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REAL AND IMAGINARY CLASSES IN THE ALTERNATIVE SET THEORY
Karel CUDA, Petr VOPENKA

Abstract: This paper is meant as a contribution to the
development of mathematics in alternative set theory. In the
first section we shall introduce the concepts of real and
imaginary classes. "Philosophical® reasons for this divisiom
are described. Some classes based on the axiom of choice and
the axiom of cardinalities are proved to be imaginary. In
the second section the notion of real equivalence and real
subvalence are defined and investigated. The ordering by real
subvalence is proved not to be linear.

Key words: Alternative set theo real class, imagina-
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Various types of classes occur in the extended universe
studied in altermative set theory. We shall introduce the
concepts of real and imag_inary classes (every class being
of one of these two types). Real classes are those omes that
may be seen when observing continuum. Imaginary classes are
used mainly for calculations on classes. The first sectiom
is devoted to the fundamental properties of real and imegi-
nary classes, It is proved e.g. that Q. and selectors are
imaginary classes. The one-one mapping between two infinite
8ets having very different cardinalities is an imaginary
class. On the other hand, set-theoretically definable
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classes, countable classes and classes definable with the
help of real classes, are real,

When studying various finer types of cardinalities, we
use equivalences based on one-one mappings of various types.
Keéping accordance with this procedure we study so called
real equivalence, i.e. the equivalence given by one-one map-
pings which are real classes, in the second section. It is
proved e.g. that there are two real classes incomparable by
feal subvalence.

Our considerations follow those ones given in P, Vo-
p&nka ‘s book, Mathematics in alternative set theory. We use
notions and notation used in this book and [V 1],

The work presented here has arisen in the Prague semi-
nar of alternative set theory on the basis of discussions

held between the authors.

§ 1. Basie properties of real and imaginary elasses

Every our observation is characterized by an indiscerni-
bility equivalence (see Ch. III [ V]). The classes, we obser-
ve on the horizon of our observation abilities, are exactly
the figures in the mentioned indiscernibility equivalence.
These coqsiderations lead to the following definitions.

A class from the extended universe is called real if
there is an indiscernibility equivalence % such that X is a
figure in the equivalence « If the class X is not real then
X is called imaginary.

It is obvious that every set-theoretically definable

class is real.
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Theoren. For any sequence {xn;ns FN} of real classes
there is a set u such that for every n € FN the class xn is
a figure in the equivnlence{é}.

Proof: let {= ;ne FN} be a sequence of indiscernibili-
ty equivalences such that for every n the class X, is a fi-
gure in the indiscernibility equivalence =pe Using [V 1] we
can find a u such that .i%} is finer than MN3i= ;necFNi,

The following two theorems are immediate consequences,
Theorem. If X, Y are real classes then X~Y is real.

Theorem, If {Xn;ne FN? is a sequence of real classes
then UiX ;ne FN} and N1{X,;necFN} are real.

Especially, every countable class is real. Similarly
any 6-class (Jr -class) is real.

Theorem. Let F be an automorphism. If X is a real class
then F"X is resml.

Proof: If X is a figure in the indiscernibility equi-
valence R then F"X is evidently a figure in the indiscerni-
bility equivalence F"R,

Theorem. If X is a figure in the indiscernibility e-
quivalence {é} and F is an automorphism such that F(u) = u
then F"X=X,

Proof: Obviously it is sufficient to prove the asser-
tion for a monad in {‘31}. In this case there is a sequence .
1 ¢n(x)jne PR of set-formulas of the language FL; . such
that X =N{{x; ¢ (x)};ne FN}, If xe X then for any n the
formuls ¢, (x) holds. As F(u) =u(F }(u) = u) we have also
@n(F(x))( @ (FH(x))). Hence F(x)e X(F(x)e X) holds.
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Theorem. If y(x,xl,...,ln) is a formula of the langu-

age FLV and !1,...,!n are real classes then the class

{y; ga(y,!l,...,rn)i is real.

Proof: Let us choose u to have the following properties.
All the constants occurring in Q(x,xl,...,xn) denote elements
of the class Der{u}. The classes Il,...,!n are figures in {é}'
Let x be such that P(x,T,e00,Y ) If y {é} x then there is
an automorphism F such that F(u) = u and F(x) = Yy LV §1 ch.v],
As 9(:,!1,...,In) holds, we also have @ (F(x), F"Yl,...,l"'Yn).
Using the previous theorem we obtain F"Yl=!1,...,F'Yn=Yn and
thus we have 9(],!1,...,In).

Theorem. Let 9(x°,xl,...,xn) be a formula of the langu-
age FLy. Let !1,...,!n be real classes such that (3 12) 9 (2,
Yyyeee,¥)e If Y is a class such that g(I,Yl,...,Yn) holds,
then the class Y is real,

Proof: Obviously Y = {x;(3 X)) ( P(XysTys00e )& x €X )i,

Now we use the previous theorenm.

Remark. If {X ;ne FN} is a sequence of real classes then
{Xxin¥;ne PNt is also a sequence of real classes and
UiX,xin¥;ne FN% is a real class. Hence a sequence of real

classes can be understood as a real class,

Theorem. - The class {F"X; F is an automorphism} is cod-
able iff X is a real class,

Proof: Let X be real. Let u be a set such that X is a fi-
gure in the equivalence -l.\%}‘ If F, G are automorphisms such
that F(u) = G(u) thenF"X=G"X. (To prove it we note that G(u)=
=2(@o F1)F(u), 6"X=(G o F"1)" (F"X) ana we can use the above
theorems.) Let us put X,=4y;(2AF)(F is an automorphism &
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&F(u)=v&(3xeX).(y=F(x)))3. Obviously {Xv;vevf is a eod-
able class and { F*"X; F is an automorphism} is a subeclass of

the mentioned class.

To prove the converse implication we auppoaé that X is
imaginary. At first we prove that if Y+ X is an arbitrary
uncountable class and if F, is an at most countable simila-
rity then there are u, v such that F u{(u,v)§ is a sinill-
rity and ue X=v¢ Y holds. Let us choose £ such that
dom(F )e Der{ 3e X is not a figure in the equivalence {’} be-
cause X is imaginary. Hence there are u, U such that ueX,
¢ X and u *;} U. Let v be such that Fouidv,ud} is a simi-
larity. Fou{< v,ud} is a similarity, too. Now (v,u) or
(v,ﬁ)haa the needed property,

Let {Xac; % € Q0¥ be an enumeration of the class {Fx; ?
is an automorphism3} (bijection of O onto the class). Let
‘U.o 3¢ €% be an enumeration of all sets. By the transfi-
nite recursion we construct a sequence {G‘;oc € 0% of at
most countable similarities having the following properties.
For every o« we have Yx € dom(@,), y_ e rng(G),(3ye
sdom(G&))(yeXEGw(y)¢xw) and e xnOD=30,<0,. Lot
us put G=U{ Gy ;¢ € 3% , @ 48 obviously an automorphism
end for every . we have G"X#%X,- a contradiction.

Remark. Later we shall prove that there are imaginary
classes. Hence we shall see that the class of all automorph-

isms is not codable.

The following theorems serve as criteria for the deei-
sion if a class is imaginary. Using these theorems we can
prove for some frequently oceurring classes that they are
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imaginary.

Theorem. If X is a real revealed class then X is a
qr -class.

Proof: Let % be an indiscernibility equivalence such
that X is a figure in £ , In § 2 Ch. III [V] it is proved

that X is a closed figure in t and thus a ' -class.

The last theorem is equivalent to the following asser-
tion. If a class X is revealed and if it is no a -class then

X is imaginary.

Theorem. If a real class XS N has the property
(Voo (V3 ) (e X & B« =>BeX) then X is a 6 -class or
a & -class. '

Proof: We must consider two cases.

a) For any countable class Yc X there is a ¥ e X such
that Y S 9+ . The class Y is revealed in this case and thus
Y is & Jgr-class.

b) There is a class Y& X which is countable and such
that for every 7y € X there is a (3€ Y such that 3 € (3.

We have X=UY in this case and X is a 6 -class.

Theorem., If X is a real class such that for any set x
the intersection of x and X is a set then X is a set-theore-
tically definable class,

Proof: We prove at first that the class X is revealed.
Let Y be a subclass of X which is at most countable. Let
Ycu. Let us put v = Xnu. Obviously we have Y vEX,. Thus
X ie a -class (we use the last but one theorem). Using si-
milar arguments we prove even that V-X is a o -class. Thus
X is set-theoretically definable (see § 5 Ch. II LV1),
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Theorem. Let X be a real class. lLet { ¢ ;n eFNZ be a
sequence of set-formulas of the language FL,. If for =very
uEX there is an n such that $plu) ihen there are sequences
{Xn;?nemi of set-theoretically defimable classes and {5; ne
€ FN} of finite natural numbers having the following proper-
ties.

1) XcU{X, ;ne FNi.

2) For every uEX, there is an me k, such that ¢ (u).

Proof: ILet X be a figure in the equivalence {éi' Remem-
ber that there are at most countably many clopen figures in
£§§. Thus there is an enumeration -i}g,;neFNi of clopen figu-
res in -i%} such that for every X there is a ke FN such that
the property 2) holds. It is sufficient to prove that X <
cUiX,;ne FN}. Let xe€X, let {Yn;nem} be a sequence of
clopen figures in {%§ such that Y

n+l
ne FN§ hold. It is sufficient to prove that there is an n e

€Y, and Mon(x) =NiY ;

€ FN such that for every uc Yno there is an me n, such that
@p(u) holds, If it is not this case then there is a sequence
{un;nsm § such that w Y and ‘for every ke n the formula

7 @y (uy) holds. If we prolong the sequence -iun;ne FN%¥, then
there is an o € N-FN such that for every nc< FN we have u S
€Y, and 79 (u_). Thus we have u & X and there is no ne

6 FN guch that <, (u) - a contradiction.

The following theorem is a consequence of the last theo-

rem,

Theorem. For any uncountable real class X there is an
infinite subset of X.

Proof: We prove that if a real class X has only finite

- 645 -



subsets then X is at most countable. Let @p(u) be the for-
mula u&n. Using the previous thearem we obtain sequences
1X ;ne FN§ of set-theoretically definatle classes and
-ikninel"lﬂ of finite natural numbers such that XSU{%; ne
€ FN} and (VueXx) (Elmckn)(u%m). In this case ng%kn
holds and thus X is at most countatle.

Theorem. The class { is imaginary.

Proof: The class £l is uncountable. If we suppose that
L. is real then using the previous theorem we obtain an in-
finite subset u of () .But uSN and thus u is not wellordered
by the relation i<, 3)>;cce 3 vec=3% - a contradiction.

Theorem. Let % be a compact equivalence. Let V/3 be an
uncountable class. If X is a selector for * then X is imagi-
nary.

Proof: The class X is uncountable. If X is real then
there is an infinite subset u of X. As ;ie compact there
are x,yeu, x+y, x¥y. As x,y 6 X the class X is not a selec-

tor for t_a contradiction.

Theorem. Endomorphic universe is imaginary iff it is

no 9r-class,

Proof: Let. A be a real endomorphic universe. A is ob-

viously uncountable; thus it must have an infinite subset.
In the paper [SV 1] it is proved that A is revealed in this
case, Hence A is a o -class following the first of our cri-

teria,

Fact: The class of all automorphisms is not codable.

In fact, we know that there are imaginary classes and thus
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using the above remark we obtaim the assertion.

The following assertion is a special case of the above
theorem. ‘

Let X be a real class. Let ¢ (x) be a set formula of the
language FLy. If (Vu<X)@ (u) holds then there is a sequen-
ce {%;neFN} of set-theoretically definable classes such
that XS ULX jne FN§ and for any finite natural number n we
have (YuSX))@(u). (Put @ (u)=g (u).) Especially, we ob-
tain the following theorem.

Theorem. For axy real function F there is a sequence
{F ;n eFN} of set-theoretically definable functions such that
PcU{F ;neFNi, ’

Theorem. Iet o,y be infinite natural numbers such
that for every finite natural number n we have no < ¥ . If
F is a one-one mapping of o« onto ¥ then F is imaginary.

Proof: Suppose that F is real, As F € ¥ x o there is a
sequence of functions {fn;ne FN} such that for every n we ha-
ve fy & y>o and FSU{f ;ncFN}. For every n we have
fp o X060 . Obviously = Fiw € U4 fnocjn€ FN3, Thus there is
an n, such that y=Uiffc;nen3. (See [V § 4 Ch.I).) But
Uffrc;nendX n < - a contradiction.

Especially we have: Every one-one mapping F of o onto
coz is imaginary.

The proof of the following theorem is analogous. Hence
it is left to the reader. We only advise the readed to use

the properties of the geometric series in the proof.
Theorem. If o is an infinite natural number then the-
re. is no one-one real mapping of « onto {y;(VneFN)
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(ny< ec )j.

Theorem. If F is an automorphism and F is not the iden-
tity mapping then F is imaginary,

Proof: « If for every o the farmula F(x)= o holds, then
F is the identity, as there is a one-one mapping of N onto V
defined by a set-formula of the language FL. Thus there is
an o such that F(x)3 oo . The automorphisms F and F~t are
both imaginary or both real and thus we can suppose cc + 1 £
£Flo). Let us put o =F(«). Obviously F(«™®)= 47 (F is an
automorphism). If we suppose that there is an n 'such that
yr< noc” holds then (c+1)%1, 3,3"< n«® ., Thus we ha-
ve (oc+1)*1c nw™ - a contradiction, because o o <
< (oc+1)°‘+1. These considerations prove that we can suppose
that we have chosen o¢ such that for every finite natural num-
ber n the formula nec <F(«x)= 3 holds., If F is a real class,
then F Pe¢  is also a real class. But F Moo is a one-one map-
ping of o« onto ' - & contradiction with the previous-theo-

rem,

§ 2. Real equivalence and real subvalence

The above considerations lead to the following notions.

Real classes X, Y are said to be really equivalent (we
use the notation XXY) iff there is a one-one function F such
that X=dom(F), Y=rng(F) and F is a real class, Analogously we
define Xé! iff there is a one-one real mapping F of X onto
a subclass of Y. XXY iff XZY and - X%v.

There are plenty of obvious assertions holding for the

real equivalence. We will not formulate such assertions here.
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To show our approach we prove here only the Cantor-Bernstein
theorem in the following version expressing the essence of

the theoremn,

Theorem. Let X< xls X, be real classes. If X, and X
are really equivalent then Xy, X, (and thus Xy, X,) are real-
ly equivalent.

Proof: Remember that any class defined by a formula of
the language l’Lv with real parameters only is real. Cantor-
Bernstein theorem is usually proved by the definition of the
needed mapping. If we use only real claases in the defini-
tion, then the mapping is a real class. Especially, we con-
struct the needed mapping in the following manner. Let F be
& real one-one mapping of X, onto Xo. By induction we define
a sequence {Yn;ns FN% of real classes. We put Y°=X2-x1, Yn+1=
= F"Y, . We put G(x)=F(x) for x e U¢ I,ineFN§, G(x)=x for x€
€X,~U4Y ;neFN}. G is obviously a one-one mapping such
that dom(G)=X,, and G is & real class.

Theorem. A real class X is really equivalent with a re-

al class XxFN iff there is a.codable class L having the
following properties:

(1) 7 is countable.

() umt=x

(3) (VY,Y, e )(Y,,Y, are really equivalent real
classes).

(4) (YY), e M M+ ¥, = ,nY, = 4).

Proof: Let %! be a class having the mentioned proper-
ties. Let {X ;neFN{ be an enumeration of #! . Let éxfl; n,

meFN¢ be an enumeration of %L by the members of the class

- 649 -



2, Lot G: be one-ore function such that dom(G:)=)§,
rng G:-(lg‘x fm}). If xe X then there is exactly one g such
that xe X:. In this case we put G(x)=G=(x). G is obviously
a one-one function such that dom(G)=X, rng(G)=X<FN and G is
a real class.

On the other hand, let G be a one-one real mapping of
X< FN onto X, If we put X, =G"(X»<{m?) and %% = X ;neFN}
then 771 has the needed properties.

Theorem. Every infinite set u is really equivalent to

the class ux FN,
Proof. It is sufficient to prove the assertion for eve-
ry infinite natural number o ., At first we prove that if 4
is an infinite natural number then there is a real class X
such that X%Bﬁ and XXFN x (> . To prove this we use the Vi-
tali’s idea of the construction of a nonmeasurable set. We
put Y={re BRN; (33 € N)(r= 3'/ﬂ vr=- 3"/(; )?. We define
an equivalence relation ~ on Y in the following manner.
x~y =(3 re FRN) (x-y=r) (where = is the usual indiscernibili-
ty equivalence (VneFN) (Ix-yl<1/n ). Let Z be a selector
for the equivalence ~ such that (Y xe2)(0<x<1), Now the
following properties hold
(a) (VyeY)(31Ir e FRN)( I x e 2) (y2x+r).
(b) (Vye!)(VreFBN)(Blxs!)(réx—y<r+(l/f£ )) %
&(VyeY)(YreFRN)(3J !xeY)(r!.-y-x<r+(1/ﬁ ).
For re FRN we put X=iyeY; (3x¢Z)(yix+r)i. The codable
class {Xr;re FRNt has the following properties.
| 1) rie= XN X =g,
(2) Y=UiX ;re FRN3.
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(3) (¥r,scFRN)(X, and X, are really equivalent).

The property (3) can be easily proved using the property (b).
Let us put X=U{xr;rem&0£=ré 1%. Now we have (Y yeX)
(-1<y<2). Thus X233 . Obviously YSFN=/3 . Using the
previous theorem we obtain Xf‘\&!.

Now let « be an infinite natural number. Let 3 be a
natural number such that 3;(¥&.o¢ £ 33+ 2. We have 253{.!,%
2 PN = (3% 0 x FIRZ 3 2 45 FN( » FESX, Thus all classes
are really equivalent.

The following thearem is an easy consequence.

Theorem. If ¢ is an infinite natural number then the
following properties hold. ’

(a) o and {3 ;(In)(y< n)} are really equivalent.

(b) If 3 is.a natural number such that (3n)( /n <¥<
<no) then ¥ and o are really equivalent.

Remember that infinite natural numbers o » ¥ such that
(VaneFN)(cc > ny): are not really equivalent and iy ;(V ne FN)
(rn< )il -

The relation X is not a total ordering (as it is in the
case of < and 3 ). For any uncountable real class there are
two uncountable real subclasses incomparable by B .

As any real uncountable class has an infinite subset,
we obtain the mentioned fact as a consequence of the follow-
ing theorem., The properﬁ (3) of the theorem is not used in

this paper but it is importamnt for other purposes.

Theorem. If 2%e¢ N - FN then there are real subclasses
X, Y of 2} having the following properties:
(1) XnY = g, ’
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(2) 4x3Y&-Y3X.
3) (Vmed)(m2x= Efgﬁ £ 1) and the same pro-

perty for Y.

Proof: For f3,, i, € P let us put ey gﬂz-s%’é %.
It is obvious that = is an indiscernibility equivalence on
A . The class Z & is said to be a zero class iff for e-
very ne FN there is a set v such that v% -f—&ZEv. Any monad
in the equivalence z is obviously a zero class. If izn;neFN}
is a sequence of zero classes, then U{Zn;neFN§ is a zero
class, If £ is a one-one mapping and if Z is a zero class,

then £"Z n 1% is a zero class. At last, if m<S 2> and
1&:%(52- £ 0, then m is no zero class. Let {{f:;nemf; < €

6113 be an enumeration of all sequences of one-one functions
and let im ;x € 1} be an enumeration of all subsets of 7%
not being zero classes. We construct sequences 1X, ;€03
{Yy ; ¢ € Q% of zero classes by transfinite recursion in the
following menner. We put X =Y =@. We put X = U (X0 X,;8¢€
cxnliu { ((f:)°l)"!ﬂ s NeFN, fe o N L} ), The class
i"n "% is obviously a zero class. Let X, be the least ele-
ment of m, -~ X, in a fixed ordering of V of the type L. Let
us put X =U{x(3 i Bex N L% U mon(x, JuFigif*(x); ne
€ FN%). Analogously we put Y, = X, u X, u U {'((rn"‘)':l‘)"(i{c v
vX,)ine FN§, let Y« be the least member of the class m. -
- Y& and Y =U{!ﬁ i Pexn ND3umon(y v Fig({f:(:,,c )s-
ne FN}), It is obvious that for every oc we have Xen Y, =0
X, sy are figures in the equivalence % and fexn =
= (Xpe X )& (Y, & Y ). Let us put X =U{X; < & 03,
Y=U{Y ;¢ € L%, It is evident that X,Y €9 , X, Y are re-
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'al classes and XNnY=@. If F is a one-one real mapping of X
into Y then using § 1 we obtain the existence of an o« such
that FEU4{f ;neFNi, But we have x, € X, f: (x,)eX for e-
very ne FN. Hence we have F(x )& X - a contradiction with
F(x,)e Y and XnY=@. The proof of — réx is analogous. If
m is a subset of ©% such that m2X&~ c_ar%x_nl = 1 then the-

re is an ot such that m = 1% - m. But we have x_e Xnm_,
hence x_ & m - a contradiction with m= 2% - m. The proof

of the last property for Y is analogous.
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