

Werk

Label: Article **Jahr:** 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0020|log54

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 20,3 (1979)

LEFT-SEPARATED SPACES: A COMMENT TO A PAPER OF M. G. TKAČENKO Petr SIMON

Abstract: There appeared two beautiful papers of M.G. Tkačenko $[T_1]$ $[T_2]$ in the last issue of this journal. He studied the properties of spaces which can be expressed as a union of not too many left-separated subspaces. In this note we want to give alternative (and perhaps easier) proofs of Tkačenko's theorems.

 $\underline{\text{Key words}}$ and phrases: left-separated space, $\tau\text{-compact}$ space, free sequence.

Classification: Primary 54A25, 54F05 Secondary 54B05

0. Preliminaries. A topological space X is called left-separated (right-separated, resp.), if there exists a well-ordering < of a set X such that each initial (coinitial, resp.) segment under < is closed. It turns out that left-separated spaces have other pleasant properties, cf. e.g. $[A_1],[A_2],[GJ]$. Gerlitz and Juhász ([GJ]) proved among others, that each left-separated compact Hausdorff space X is both scattered and sequential, Tkačenko ($[T_2]$) showed that the same holds if the space X is regular countably compact and if $X = \bigcup \{X_n : n < \omega \}$ with each X_n left-separated; moreover X will be compact then. Aiming for this result, Tkačenko

considered the situation in the whole generality, i.e. the space X was assumed to be τ -compact and $X = \bigcup \{X_{\omega} : \omega < \tau \}$ with each X_{ω} left-separated (τ an infinite cardinal) and proved further results, some of which will be restated here.

The following notation will be frequently used throughout the whole paper: If (A, <) is an ordered set and if $x \in A$, then $A(\leftarrow, x)$ denotes the initial segment $\{y \in A: y < x\}$. Similarly, $A(\leftarrow, x] = \{y \in A: y \neq x\}$, $A(x, \rightarrow) = \{y \in A: y > x\}$, $A[x, \rightarrow) = \{y \in A: y \geq x\}$.

As usually adopted, cardinals are identified with the initial ordinals of the same cardinality.

- 1. <u>Definition</u>. Let X be a topological space, (P, <) ordered subset of X, $F \subset X$. The set F is called to be <u>wide with</u> respect to P if $F \cap \overline{P(x, \rightarrow)} \neq \emptyset$ for each $x \in P$.
- 2. <u>Lemma</u>. Let X be a topological space, let $(P, <_P)$ be a free sequence in X, $(M, <_M)$ left-separated subspace of X, F closed subset of X which is wide with respect to P. Assume moreover that for each point $x \in X$ there is some $p \in P$ with $x \in \widehat{P(\leftarrow, p)}$.

Then there exists a closed set $F' \subset F$ which is wide wrt P and such that either $F' \cap M = \emptyset$ or F' is discrete and contained in M.

(Recall that (P,<) is a free sequence in X if < is a well-ordering of P such that $\overline{P(\leftarrow,x)} \cap \overline{P(x,\rightarrow)} = \emptyset$ whenever $x \in P$.)

<u>Proof.</u> By a transfinite induction we shall define the points $\mathbf{m}_{\infty} \in \mathbf{M}$ and the points \mathbf{p}_{∞} , $\mathbf{q}_{\infty} \in \mathbf{P}$ as follows: $\mathbf{q}_{\infty} = \sup_{\mathbf{p}} \mathbf{q} \in \mathbf{p}$; $(\mathbf{sup}_{\mathbf{p}} \emptyset = \mathbf{q}_{\mathbf{p}})$ first element of P)

 $\mathbf{m}_{\infty} = \langle \mathbf{m} - \mathbf{first} \text{ element of } \mathbf{M} \cap \mathbf{F} \cap \overline{\mathbf{P}[\mathbf{q}_{\infty}, \rightarrow)},$ $\mathbf{p}_{\infty} = \langle \mathbf{p} - \mathbf{first} \text{ element of } \mathbf{P} \text{ such that } \mathbf{m}_{\infty} \notin \overline{\mathbf{P}[\mathbf{p}_{\infty}, \rightarrow)}.$

Let γ be the first ordinal such that the induction cannot continue.

Case 1. q_{γ} cannot be defined. That means, $\{p_{\alpha}: \alpha < \gamma\}$ is a cofinal sequence of $(P, <_P)$. Notice that the sequence $\{m_{\alpha}: \alpha < \gamma\}$ is free: Fix $\alpha < \gamma$, according to the choice of m_{β} 's and q_{β} 's we have $\{m_{\beta}: \beta < \alpha\} \subset \overline{P(\leftarrow, q_{\alpha})}$ and $\{m_{\alpha}: \alpha \leq \beta < \gamma\} \subset \overline{P[q_{\alpha}; \rightarrow)}$. Since P is free, $\overline{P(\leftarrow, q_{\alpha})} \cap \overline{P[q_{\alpha}, \rightarrow)} = \emptyset$, thus $\{m_{\beta}: \beta < \alpha\} \cap \{\overline{m_{\beta}: \alpha} \leq \beta < \gamma\} = \emptyset$.

Put $H = \{ m_{\alpha} : \alpha < \gamma \}$ and consider the set $H - \{ m_{\alpha} : \alpha < \gamma \}$. If $H - \{ m_{\alpha} : \alpha < \gamma \}$ is not wide wrt P, there exists some $p \in P$ with $(H - \{ m_{\alpha} : \alpha < \gamma \}) \cap \overline{P[p, \rightarrow)} = \emptyset$. Now it is self-evident that the set $F' = \{ m_{\alpha} : \alpha < \gamma \} \cap \overline{P[p, \rightarrow)}$ is closed, discrete, wide with respect to P and contained in $F \cap M$.

If $H - \{m_{\alpha} : \alpha < \gamma \}$ is wide wrt P, define $F' = H - \{m_{\alpha} : \alpha < \gamma \}$. We have to verify that $F' \cap M = \emptyset$. Pick arbitrary $m \in M$ and let $\beta_0 = \sup \{\beta : m_{\beta} <_M m\}$. If $m_{\beta_0} = m$, then $m \notin F'$ trivially. Further, $m \notin \overline{M(\longleftarrow, m)}$ since M is left-separated, hence $m \notin \{\overline{m_{\beta} : \beta} < \overline{\beta_0} \}$. Finally, $m \notin \{\overline{m_{\beta} : \beta_0} \neq \beta < \gamma \}$: Suppose not. Then $m \in \overline{Plq_{\beta_0}, \longrightarrow} \cap F \cap M$, the possibility $m = m_{\beta_0}$ was discussed and if $m <_M m_{\beta_0}$, we obtain a contradiction to the choice of m_{β_0} .

Case 2. m_{γ} cannot be defined. That means $M \cap F \cap \overline{P[q_{\gamma}, \rightarrow)} = \emptyset$. It suffices to define $F' = F \cap \overline{P[q_{\gamma}, \rightarrow)}$. The verification that the set F' is as required may be left to the reader.

Case 3. p_{3} cannot be defined. This case is empty because of the assumption that each point $x \in X$ belongs to some

 $P(\leftarrow,p)$ and by the fact that P is free.

3. <u>Lemma</u>. Let γ be an infinite cardinal, $X \sim -\text{compact}$ topological space, $P = \{p_{\alpha} : \alpha < \gamma^{+}\}$ dense subset of X. Then the space $\widetilde{X} = \{x \in X : \text{ there is } \alpha < \gamma^{+} \text{ such that } x \in \overline{\{p_{\beta} : \beta < \alpha\}}$ is γ -compact.

The easy proof is omitted.

4. Theorem (Tkačenko [T₁]). Let τ be an infinite cardinal, let X be a τ -compact topological space, $X = \bigcup \{M_{\infty}: \alpha < \tau\}$ where each M_{∞} is a left-separated subspace of X. Then there does not exist a free sequence of length τ^+ in X, in particular, $t(X) \leq \tau$.

(Recall that t(X), the tightness of X, is $\inf\{\infty: \infty \text{ is a cardinal and } \forall X \subset X \quad \forall x \in \overline{Y} \quad \exists Z \subset Y \quad (x \in \overline{Z} \& |Z| \neq \infty)\}.$)

Proof. Suppose the contrary: let $P = \{p_{\alpha} : \alpha < \tau^{+}\}$ be the free sequence in X. Being closed in X, the set \overline{P} is τ -compact. By the lemma 3, the space $Y = \{x \in \overline{P}: \text{ there is } \alpha < \tau^{+}\}$ with $x \in \{\overline{p_{\beta}}: \beta < \alpha\}$ is τ -compact, too.

Let $K_{\infty} = M_{\alpha} \cap Y$ for $\alpha < \tau$; K_{∞} is clearly left-separated, and $Y = \bigcup \{K_{\alpha} : \alpha < \tau \}$. We shall successively apply Lemma 2: Let $F_0 = Y$. F_0 is wide wrt P, closed in Y, K_0 is left-separated subspace of Y, thus there is an $F_1 \subset F_0$ which is closed, wide wrt P and either $F_1 \cap K_0 = \emptyset$ or $F_1 \subset K_0$ and F_1 is discrete. Clearly each set in Y which is wide wrt P is of cardinality at least τ^+ , this fact together with the τ -compactness of Y rules out the second possibility. Hence $F_1 \cap K_0 = \emptyset$.

Proceeding by an obvious induction, we obtain on each successor stage $\alpha+1$ a closed set $\mathbb{F}_{\alpha+1}\subset\mathbb{F}_{\alpha}$ such that $\mathbb{F}_{\alpha+1}\cap\mathbb{K}_{\alpha}=0$ and $\mathbb{F}_{\alpha+1}$ is wide with respect to P. If $\alpha<\tau$ is a limit

ordinal, define $\mathbb{F}_{\infty} = \bigcap \{\mathbb{F}_{\beta} \colon \beta < \alpha \}$. Assuming all \mathbb{F}_{β} ($\beta < \alpha$) to be wide wrt P, \mathbb{F}_{∞} will be wide wrt P, too: If $\mathbb{P}_{\xi} \in \mathbb{P}$, then $\{\mathbb{F}_{\beta} \cap \overline{\mathbb{P}[\mathbb{P}_{\xi}, \rightarrow)} : \beta < \alpha \}$ is a decreasing sequence of closed sets in Y and Y is α -compact, thus $\mathbb{F}_{\alpha} \cap \overline{\mathbb{P}[\mathbb{P}_{\xi}, \rightarrow)}$ is non-void.

We have constructed a nested sequence $\{F_{\alpha}: \alpha < \nu\}$ of nonempty closed subsets of Y. Its intersection is empty, since $Y = \bigcup \{K_{\alpha}: \alpha < \nu\}$ and $K_{\alpha} \cap F_{\alpha+1} = \emptyset$ for each $\alpha < \nu$. But the space Y is γ -compact - a contradiction.

- 5. <u>Definition</u>. Let X be a topological space. Define $\S(X) = \inf \{|m|: X = \cup m \text{ and each } M \in \mathcal{M} \text{ is a left-separated subspace of } X\}$
- $n(X) = \inf\{|\mathcal{D}|: \mathcal{D} \text{ is a family of nowhere dense sets in } X$ such that $\cup \mathcal{D}$ contains all non-isolated points of X?
- 6. Theorem. Let X be a dense-in-itself topological space such that $d(X) \cdot t(X) < n(X)$. Then $f(X) \ge n(X)$.

<u>Proof.</u> Choose a cardinal τ with $d(X) \cdot t(X) \leq \tau < n(X)$. We want to show that $\tau < \frac{1}{5}(X)$. Suppose the contrary: Let m be a family of left-separated subspaces of X such that $|m| \leq \tau$ and $\bigcup m = X$. Since $n(X) > \tau$, there must be some $M \in \mathcal{M}$ which cannot be covered by $\leq \tau$ nowhere dense subsets of X. Define $N = M(\leftarrow, a)$, where $a = \inf_{M} \{b \in M: M(\leftarrow, b) \text{ cannot be covered by } \in \tau \text{ nowhere dense subsets of } X\}$

if such an a can be found, if not, let N = M.

Clearly, the set N is not nowhere dense; let K = N \cap int \widetilde{N} . Denote by $<_K$ the well-ordering of K induced by the order of M.

The following are easy observations:

(a) K cannot be covered by $\leq v$ nowhere dense subsets

(Notice that N has this property and that N - K = N - (N \cap \cap int \overline{N}) \subset \overline{N} - int \overline{N} , which is nowhere dense in X.)

(b) K is dense in int \overline{N} (any nonvoid open set $U \subset I$ int \overline{N} meets N, hence $\emptyset + U \cap N = U \cap I$ int $\overline{N} \cap N = U \cap K$).

Claim: The cofinality of $(K,<_K)$ is not greater than $\mathcal C$. To prove the claim, choose some set $\{q_{\xi}\colon \xi<\mathcal C\}\subset int\ \overline N$ dense in int $\overline N$. Since $d(X) \le \mathcal C$, it is possible.

Since K is dense in int \overline{N} and since $t(X) \neq \varepsilon$, choose for each $\S < \varepsilon$ a set $T_{\S} \subset K$ such that $|T_{\S}| \neq \varepsilon$ and $q_{\S} \in \overline{T}_{\S}$. Denote by T the union $\bigcup \{T_{\S} \colon \S < \varepsilon \}$. Then $|T| \neq \varepsilon$ and $\overline{T} \supset \overline{\{q_{\S} \colon \S < \varepsilon \}} \supset K$. It follows that T is cofinal in K: If not, for $t = \sup_{K} T$ we have that $t \in \overline{T} \subset K(\longleftarrow, t)$, but K is left-separated - a contradiction.

Having proved the claim, let us choose a cofinal subset $\{m_{\xi}: \xi < \tau \}$ of K. We obtain $K \subset \bigcup \{K(\longleftarrow, m_{\xi}): \xi < \tau \} \subset \subset \bigcup \{N(\longleftarrow, m_{\xi}): \xi < \tau \}$. By the choice of N, for each $\xi < \tau$ there is a family \mathcal{A}_{ξ} of nowhere dense subsets of X, such that $|\mathcal{A}_{\xi}| \leq \tau$ and $\bigcup \mathcal{A}_{\xi} \supset N(\longleftarrow, m_{\xi})$. Then $K \subset \bigcup \{\bigcup \mathcal{A}_{\xi}: \xi < \tau \}$, which contradicts (a).

7. Corollary (Tkačenko [T_2]): Let X be a compact Hausdorff space, $X = \bigcup \{M_n : n < \omega \}$, where each M_n is a left-separated subspace of X. Then X is scattered.

<u>Proof.</u> It suffices to show that X has at least one isolated point. Suppose the contrary: let X be dense-in-itself. Then X can be continuously mapped onto 2^{ω} ; let f be such a mapping. Choose Y \subset X to be a closed subspace of X such that f \(\) Y is irreducible. Then Y is a compact Hausdorff space

- 8. Concluding remarks. (a) There exists an example of a (compact Hausdorff) topological space X without isolated points, where $\frac{1}{2}(X) \cdot t(X) d(X) < |X|$ holds. Thus the number n(X) cannot be replaced by |X| in Theorem 6.
- (b) The original Tkačenko's proofs heavily depend on the fact that the following statement is true for some particular choices of the spaces X and Y: If X and Y are (regular) topological spaces and $f:X \to Y$ a continuous perfect irreducible onto mapping, then $c'(X) \ge c'(Y)$. It suggests a question: Is the statement true in general?

References

- [A] A.V. ARCHANGEL'SKIJ: 0 prostranstvach, rastjanutych vlevo, Vestnik Moskov. Univ. 5(1977), 30-36.
- [A₂] A.V. ARCHANGEL SKIJ: Stroenie i klassifikacija topologičeskich prostranstv i kardinal nye invarianty, Uspechi Mat. Nauk XXXIII, 6(204)(1978), 29-84.
- [GJ] J. GERLITZ, I. JUHÁSZ: On left-separated compact spaces, Comment. Math. Univ. Carolinae 19(1978), 53-62.
- [J] I. JUHÁSZ: Cardinal functions in topology, Math. Centre Tracts 34, Amsterdam 1975.
- [T] M.G. TKAČENKO: O bikompaktach, predstavimych v vide

ob'edinenija sčetnogo čisla levych podprostranstv, I, Comment. Math. Univ. Carolinae 20 (1979), 361-379.

[T2] M.G. TKAČENKO: O bikompaktach, predstavimych v vide ob'edinenija sčetnogo čisla levych podprostranstv, II, Comment. Math. Univ. Carolinae 20 (1979), 381-395.

Matematický ústav Universita Karlova Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 7.6. 1979)