#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1979
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0020 | log55

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20, 4 (1979)

ENDOMORPHIC UNIVERSES AND THEIR STANDARD EXTENSIONS
A. SOCHOR, P. VOPENKA

Abstract: This paper is meant as a contribution to the
development of mathematics in alternative set theory. In ,
particular, a procedure in some aspects similar to Robinson’s
non-atandard methods is created using specific means of al-
ternative set theory.

Key words: Altermative set theory, ultraproduct, non-
standarg methods, endomorphic universe, standard extension.

Classification: Primary 02K10, 02K99
Secondary 02H20, 02H13

The classical calculus of Leibniz and Newton is based
on the existence of the natural extension of real functioms
on infinitely small quantities. Robinson’s non-standard ana-
lysis has tuned this assumption with the mathematies in Can-
tor ‘s set theory. Moreover, Robinson’s non-standard methods
have brought a great deal of additional important applica-
tions.

This article deals with analogical questions in alter-
native set theory (AST). We do not transfer the construction
of non-standard models to AST word for word - although even
this approach is possible - but the method described in the

paper is based on specific properties of AST. Let us note
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that from the point of view of non-standard methods the
whole of AST behaves as a non-standard model.

An endomorphic universe is a copy of the universal
class conveniently put into the universal class. There are
many different endomorphic universes in AST. In many cases
there is room enough for the natural extension of endomor-
phic universe. Let us note that this natural extension is
defined inside AST (and it is not considered as a primitive
notion). These extensions are so natural that it would be
absurd (from the point of view of AST) to call them non-
standard extensions (though they correspond to Robinson’s
non-standard extensions). This is the reason why they are
said standard extensions.

The more experienced reader ncotices that the apprpach
we have chosen enables us to eliminate from AST the me thod
of ultraproduct and to replace it equivalently by another
procedure which seems to fit more in AST. For such readers
let us note that in ‘AST we can prove that the ultrapower of
the universal class is isomorphic to the universal class.

The method described in the paper has a lot of appli-
cations; in particular, we can imitate in this way a great
deal of results obtained by non-standard methods. Some ap-
Plications which are in a way specific to AST can be found
in [S~V2],

In the first aectioﬁ we inveatigate basic properties
of general endomorphic universes, in particular we show the
existence of endomorphic universes with special properties.
The second section deals with properties of standard exten-

‘sions on an endomorphic universe. Especially, we prove that
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standard extension is determined uniquely. The last section
is devoted to the proofs of the existence of endomorphic uni-
verses which have standard extersiohs.

The whole article can be considered as an immediate
continuation of [V]. When referring to that book we shall ci-
te only the section and the chapter in question.

The first author showed in AST that the ultrapower of
the universal class is isomorphic to the universal class. On
the base of this result the second author suggegtod the con-
ception of this paper. Its concrete realization was carried

out by both authors.

§ 1. Basic properties of endomorphic universes

A cless is called an endomorphic universe iff it is si-
milar to the universal class. Therefore, a class A is an en-
domorphic universe iff there is an endomorphism F with
rng(F) = A,

Let us recall that a function F is an endomorphism iff
for every set-formula ?(zl,...,zn) and for every xl,...,anVG
= dom(F) we have (go(xl,..-,xn)- g?(F(xl),...,P(xn))). Fur-
ther, let us remind that ¢ denotes the formula resulting
from ¢ by the restriction of all quantifiers binding set va-
riables to the elements of A and all quantifiers binding

class variables to the subclasses of A.

Theorem. The following properties of a class A are e-
quivalent:
(1) A is an endomorphic universe

(2) If 9(2y,...,2,) is a normal formula of the langu-
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age PL‘ (i.e. the elements of A are admitted as parameters)
then for every xl,...,xn the subclasses of A which are at

most countable we have

$H Xy, ) = @ (Xy,enl,X)
(3) A satisfies the following two conditions
(a) If ¢ (z) is & set-formula of the language FL, then we
have (3 x) @(x) — (3Ixel) ¢ (x)
(b) For every countable FEA there is fe A with Fcf

(4) If {9, (z);ncFN} is a sequence of set-formulas
of the language FI.A then we have
(Ix)(Vn) g (x) — (IxeA)(V¥n) Pp(x).

Proof. (1) —> (2). Let YZA be a countable class con-
taining all constants occurring in ¥ and such that Hex
for every 14£i< n, By the second theorem of § 1 ch. V it is
sufficient to construct an endomorphism which is identical
on Y and the range of which is A. Let G be an endomorphism
with rng(G) = A, Then G™1}Y is & countable similarity and
therefore it can be extended to an automorphism F (see § 1
ch, V). Hence the composition of G and F is an endomorphism
we 1:;oked for.

The implication (2) —» (3) is a trivial consequence of
the prolongation axiom.

(3)—>(4)y Let i ;n<FN be a sequence of set-for-
mulas of the language FLA and let ¢ be a set such that for
every n€ FN the formula @n(c) holds. According to (a) we
can choose for every ne€ FN a set X, € A such that @y(x,) &
Seee & 9n(x,)e By (b) there is fe A with f(n) = x, and hen-
ce there is a set xe€ A such that ix,;n e FN} S x. For every
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neFN we put y = {ze x; P(2)& ... & @ n(z)} and we have
obviously Yns A&yn*o. Using our assumptions we can choose
&€ A such that dom(g)e N&(V¥ n)(g(n) = Yp) & (Voo )(ec+ 1 €

< dom(g) —» g(oc+ 1)c g(ec)). Let (3 be the smallest «c for
which holds g(ec+1) = 0 v +14¢ dom(g). Then € A and

@ & FN. We get Ang((& )+ 0 as a consequence of (a) aund of .
the statement g((& )#0&3((3 Je A, Moreover, the formula
(Vyeg())(V¥n) ¢n(y) follows from the construction of the
function g and this proves our statement.,

(4) — (1). At first we are going to show that for e-
very set b and for every similarity Fo which is at most coun-
table and the range of which is a subclass of A, there is
a<A such that the function F v<{<a,b>} is again a 8imila-
rity. Under our assumptlons there is a set ¢ such that F v
Uu{<e,b?% is a similarity (see the third theorem of § 1
ch. V). Let us choose a€A such that for every set-formuls
$(z) of the language FI‘rng(F )y We have @(a)= @ (c). Thus
F vica ,b>% is a 31m113r1ty and thence we have proved our
claim,

Llet{ajox c Q3 (b ;¢ €0} respectively) be an e-
numeration of A (of V respectively). Using the previous claim
and the third theorem of § 1 ch. V we are able to construct
by transfinite induction a sequence {F 5 ¢ € 03 of simila-
rities which are at most countable and such that U-{ i Be
ceocnfNLicF < 1+ 8, € rng(F__)c A and b <€ dom(F,,c). Thus
ULE, ;o € 0% is an endomorphism we looked for.

Let us note that according to (2) of the last theorem,

for every endomorr " 'erse A and for every finite set x
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we have xc A=x<A.

Theorem. Let WU be a codable class of endomorphic u-
niverses such that for every 7L ¢ # which is at most coun-
table there is A< 9 with U%L = A. Then U#! is an en-
domorphic universe.

Proof. To prove the property (4) of the previous theo-
rem let us suppose that 19,(2);neFNS$ is a sequence of set-

formulas of the language FL, . Then there is % c % which

is at most countable and sucznthat {g,ime FH} is a sequence
of set-formulas of the language PLU 7o Thus by our assump-
tion there is A e @ such that every g is a set-formula
of the language FLA. If there is a set y such that for every
né FN we have g?n(y) then there is x € A such that for every
n€ FN, the formula qn(x) holds. Since x € U7 our state-

ment is proved.

Theorem. Let{A,;neFN} be a sequence of endomorphic u-
niverses such that ACA .- Then U{Ln;n €FN? is no endo-
morphic universe.

Proof. We can chooss a function P such that dom(F) = FN
and such that for every n< FN the formula F(n)¢ Ay - A
holds. If U{ A ;neFNJ would be an endomorphic universe then
there would be fe U< A ;n€FR} with FC £ and thence we would
have f< A, for some mc FN. Since mchy it would hold F(m)c Ay,
which is a contradiction to our assumption F(m)e¢ Apyy = Ay

For arbitrary class A and arbitrary set 4 we put

ALd] ={f(d);fc A% d cdom(F)?

Theorem. Iet A be an endomorphic universe and let 4 €
. €UA, Ten A[ 4] is the smallest endomorphic universe sub-
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class of which is the class Au{d} .

Proof. Obviously the class A[d) is a subclass of every
endomorphic universe subclass of which is Au{di. To show
that Au{diSAld] let us fix v with de ve A. Let xcA be gi-
ven. The function f for which the formula dom(f) = v &(¥ye
€ v)(f(y) = x) holds is an element of A and moreover f(d) = x.
Hence Ac A[d) has been proved. If id denotes the identity on
v then ide A and i1d(d) = d from which de Ald] follows.

Therefore it remains to prove that ATd] is an endomorph-
ic universe. To show this we are going to verify the condi-
tions (a) and (b) from the first theorem of this section.

(a) Let 9’(50”1""”‘:) be a set-formula of the langu-
age FL and let us assume that for functions fl,...,fneA the
formula d¢ dom(fy)N...n dom(f,) & (3 x) @ (x,fy(d),... yTp(d))
holds. We have to construct feA with ¢ (£(a),ry(a),...
eeeyfp(d)). Put
u ={yedom(fy)n... Ndom(f)); (Ix)q (X, 25(y) 00 W Ia(y))3.
Evidently de u< A and moreover there is a function g for which
the statement dom(g) = u&(Vyesu) g(g(y),fl(y),...,tn(y))
holds. Since A is an endomorphic universe there must be a fun-
ction f with the above mentioned property and which is more-
over an element of A. Thus we get 9(f(d),f1(d),...,fn(d)) as
a consequence of d€ u.

(b) Let FSA[d] be a countable function. Then there is
a sequence {f ;n eFNj of elements of A such that dcﬂ{dm(fn);
neFNYand F = if,(d);nc FN§. Without loss of generality, we
can suppose that dom(f;) = v for every n< FN because if g e
CAkdedom(g)kh = (gPv)ui0%y = (v - dom(g)) then he€A &

& dom(h) = v&g(d) = h(d). Since A is an endomorphic universe
- 611 -



there is a prolongation{f_; < € (33€ A of our sequence
for which the implication oc € 3 — dom(f. ) = v holds. For
every y<€< v we define

gly) =4f, (y);c e B & Fne{{f,. (y); < <)}
We have evidently gc A and dev = dom(g) and therefore g(d) e
€ ALd]. Moreover F< g(d) because F = i1f£,(d);n€FNF is a func-
tion.

At the end of this section we shall see that the assum-
ption de UA in the previous theorem is essential. .

Let us note that if A is an endomorphic universe and if
d),d,€ UA then {4,,4,% € UA and AL d,,d,%3 is the small-
est endomorphic universe subclass of which is Av{ dl,dz‘i and
hence it is even the smallest endomorphic universe subclass
of which is the class A[dllu A[dz].“l'he analogical statement
holds for arbitrary finite number of elements of U A.

Theorem. Let A be an endomorphic universe and let c,de
€ UA. Then Alc] = ALd] iff there is a one-one mapping £€ A
with ¢ = £(d).

Proof. Iet Alc] = Ald]. There are g,h cA such that ¢ =

g(d) and d = h(c) because of ce AldJ&decAle] . Put u =
=4{y; h(g(y)) = y¥. We have evidently de ucA. Moreover put-
ting £ = gPMu we get £(d) = ¢ and £€ A, We have to prove that
f is a oné-one mapping. Let x,ycu and x+y. If we would ha-
ve f(x) = £(y) it would hold the statement g(x) = g(y), and
hence we would obtain h(g(x)) = h(g(y)). Further from the as-
sumption x,y e u we would get x = y which is a contradiction.
The opposite implication is trivial,

Let ue mention the almost trivial fact that if A is an
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endomorphic universe then UA = U { P ;ocech}=lUUAS=

= P(UA). This is an immediate consequence of the obvious

statements o € AEF €A, xeA—> v(x)€Aand £ € A —>
~—> o +1€ A (for B, see §1 ch. 1),

Theorem. Let A and B be endomorphic universes. Then

there is the smallest endomorphic universe a subclass of "
which is AuUB,

Proof. Using the previous fact we have either AcUB
or Bc UA, Let us suppose that the second inclusion holds.
Put % = {Ald);de B}, It is sufficient to prove that Ut
is an endomorphic universe because for every endomorphie
universe C the implication AUBSC —> UMt < ¢ is lltii.-
fied. Let M ={Al4 I;neFN} be a countable subclass of 27.
Since B is an endomorphic universe, there is re B with
(¥ n)(£(n) = d,). Thus Ala 1cAlf] € % for every nec FN.
The use of the second theorem of this section finishes the

proof.
Let us recall that a class X is called revealed if for

each countable YS X there is a set u such that YecucX,

Theorem. If A is an endomorphic universe then U A is

a revealed endomorphic uni_verae. )

Proof. If {x ;neFN?<SUA then there is a sequence
{ypine FR}S A such that for every nc FN we have X, € ¥, Sin-
ce A is an endomorphic universe we can choose P. ' € A 80 that
{ypine FN3SP,. and thus it is ix,;neMisP, < UL, We ha-
ve proved that UA is a revealed class.,

For every f and 4 with fe¢ AGdedom(f) we havo £(d) e
€ rng(f) € A and therefore the formula f£(a) e UA holda. As a

consequence we get UA = U{alal;a el A}, nms it is surfi-
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cient to show that the class U<{ALdJ;d e UAY is an endomor-
phic universe. If {d ;ne€FN3 cUA then there is f e UA with
(Vn)(£(n) = 4,). This means, however, that for every nec FN
we have Ald 1< ALf] because the statement d,, € A[f] holds for
every ne FN. To finish the proof we use the second theorem of
this section.

The theorem we proved just now makes it possible to re-
strict the investigation of endomorphic universes to the fol-
lowing two types: The first type consists of endomorphic uni-
verses which are not semisets (in other words the union of
which is the universal class). To the second type belong en-
domorphic universes which are transitive (a class X is tran-
sitive iff UX<SX). In fact if A is an endomorphic universe
then UA is an endomorphic universe of the second type and
A becomes an endomorphic universe of the first type if we con-

sider UA as the universal class.
Theorem. A revealed class A 18 an endomorphic universe

iff for every set-formula y(z) of the language F’LA we have

(Ix) @(x) —> (3 xs4) ¢(x).

Proof. We are going to verify the condition (4) of the
first theorem of this section. Let {9p(z);neFN} be a se-
quence of set-formulas of the language FLA and let the formu-
la (3x)(Vn) @u(x) hold. Put X =4y eh; @ (y) &eee L g (¥)3-
Then {Xn;n €FN3 is a descending sequence of non-empty reveal-

ed classes and hence ﬂ{xn;n €FN3 4+ 0 by § 5 ch. II.

Theorem. If A is an endomorphic universe such that the-
re is an infinite uSA then A is revealed.
Proof. Let X be a countable subclass of A and let F Se
a one-one mapping of X into u. Then there is f €A with FS£ &
- 614 -



& Fne(£™1) and thus Xc £ 1 uca.

Theorem (A. Vencovska). If % is a class of revealed
endomorphic universes which is at most countable then N 7L
is a revealed endomorphic universe.

Proof. Obviously N is a revealed class. To prove
the condition mentioned in the last theorem let us assume .
that ?(z) is a set-formula of the language Fan . Let us
choose a set-theoretically definable one-one mapping F of N
onto V and let x be the set for which the formula @(x) &
XYy (@) — F 1) 2F(x) holds. Men ge FI, for a1
A et and hence x€A for all A € @ from which x € N %L

follows.

Theorem. There is a transitive endomorphic universe
which is the intersection of countably many sets,

Proof. In the second section of chapter V it is shown
that there is an endomorphis F and o, €N such that F"V_CF%.
Put A, = UF"V, A, = UF"A, Cney = Flecy) amd A = N4 ;
n 6 FN}. Then {An;ns FN? is a sequence of transitive revealed
endomorphic universes and thence A is a transitive revealed
endomorphic universe. Moreover, for every n € FN we have Anﬂ_s
S-Ecn+15- A .

Theorem. For every set x there is a transitive endomor-
phic universe x2 A which is a semiset.

Proof. Let F be an endomorphism such that F"V is a se-
miset. Put y = F(x). Since {{x,y>} is a similarity, there
is an automorphism G with G(y) = x by § 1 ch. V. Putting A =
= G"F"V we obtain an endomorphic universe which is a semiset
(because G is an automorphism and because F"V is a semiset)
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and moreover x€A. Thus U A has all desired properties.

Theorem. If A is an endomorphic universe and d ¢ Ua
then there is no minimal endomorphic universe a subclass of
which is Au{d3.

Proof. Let B be an endomorphic universe such that A u
v {4y eB., Applying the last theorem (and substituting B for
V) we obtain a class C such that Au{d3SCcB and C is an
endomorphic universe in the sense of B and hence C is an

endomorphic universe by the definition of endomorphic uni-

verse.,

§ 2. Standard extension .

Let A be an endomorphic universe. An operation Ex defi-
ned for all subclasses of A is called a standard extensiom
on A iff for arbitrary normal formula 9>(Zl,...,zn) of the
language PLA and arbitrary Xl,...,&E A we have

g (Xppee e Xy) = @ (Bx(Xy, .00 Ex(X ).

Theorem. An operation Ex defined for all subclasses
of an endomorphic universe A is a standard extension on A
j.ff for arbitrary normal formula ?(zl,...,zk,zl,...,zn) of
the language FL, and for arbitrary Xy5e+4,X S A we have
BEx(4< XyseeesXy > € A; 9‘(:1,...,5,1(1,...,%) $) =
LEUE STRTPIS 3 ga(xl,...,xk,Ex(xl),...,Ex(xn))}.
Proof. At first let us suppose that Ex is a standard
extension on A. Put Y =4<(x;,...,x. > € 4; 9‘(:1,...,xk,xl,
eee X V3. Obviously
(VycA)(yeIg(jxl,...,xkeA)(y =<x1,...,xk) &
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% q‘(xl,...,xk,xl,...,&))) holds and since Ex is & stan-

dard extension we get (Vy)(ye¢ Ex(Y)=(3 Xyyeeey X )(y =

=X yee0, 57 & @ (X700, X, Ex(X;),000,Ex(X)))). From he-
re we obtain Ex(Y) =4 XypeeesXy ) P P(Xyyeee,x ,Bx(X;),...

eee EX(X )5

Conversely let Ex have the property mentioned in the .
theorem. Then for X;,...,X,C A it holds g2(X;,...,X )=
={xeAl; yA(xl,...,lgl)? =A={xeA;x=xt=
={x; PEX(X)yeee Ex(XNF =V ={x;x = x}=
= (Vx) g(Bx(Xy,...,Ex(X)) = ?(Ex(xl),...,Ex()g‘)). Thus
Ex is a standard extension on A,

Up to the end of this section let A denote an endomor-
phic universe different from V and let Ex denote a standard
extension on A,

As immediate consequences of the definition of standard
extension or of the previous theorem we obtain statements of
the following list ' in which X and Y denote subclasses of A.

X¢c Ex(X)

X = AnEx(X)

XcY=Ex(X) S Ex(Y)

Ex(A) v

Ex(0) = 0

Ex(XnY) = Ex(X)n Ex(Y)

Ex(XuY) = Ex(X)uU Ex(Y)

Ex(X - Y) = Ex(X) - Ex(Y)

XNY = 0=Ex(X)nEx(Y) = 0

The following statements follow from the fact that
{x,yYe A=x,ycA.
Rel(X)= Rel(Ex(X))
- 617 -



Fne (X) = Pne (Ex(X))

Ex(x”l) = (Ex(x))~1

Ex(dom(X)) = dom(Ex(X))

Ex(rng(X)) = rng(Ex(X))

Ex(Y"X) = Ex(Y)"Ex(X)

Ex(X>Y) = Ex(X)»=<Ex(Y)

Ir 9(2) is a set-formula of the language FLA then
Ex(An{x; @(x)}) = {x;@(x)} anmd thus we have in particular

X€A—Ex(xnA) = x

Ex(UXnA) = UEx(X) (=4 <{x,¥> ;xey$ "Ex(X))

Ex(FN)S N

Theorem, Let ‘J’(”zl""'zn) be a normal formula of
the language FI’A and let Xl,...,anEA. Then
(3 x) ga(x,Ex(Xl),...,Ex(xn))a (Ixea) @ (x,Ex(X,),... Ex(X)).
Proof. 1Iet us suppose that the formula (3 x)q(x,k(xl),
-++sEX(X))) holds. Then we have (3 xe4) g:‘(x,xl,...,xn) and
therefore we can choose a¢ A 80 that 9A(a,x1,...,xn). Hence
we have ?(a,Ex(Xl),...,Ex(Xn)) and thus we have proved
(Ixen) g:(x,k(xl),...,Ex(l%)). The converse implication is

trivial,

Theorem. For every x there is X< A which is at most
countable so that xe Ex(X).

Proof. To prove our statement by contradiction let us
assume that acV and that for every X< A which is at most
countable we have a ¢ Ex(X). Let < be an ordering of A of ty-
pe Q , Put
YFX)= (XEAXFEA®R (Ve (Y ydx) (76 Flx)=y € X))

We have (Y XSA)(3 F) ¥ (F,X) because every two disjoint at
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most countable subclasses of A can be separated by a set which
is an element of A. Moreover a € Ex(dom(F)) is a consequence
of  (F,X). Further let us realize that if X,YSA and XY
then vy (F,X) &« ¢(G,Y) implies that the class {x;F(x) = G(x)?
is at most countable and hence ae Ex({x;F(x)¥ G(x)3) and the-
refore Ex(F)(a)+Ex(G)(a). Thus if we put

Q = i{x,y> ;(IX,F)(y(F,X)& Ex(F)(a) = y&x €X)}
then Q codes all subclasses of A which contradicts the second
theorem of § 5 ch. I.

From the last theorem and from the above summarized re-

sults we can conclude
Theorem. If XSA then Ex(X) = U{Ex(Y);Yc X& YR FN?.

Theorem. If Xc A then X = Ex(X) iff X is finite.

Proof. If X is finite then X is a set which is an ele-
ment of A. Hence the equality X = Ex(X) is obvious in this
case., On the other hand let X be an infinite subclass of A
with X = Ex(X). If YS X then Ex(Y)S Ex(X)S A and therefore
Y = ANEx(Y) = Ex(Y). Thence we can suppose without loss of
generality that X is countable. If fc A then Ex(£"X) = £"Ex(X)=
= f*X by the statements mentioned above. Since every countable
YS A is of the form £"X where fc A, we have Ex(Y) = Y for all
such Y and thus Ex(A) = A by the last theorem. This contra-
dicts Ex(A) = V.,

Theorem. The class Ex(X) is revealed for every X<A.

Proof. By the last but one theorem we can assume in our
proof without loss of generality that X is a countable class.
At first let us realize that

FN =4t e A;(VueAd)(u & o« —> (Aved)iv = Xau))3.
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In fact if uA:n&uea then Xnue€ Fin and hence XnueA. On
the other hand for every o< €A -FN there is u€ A such that
XSu&u & ov because A is an endomorphic universe. In this
case XNnu = X is a countable proper class.

Let YSEx(X) and let Y be at most countable. Using the
last theorem we can choose '€ Ex(FN) - FN thus by our as-
sumptions the formula (Vu)(u & ¢—> (3v)(v = Ex(X)n u))
holds. Moreover there is u with u «%9«&!511 and therefore
there is v so that v = unEx(X). Hence we have found v with
YS v SEx(X) which finishes the proof,

We are going to prove a little stronger result.

A class X is called fully revealed if for every normal
formula @(z,Z) of the language FL, the class {x; 9 (x,X)} is
revealed.

Let us note that every set-theoretically definable class
is fully revealed and that each fully revealed class is revea-
led. Moreover if X is fully revealed and if F is an automorph-
ism then F"X is fully revealed, too.

- Theorem. The class Ex(X) is fully revealed for every
XSk,

Proof. If a normal formula 9(2,2) of the language FL is
given then {x; ¢ (x,Ex(X))} = Ex({ X €A; so‘(x,X)}) by the
first theorem of this section and the class in question is re-

vealed according to the last theorem.

Theorem. Let X be a fully revealed class and let 9 (2,2)
be a normal formula of the language FL, (i.e. we admit arbit-
rary sets as parameters). Then the class ix; @(x,X)3 is fully

revealed.
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Proof. Evidently it is sufficient to show that all
classes of the above described form are revealed. Let
qr(z,zl,...,zn,Z) be a normal formula of the language FL and
let ay,...,8, be parameters such that 9(2,2)=y(z,87,...
ceey8,,2). We have {x; @ (x,X)} = {x; y(x,8y,...,8,,X)F =
= rng({{ X,Xy0 000X, Y 5 Y(X, Xy 500 0,%,X)3 0 (V"{al"'”!"n})).‘
Therefore the investigated class is revealed as the range of
intersection of two revealed classes (cf. § 5 ch. II).

From the previous statement we obtain the following re-
sult using an appropriate formula and coding finite sequence
of classes by a class.

Consequence. If ?(z,zl,...,zn) is a normal formula of
the language FL; (!) and if Xy5¢++,X € A then the class
ix; @(x,Ex(Xy),...,Bx(X))} is fully revealed.

Theorem. The class Ex(X) - X is revealed for every XcA.

Proof. Let be given a countable Z with Z SEx(X) - X.
According to the third theorem of this section there is Yc X
so that Y is at most countable and Z< Ex(Y). Since Ex(Y) is
revealed, there is u with Zc u<Ex(Y) and with Ynu = 0. Mo-
reover Ex(Y)n X = Y by the second property of Ex in our list

and hence unX = un (Ex(¥Y)nX) = unY = 0.

Theorem. Ex(Def) is an endomorphic universe.
Proof, Let @ (z,zl,...,zn) be a set formula of the lan-
guage FL. Then the formula
(Yxyy000,x 6 Def)((3x64) @ A(x‘,xl,...,xu)—>
— (3 xeDer) 9A(x,xp,000,xy))
holds because A is an endomorphic universe. Hence we get

(Vxl,otc,%‘. h(mf))((a x) 9(!,!1,.-o,ﬁ)—+
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—> (3 x ¢Ex(Def) q(x,xl,...,xn))
Thus a use of a statement of the first section and of the

fact that Ex(Def) is revealed finishes the proof.

Theorem. If uSA then u is a finite set.

Proof. Let uS A be an infinite set and let X be a coun-
table subclass of u. Since Ex(X) is a revealed class, there
is v such that XS vESEx(X). Hence X = AnEx(X) = un Ex(X) =
= unv which contradicts the assumption that X is a proper
class,

As an immediate consequence we get P(A)C A and thence

PA(A) = P(A). Therefore we obtain
Theorem. For every XSA it is Ex(P(X)) = P(Ex(X)).

Theorem. If X is a countable subclass of A then Ex(X) =
= N{ucA;Xcui.

Proof. If XSue€A then XSunA and hence Ex(X) ¢
€ Ex(unA) = u, To prove the converse inclusion let us assu-
me that y € Ex(Y) A N { u€A;Xcut and that Y is a subclass of
A which is at most countable. There are Uy,u,€ A such that
BN U, = 0&XEu &(Y - X)e u,. Evidently w2 have ye¢ u,.
Since y4 uy, the formula y¢ Ex(Y - X) follows from the first
part of the proof. However, this implies ye Ex(X).

From the last theorem and from a theorem we have proved
before we get .

Theorem. If X< A then Ex(X) = U{N{ucA;Yeu}; YC XL
& Y FNY,

In particular, there is at most one standard extension
on every endomorphic universe. The following result is a con-
sequence of the last theorem and of the formula Ex(A) = V.
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Theorem. If there is a standard extension on an endo-
morphic universe A then for every x there is X which is at
most countable and which is a subclass of A such that the
formula (V u€ A)(XSu—> x<u) holds.

In the next section we are going to prove that the pro-
perty mentioned in the last theorem is also sufficient for
the existence of a standard extension.

Let us realize that there are endomorphic universes
which do not have standard extensions. As an example can ser-
ve each revealed endomorphic universe different from V (sin-
ce it has infinite subsets) or each endomorphic universe

which is a semiset (according to the last results).

§ 3. Existence of standard extension

If A is an endomorphic universe then for every Xc A we

put B, (X) = N{ueA;Xcui,

Theorem. Let X and Y be at most countable subclasses
of an endomorphic universe A. Then we have

(1) EA(XUY) = EA(X)U EA(Y)

(2) XnY = OEEA(X)D EA(I) =0

(3) E,(dom(X)) = dom(E, (X))

(4) E,(XxY) = E,(X)= E, (Y)

(5) 1f g:(z) is a set-formula of the language FL, then
the equality Ey({xe X; 9(x)}) = ixeE,(X); ¢(x)3 holds.

Proof., (1) One inclusion follows from the trivial sta-
tement XSY—> B, (X)E E,(Y). If x¢E,(X)u E,(Y) then there
are u,ve A with Xc¢ukY¥sv&x¢éuuv, Since we have XuISuuv

we get x4 E, (XUY) which finishes the proof.
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(2) If Xand Y are disjoint then there are u,vc 4
which are also disjoint and such that X< u& YSv., Thus we
have l‘(x)n EA(Y)Enr\v = 0. The converse implication is a-
gain trivial.

(3) 1 x ¢ dom(E, (X)) then there is y so that {y,x>€
€ B, (X) and moreover there is ve A with rng(X)<S v because X
is at most countable. Let do'm(i()suck be given. Then XC v x
xu and hence {¥,x) € vxu from which xecu follows.

Conversely let us assume xéEA(dom(X)). Let FS X be a
function satisfying dom(F) = dom(X). Since A is an endomorph-
ic universe there is a function fe A with F€f. If uc A sa-
tisfying FSu is given then we have x edom(unt) and hence
{f(x),x> € u. Therefore we have shown that (f(x),x>¢ E, (F)
which implies x ¢ dom(E (X)).

(4) We have (B (X)) = B, (x™1) because x€u—s x~le
€ u™l. Hence E,(X=¥)c E, (X)>< E, (Y) follows from (3). To pro-
ve the converse inclusion let us suppose that u€ A with XxY<
€u is given. The class 2 =fu”{2z};2€ X}is a subclass of A
which is at most countable and moreover Y<SNZ holds. Since
even Y is at most countable .thera is v€A such that Yc v c N2z
(ef. § 4 ch. I). Put w =$z;vCu” {233} . Then XSweA and at
the end we get E, (X)x E,(Y) S w>xv<Su which finished the proof.

(5) Let YEE (AxeX; ¢(x)}) and let XSu€A. Then
ixeX; ¢(x)} ¢ {x6v; p(x)} and hence yeix<u; ¢(x)} and the
formula y¢ B, (X) & % (y) is a consequence of the last atate—
ment. Conversely let us suppose that the formula ycI (X) &
& a(y) holds. There is veA 80 that XSv., Put w = v n{x;
@), If {xeX; @(x)ISucA then XSuuw and therefore
Yeuuw, By the definition of w, ¢ (y) implies y¢ w and thence

- 624 -



y€u. Therefore we have proved ye E, (ixeXx; @(x)3).

Theorem. An endomorphic univerae. A has a standard ex-
tension iff V = UL E, (X);XcA&XSFN3,

Proof. In the last section we have proved that from
the existence of a standard extension on A the condition
mentioned in the theorem follows. To prove the converse imp-
lication for every XC A we put ‘

Ex(X) = u{ EA(Y);YE X& Y4 FN3,

Thus we obtain

(0°) Ex(a) =V

Proofs of the followingeasy consequences of the defini-
tion of Ex and of the last theorem are left to the reader
(in the case (3°) we use the formula Y< domiX)—> (3 FSX)
dom(F) = Y)., For X,YS A we have

(17) Ex(XvY) = Ex(X) UEx(Y)

(2°) XnY = 0=Ex(X)n Ex(Y) = 0

(3") Ex(dom(X)) = dom(Ex(X))

(47) Ex(Xx<Y) = Ex(X)xEx(Y)

(5°) If @(z) is a set-formula of the 19&&@ FL, then
the equality Ex({x< X; ¢(x)}) ={ x<Ex(X); %(x)¥"holds.

By the first ‘theorem of the second section it remains
to prove that if ga(zl,...,zk,zl,...,zn) is a normal formula
of the language FLA and if xl,...,xn«:-A then we have

m(-&(xl,...,xk) € A; 9A(x1,...,xk,x1,...,xn)}) =

=X 000, ?(xl,...,xk,Ex(Xl),...,Ex()%))}.

A proof of this equality can be done by induction. If
% is an atomic formula of the form X;€ xj or of the form

xj€ X; then we can use statements (0°),(4°) and (5°). It is
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sufficient to deal with these atomic formulas only, since

the atomic formula x; = xj can be reduced to the first type
because x; = ij(V z)(zsxis zéxj). The induction step for
negation and for conjunction follows from (1°) and (2°) sin-
ce using the usual set-theoretical considerations we obtain
from these statements equalities Ex(X - Y) = Ex(X) - Ex(Y)

and Ex(XnY) = Ex(X)nEx(Y). The induction step for existen-

cial quantifiers is a consequence of (3°).

Theorem. lLet A be an endomorphic universe, let X be its
subclass which is at most countable and let de EA(X)' Then
A[dJQU{g\(Y);YEA&M FN§.

Proof, Let f¢ A and d< dom(f). Then £"Xc AL L"X FH and
we are going to prove that f£(d)e€ EA(f"X). At first iet us re-
alize that d¢ E, (X-dom(f)) because d< dom(f). Hence according
to (1) of the first theorem of this section we get 4 cEA(x N
N dom(f)). For every ued with £"XSu we have Xn dom(f) <
ctlrenyxcrlay e and therefore d< £ "y, Thus we have pro-
ved our claim and the theorem is its immediate consequence.

Theorem. Let @ be an ultrafilter on the ring of all
set-theoretically definable classes. Let F be an endomorphism
and let F, 2 ,d be coherent (see § 2 ch. V). Put A = Fvy,
Then we have '

(3 x)(xSAax«sm&dcsA<x))E

=(3 Y)(!ém&(Vu)(YE—.u—} uea),

Proof. Let us Ssuppose at first that there is a class X
vith XEALXLFNLACE, (X). Put ¥ = F-lny, Evidently Y is at
most countable, For every u with Ycu we have XS F(u) and
therefore d¢ F(u), Finally we get u ¢ 9 as a consequence

of the statement d<¢F(u)=ix;xecut e 21 .
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Conversely let us assume that there is a clsss Y such
that the formula YA PN &(Vu)(¥Su —» u € %L ) holds. Put
X = F"Y. Obviously X is a subclass of A which is at most coun-
table. To prove that de EA(X) let us suppose that XSu<€A is
given. Thus we have Y = F inxc P l(u) and therefore F 1(u) ¢
e % . However,{x;xe¢ F-l(u)} € 9L implies de u.

Theorem. Let 2L be an ultrafilter on the ring of all
set-theoretically definable classes and let 7L contain a
set. Moreover let us suppose that 0, 771 »d are coherent. Then
there is an endomorphism F such that F, %t ,d are coherent
and such that the equality (F"V)[dl= V holds.

Proof. Let us choose ue& 97 and let Fo be an endomor-
phism such that Fo» 91 ,d are coherent (the existence of such
endomorphism was proved in § 2 ch. V). Then we have ix; xeule
€ 770 and therefore d is an element of Fo(u). From here the
formula d € U(F,"V) follows and hence (F,"V)[d] is an endo-
morphic universe by the first section. Thus there is an endo-
morphism (F,, say) such that F)"V = (F,"V)Ldl. Aceording to
§ 1 ch. V we can choose an automorphism F, with Pz(Fil(d)) = 4.
Let G be the composition of F2 and Fil and let F denote the
composition of G and F,. Evidently G is a similarity, P is
an endomorphism and moreover it holds G(d) = d.

At first we show that F, 7¢ ,d are coherent. If
?(z,zo,...,zn) is a set-formula of the language FL then we
have {x; @ (x,X),..4,x )} € M = ?(d,Fo(xl),...,Fo(xn))g
= ?(G(d),G(Fo(xl)),...,G(Fo(g‘)))_=_ y(d,F(xl),...,P(xn)).

Thus it remains to prove that (G"V)[d]= V. For arbi trary
y we have G-l(y) € (F,"V)Ld) and therefore there is f¢ F,"v

8o that f£(4d) = G'l(y). Hence we get G(r)cG"Fo"v = P"V and
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moreever G(f)(d) = y because G is a similarity,

The previous statements enable us to obtain a lot of en-
domorphic universes having standard extension. So for examp-
le we can choose a non-trivial ultrafilter %% on the ring of
all set-theoretically definable élasaea with o # FN—»oc e 2L,
By § 2 ch. V we are able to choose further 4 such that 0, 9% .
d are coherent. Thus the last theorem assures the existence of
an endomorphism F so that F, 7 ,d are coherent and such that
if we put A = F"V then we have moreover ALdl= V. By the last
but one theorem there is a class X with Xc AL XAFN &d<E (X).
Hence according to the third theorem of this section we have
V=Aldlcs U {EA(Y);!S AXYZAFN} and thence at the end there
is a standard extension on A a8 a consequence of the second
theorem of this section. Let us note that A%V since 7L is
non-trivial and therefore d¢A.

Another way how to construct an endomorphic universe ha-
ving a standard extension is described in the following theo-
rem,

Theorem. If deef then there is an endomorphic universe
such that dg A, A[dl= V and de E, (Def).

Proof. Let 70 denote the class of all classes of the form
ix; @ (x)3 where ¢(z) is a set-formula of the language FL for
which @(d) holds. Obviously if 2 is a non-trivial ultrafil-
ter with % < 9  then 0, %t »d are coherent. Moreoever if
9;(:) is a set-formula such that ¢(d) is satisfied then the
formula (3 x) «%(x) holds, therefore we have (3 xeDer) @ (x),
This enables us to choose a non-trivial ultrafilter WL satis-
fying 2 S 9 and {u;Defcul c 7 . According to the last
theorem there is an endomorphism F such that F, 7 ,d are co-
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herent and if we put A = F"V then A[d]= V. Since 2}, is non-
trivial we have d¢ A. For every DefSu<A it is Def =
= F-lnpere Fl(u) e 1 i.e. {x;xe F-l(u)i € 2t . Using the
assumption that F, 4L ,d are coherent we get d€ u. Hence we
have proved dsEA(Def).
Consequence, Def =N{A; A is an endomorphic universg}.
Thus we see that there is no minimal endomorphic univer-
se. Moreover we can construct two endomorphic universes the
intersection of which is the class Def and hence the inter-
section of two endomorphic universes need not be an endomor-

phic universe.

Theorem. If A is an endomorphic universe having a stan-
dard extension then there is an endomorphic universe B so
that ANB = Def.

Proof. Put B = E,(Def) and use the results of the pre-

vious section.
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