
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-let us reeall a broporty of ordered n-tuples:
(’,xl,xz'o.o'&) = (’, <xl,12,_o-05>> .

Note that each class I:,, is a function and a set-theoretical-
1y definable class and that the class & of a1l set-formulas
of the language FL is a most countatle,

lemma. For each X, Y we have the following
(.) D.fx = U‘[ rg "Xn; g’(y,xl,..-%)s é}’
(d)  Bev (4,Y) = V - Uy (g5lep)ex®L; @(¥ixypeeexy)e Bi=
=NV - (Pl ) e 33
Proof. Both the assertions can be seen from the fact
that & set = is an element of Defz iff there is a set-formu-
la gv(y,xl,...xn) of the language FL and 5118590008, in 2

such that
?(l,'l,o-n'n)& (v’)(g’(”’ll""n)_) ”’)'

Theorem 7. ILet u be a set, o¢ the number of its ele-
ments and « ¢ N-FN, Then for each 7 in N-FN there is a set
v set-subvalent to o¢c? and containing Dern as a subclass.

Proof. By the previous lemma Dofu is the union of coun-

tably many sets l‘y'un, each set-subvalent to « B for some
neFN,
The prolongation axiom implies the existence of a set w set-
subvalent to « and such that each t’,“nn is an element of w
and for each xew is x 2 od 1, Setting v = Uw, we obtain &
set with the desired property. V

Theorem 8. (a) Let X, Y be set-theoretically definab-
le classes or - more generally - let the pair (5(,!) be fully
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revealed. [See [S-V 1].) Then the class Rsy (X,Y) is reveal-
ed.

(b) Let X, Y be &-classes. Then the class Rsv (X,Y) is
revealed.

Proof. By the lemma the class Rsv (X,Y) is an intorsoe-
tion of countably many classes, each definable by a noml
formula of the language FL with the only class parameters X o Yo
Under the assumption made in (a) such classes are revealed.
Consequently, Rsv (X,Y) is revealed. The assertion (b) follows
from (a) and the theorem 2¢f,

Corollary. Let X satisfy any of the following conditions:
(a) X is a set-theoretically definable class (more generally:
X is fully revealed),
(b) X is a &-class.
Then the class Rsv (X,i{y}) is revealed for each Yo

III. Now we shall concern us with applications of the

theorems 6, 7 and 8.

Theorem 9. Let Rsv (X,{y}) be a revealed class for each
set y. Then the intersection of all endomorphic universes con-
taining X is the class Defx.

Proof. Each endomorphic universe containing X contains
Defy by the condition (EUa). For each y#Derx there is an en-
domorphic universe containing X and not iy} by the theorem 6.

Theorem 10. (a) Let w¢ Def_. Then there is an endomor-
phic universe A such that ws A and wéA,

(b) Each infinite set u has a subset w such that w ¢ Def.

Proot. The first assertion is an easy consequence of
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t:ho theorems 6 and 8.

Let o« be the number of elements of the set u. The power-set
of u, P(u), has 2% elements. There is an infinite 3 such
that 2> o« | because the class iB;2%> Bt is set-
theoretically definable and each finite number bolonge to it.
Suppose that each subset w of u is definable.from its ele-
ments: veDef'EDef“. Then ?(u)ener « By the theorem 7 the-~
re is a set v set-subvalent to oc® snch that Def < v. But
#(u) cannot be a subset of v because of the number of its

elements,

Theorem 11. There is an endomorphic universe A such
that the initial segment R,,

Ry = {fove N; (VB2 x)(pBea)
with the usual addition and multiplication is not a model of
PA (= Peano axioms).
Proof. If an initial segment R is a model of PA then it
is closed under the operation IM

W) = mindf; B+ 0% (Vy)(y £ w—>x|3 )i,

This is easily verified from the fact that the ordering and
divisibility in R coincide with the restriction of the co&os-
ponding relations in N ang that the following formula is pro-
vable in PA

(Ve ) (3B )( B+Oo&(Vy)(y < < —>2I13)).

Let v be an infinite number, We shall show that there
is an infinite 3 with IM(x) > «/ . For each n, x from FN
IM(x) is divisible by (¢ =n) and (¢ -k). The greatest common
diviéor of these numbers is less or equal to |n-k|, It fol-
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lows that for each n

m‘f‘ (1 )WH n

mw,zx‘ﬁé'%ig' ooo’gﬁgz (?) m > o0 .

The class {3 ;LM(cc) > ocﬂi is set-theoretically definable,

each finite number belongs to it and consequently an infinite

number, too. .
Let «,(3 be infinite numbers such that IM(«) > oc/*. By

the theorem 7 there is a set v such lthat Def <= v and v is

set-subvalent to o« . Thus we cen find a number o in

LM() - Def, . '

By the theorems 2c, 8 and 6 there is an endomorphic universe

A such that cc< A and o"¢ A, Clearly, R, is not closed un-

der thé operation IM and so it is not a model of PA.

IvV.
Theorem 12. There is an endomorphic universe A such that

(Vy e N-FR)(I £y, 0006y =FN) (€ A Loy ¢A),

Proof. Let S be a one-one mapping of f.. onto N-FN, We
shall define functions H and G for o« € L , H(x) =
= (Hy(«),Hy () > , such that Hy () is the first element (with
respect to W) in the class Rsv (H" ,G".c ) prolonging the func-
tion . if F, S Defy, ~and H)(x)=0 in the other case:
Hz(oc) is the first element (with respect to W) in the inter-
section of Rsv (H"x U{H;(«)},G") and S(x)- FN
(it follows by the theorem 3 that H(x) is an element of
Rsv (H"x ,G"c¢ )); G() is the first element (with respect to
W) in the class S(x) - FN - Defyw(ce1)®
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We can proceed by transfinite recursion, because by the
theorem 4b and 2c the classes Rsy (H*< ,G"< ) remain revealed
and contain Defn.w 3 by the theorem 3 and 2¢ also the classes
Rsv (H'oou{n%(oc)l,ﬂ"x ) remain revealed and contain FN and
the class S(c) - FN - Defpu(c+1) i® alvays non-empty, becau-
8e it is a complement of a countable class to an uncountable
one.

Let A = DefH.._Q o Then A is an endomorphic universe by
the theorem 5 (we set M = Defyw ) The classes
Bsvy (H% ,G"% ) are non-empty for o € {. and so AnG"0 = 0,
Moreover A2 B3 Q.

Clearly, A has the desired property.

Theorem 13. There is a countable sequence of endomorph-
ic universes 1A,;n e FN3 such that An2 45, for each n and
NiA;;ncFNE = Det,

Proof. We shall use the following notation.

If H, are functions defined on O » let

A(cC,n,k) = D”uwsd;jzki uiH(«) jn>§2x3
Rle,n) = N{Rsv(A(cc,n,k+1), Alx,n,k) - A(cyn,k+1); k<n}

(R(¢,0) equals V.)
Let < be the lexicographic ordering of the class () x FN,

<Bsd><L <x,m> = either < or'([& = and j< n).

Fote that it is a well-ordering.
Each claes R(x,n) is an intersection of finitely many reserves
of countable classes and consequently by the theorem 8 a re-
vealed class. Morecover by the theorem 2¢ each class R(cc,n)
contains A(x,n,n), because for each k we have A(ccyn k+1) =
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= D.fA(ec,n,k*l) and for k<n A(x,n,k+l) contains the class
A(,n,n).

It follows that we can define by transfinite recursion
a function H on Q= FN such that for functions H Hp ) =
= H(x,n) the following holds: Hy(x) is the first element
(with respect to W) in the class R{x,n) prolonging B ir
F. S A(xyn,n) and H (x) =0 in the other case.

Let A\ = Ui A(xyn,n); c € O} . By the thearem 5 each
class A, is an endomorphic universe (we set M. = Al<,n,n)).
Obviously Am_ls An for each n.

Let ue A, - Def and {eatgony)> the first <{co,n) in.
> FN such that u is an element of Alc,n,0). Clearly '
{otgidy> ¥ <0,0> am n,+ 0, becauwse for each k we have

(1) o +0—> Alet,0,k) = ULA(B,3,K); <f3,5 )< <e0,0)3.

Consequently, u is not an element of the class “"“o'no'no)
because

A( coo,no,no) = A( cco,o,no)g A( %g10,0)

and so there is k, such that ue A( CoiBy,K,) - “‘"’o'no’ko"'l)'
We shall prove by transfinite induction that u is mot an
element of A(o,n,k +1) for each {o0,n)> . Then u is not an ele -
ment of A, ., and our assertion concerning the intersectiom of
()
{A,jne FN} follows.
For <ct,n>2<ct,,n,> it is true, because for each k we
have
(2) (eO.n) < <{3:j>_) A(&,n,k)s‘({?,j,k).
Let (otyn) & <otgyn,) and assume that u is not an element
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of A(B,J,ky*1) if (B ,ij>< <ow,n) .

By (1) u is not an element of A(cyn,k +1) if n=0,

If n30 then u is an element of A(oc,n-l,ko) - A(oc,n-l,k°+1)
by (2) and the inductive assumption. Either (ni—ko*-l) or
(Hp_y(¢) = 0) implies that Alcyn,kgt1) = Aleg,ne1,k +1),
For (n-1> ko) and (Hn_l(ac)#o) we have

Hy_1(x) € Rev (Alec,n-1,k +1), Alecyn-1,k ) - A(oc,n-l,k°+1))

and by the definition of reserves

A(cc,n,k°+1)r\(A(oc,n-l,ko) = Ala,n-1,k +1)) = 0.

In either case u is not an element of the class A(cc,n,k°+1).
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