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HIGHER ORDER NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
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Abstract: - The Dirichlet problem for a certain nonline-
ar partial differential equation on an unbounded domain is
studied. The existence of a weak solution is proved by means

of the theory of monotone operators.
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Introduction. Our purpose in the present short paper
is to describe an application of some general techniques in
nonlinear functional analysis to the study of a class of hig-
her order nonlinear boundary value problems.

We consider the problem in (L

(e o0 ) _
{ Au =‘MZ_‘,_N (-1) 2 a&(x,u,..., 3™u)+£(u) = 0,
(1)
u 03P,

where:
(i) Q is an unbounded open set in R* with the cone property;

(ii) for each o e N7, ll< m
a&(x’u’.‘.' amu)sac({,l)(xiu""’ amu)#ac(Y,Z)(xvusc- °y am-lu)l

satisfies the Carathéodory conditions and some Nemytskii hy-
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potheses on polynomial growth (assumption K, in Sec. 2);
(iii) f(u) is a nonlinear perturbation whose behaviour is
described by a suitable hypothesis (assumption KS in Sec.2);
(iv) ﬁ:'p(ﬂ) are weighted Sobolev spaces defined as the com-
pletion of ) (Q) with respect to the norm

ful =( Il m jx.). ® 72) | 8%u(x)|P dx)llp,

where ¢@(x) is a continuous function such that inf©(x)>0 and
@P(x)- +o as x| — + o , satisfying assumption H, in Sec.
1.

Many authors (see for instance [1],0[41,[7],[13]) have
studied similar problems, some in bounded open subsets of Rn,
others in unbounded ones. In both cases their existence theo-
rems have been proved either by assuming coercivity (see, for
instance, [1],(13]) or by giving a coercivity condition which
involves all derivatives (assumption A in [7]). In order to
get free from the hypothesis on the lower order derivatives,
F. Browder, for example, imposed conditions upon the bounded-
ness of the domain and the smoothness of its boundary to ma-
ke the application of the Sobolev imbedding theorems possib-
le.

Here, by assuming a coercivity condition depending only
on the highest order derivatives (assumption K3 in Sec. 2),
we prove that there exists at least one solution of the prob-
lem (1) in B3'P(0) with e <- B, pz2.

The use of these spaces allows us to apply some conti-
nuous and compact imbedding theorems for unbounded domains
which are proved in {11,12},{15], and to specify the asymp-
totic behaviour of the solution.
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The proof of the existence theorem is obtained by us-
ing a well-known result of H. Brezis (see [5]) in the fra-
mework of the theory of monotone operators,

In Sec. 1 we recall the spaces ﬁ:’P(m and some relat-
ed results.

In Sec. 2 we formulate the hypotheses of the existence °
theorem and state the theorem itself, which is proved in
Sec. 3.

Finally, Sec. 4 is devoted to an application of the a-
bove theorem to a problem of the following type:

{Azu- An+r1(u)+f2(x!u,y-ad u)=0 in O,

we 02:2(0).

1. Notations and preliminaries. Let () be an open set

in R®, n22, with boundary 80 am %=(Cy,000yoCy) an

ordered n-tuple of non negative integers; we set:

o < «
lool = o4, bt aﬁﬂaxi...a B x“q;&...xnnforxen.

1 *n»
and, if |owl=m, 3™ = p%.
Let o(x) be a continuous function on £l with iﬁf@(x) >
>0 and such that o(x)—> +o as |x|— + o .
Definition 1,1. Let k&N, pe[l,+1, sc R . We de-
note by Ut’p(m the space of distributions u on . such that

ME.&' J; @sp(x) } 2% (x)|P ax<+

normed by

) Nl =D 20 f 60 %P | 3% umIP axll/P

As usual, we set U:’pm.)ﬂem) and u‘:-"’m)w:m).
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Definition 1.,2. Let ke N, pell,+a[, 8 & R ., We de-

note by fﬂ.‘d’m) the completion of (D) with respect to the
norm (1.1).

Definition 1.3. Let keN, pell,+wl, s ¢ R , We de-
note by U;“'Pm) the space of distributions u on 1 which are
equal to a finite sum of derivatives or order £k of func-

tions belonging to U:’p(.Q) and normed by

=3 p 1/P
lu inf( 3, Ve IR, VP,

-k,s,p 0,8,p

where the infimum is taken over all representations of u of
= P

the form u-uﬁ_byg& )y B € U:’ ).

We assume that:

(Hy) Qe C®(2) and for every r ¢ R and e N:: there exists
ace R, such that
| a‘x’Qr(x)léc( SO(x))r for every x¢e .

It is not difficult to prove that the function Sa(x)=(1+
+ lx\z)lla satisfies property Hj.

Under assumption Hl and if () has the cone property, con-
tinuoua and compact imbedding theorems have been proved in
f11,123,L15]; it is also proved that there is a topological
isomorphism of U:g'p'(ﬁ) onto the topological dual (ﬁ‘;"’(mv
of the space ﬁ:’p(ﬂ).

To write nonlinear partial differential operators in a
convenient form, we introduce the vector space R = whose
elements are §,= {§_/lec! =k} and divide such §, into two
parts §,=({,7) where 7 =-ir;p/'l(.’» 14 k-1% is the lower order
part of ¢, and § = {§ /I« =k} is the part of €, corres-
ponding to the k-th derivatives.

Let us now recall some definitions which will be useful
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in the sequel. Let U and V be two Banach spaces; a map f:
sU—>V is called compact if it is continuous and maps boun-
ded sets of U into relatively compact sets of V; £ is called
(sequentially) completely continuous if it maps weakly con-
vergent sequences into strong convergent ones. If £ is line-'
ar and U is reflexive, compactness and complete continuity
are equivalent properties. If X is a topological vector spa-
ce, X’ denotes its topological dual and { s ,+) the canoni-

cal pairing.

2. Assumptions end main result. We consider the follow-

ing problem on L

]
{ Pu= = (-1 9% a_ (x,u,..., 9 W+e(w)=0,
(2.1)

Kl €m
ue ﬁ:\,p(n) y
. =g (1) (2)
vhere the functions a_ (x,§)=a_ '(x,§)+a_ " (x,7) satisfy the
Carathéodory conditions and the following properties:

S ’
k) 1a{P(x, g )l 28, (x)4e, e m 7 PP,
| %22) (x,7 ) £h ¢ (x)+e, .pém_,; l’t,;l p/p:

where g‘,hdevg’p'(m and €ysCy € ‘R+: pz2,

We also assume that
(K))  s<-n/p;

(K3) there exists a positive constant ¢ > 0 and h(x) e
€ U'P(Q) such that for all x ¢ & and for Ep=(§im) e
3 Iksm
|¢Iz‘.-m ao(cl)(x, §n) <2 c°|§~|p - h(x);

8 s
(K4) for each x in £l and each pair (¢, g'm) ¢c RO<RD
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the following inequality holds:

I<ie m [.0(61)(:’ gn)"a(cl)(‘v £a)) [, - £oiz0;

(K5) f is an increasing function and f(0)=0; moreover
le(At) £y (A)IL(t)l, for every t,A e R withy:
:tR ™R,
b2 Z eg)t\ P w >0
Definition 2.1. We say that u is a solution of the pro-
blem (2.1) if u ﬁ:’p(ﬂ.) and {EBu,v) = O for every ve ﬁ:'l’m.).

We are now able to state the following theorem:

Theorem 2,1. Under assumptions Hl'Kl'KS' the problem

3. Proof of Theorem 2.1, The problem (2.1) is equivalent

to the following one:

Bgu= 0°P(x) Eu=0,
(3.1) o

ue UgP(Q.
It is not difficult to prove that

=2 (1)
E'u-A

x +B°u+A£2 )u+ gost(u) "

with

(1) lec) 8p_ (o0
abus = (1) 9% [P ) (xyeeey ®B) ],

lec) a-f3 1
B’u’ -louzémo(-l) p§ac °oc!3 2 ?ep aﬂ ajo )(x""’am“)’

A;z)\ﬂ = (-I)M‘ gosp a*a‘Z)(x,...,a""lu).

lale mv

Theorem 3.l. Under assumptions KI'KZ’K4 and H,, the ope-
rator
ue ?J‘:'P(n) — A:Dumeuuff D e__u:‘:’f"(n)
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is pseudomonotone.
Proof, We first prove that the operator ue ﬁ:‘"m) e

-] ’/
—> Asl)ne U_:’p (2) is continuous and monotone. Assumption
K4 implies the monotonicity property. Notice that, for each
% e Ng such that |w! % m, we have

Aﬂ)
we i®P0) L5 (u,..., %) e 10P@) %50 My, ..., 9M0)e

e u:.p’(n) =, 3 8P(x) afl) (Xyeee,@™)e U::‘;;(Q_) &Uﬁ;"'(m

2% 7L 0P x) M (x, ..., 5% VP (@),

where d,f,i and 3% are continuous by some of the imbedding
theorems proved in [1J,[10] and[14]. The continuity and the
boundedness of A;l), under assumption K,, follow from the
standard theoreme on Nemytskii operators (see [1],[15]). Now
the operator ue fl:'p(n.)——>Baue U;n'pl (1) is compact; indeed

we have

o cl A:Z,
uell:’p(.o.)———> (9,...,0™)e 31’112"’(9)——» .2’(:,...,3"\;)5
ah -
ew? @ > 3% o (x,...,0 M) e UBE ()
2 557P o %) 3*all(x,..., 8% 2P W),

where, since |3| 4 m-1, 3P is compact (see Theorem 5.2 in
£11); 4 and A(S') are continuous as tefore, while ¢ is contimu-
ous as it is the conjugate of the mapping

ve 3P@ — (P Pive 03:0 @),

which turns out to be continuous (see imbedding theorems in
[1] and [14]). Finally the operator ueﬁ:’p(ﬁ.)—>A(2)u 3

€ U:':'P'(n) is completely continuous since for every lowl 4 m
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we have

(2)
uelo]':'p(n)—d'—b (x".’,am-lu)earugag’(ﬂ)i‘g.? 3;2)(x,ooo

veey 3 luye U:",E;(SD ;9: o% ac(f)(x,..., 9% 1y)e U;:zgl(ﬂ)
/

5 0%P@) 3 (x,...,0 % ) UTIP ()

where d is a compact mapping, Aa(o‘?), 8°°, f are continuous as

before.

Now the theorem follows directly by the definition of the

pseudomonotone operator (see [51).

Now let us set
t
F(t)= [ £)(@)ac and D)= fue B0P@): [ Flu(x))ax <+ a0}

By means of I(;j it is easy to show that the functional
+ 0 if ue T3P\ D),
@(u) = { ,
Jp Flux)ax, e dig),
is convex and D(g) is a linear subspace of ﬁ:'p(ﬂ.).

Theorem 3.2. Under assumptions Hl,Kl,Kst3 and K5 we

have
¢ Agl)u+85u+A£2)u,u) + @ (u) .o
Hul m,8,p
as lull —> 4+ 0 .

m,8,p
Proof: For each ueﬁ:'p(ﬂ_), from the hypothesis K3 and
the Ehrling inequality (see [15]) we get

(3.3) < Agl)u,u > =k¢|£&m[0. @ ‘p(x)aa(ﬂl)(x,u,..., 8 ™) 3%u ax

P - ol P -
zco“““m,a,p eo\ﬁ.‘mha “'o,s,p ||hl]°’s’
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zeghull B - efiull :’s - c(e) lu iiP -Ilhllo'a’p

m,8,p 'P 0,8,p
=(c-€) lull g,a,p -c(e)Nul g,e,p - 04

Furthermore, assumptions Hy,K; and the Schwarz-HBlder and
Ehrling inequalities imply that

(3.4) KByuu>lex

sp (1)
log1 £ amv g.zécc ;;p &an @ (x)‘a& (x,

U, dW) 1%uldxe £ & =X SP(x)

Tilem p<w Jﬁ[&cxm‘&_ @
4
i d
Llggml+ = 10Tul™] 157 ulax
d

é%gm%co dzé(!' c*pd.[ligogllo’s’p, (]

o uh,

u "o,s,p +

ki
: ol
v 2Tl

T ’p.]/.-c5 la i

P »8 m,8,p *

p-1
m,8s,p

+ cgllull Celul m,s,p"c(e) I “o,s 1.

P

Likewise it can be proved that

>4 (2) , -1
(3.5) 1< uudlecqllully, o regliully o TelullB7g o+

+ c(e) llull gj’p 1,

where C4qre0+1Cg BTE positive constants independent of u, Fi-

nally, by virtue of the Schwarz-HSlder inequality and assum-

ption K2 we have
wlx)
(3.6 gw=f o[ fwavaxze; [ o P

0 c
[Iu 1P~ 1* 34] ax = —=2— f @ 8P (x) ju(x) | P** ax
0 pr@ "0

peA o A prw fures
zeg( f @ ™='" a) ([ o°P@lu)P)
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et
zcm(_{;l @'P(x)lu(xﬂpdx)—‘ﬁ‘e = ¢0 llu “g:::p .

where o =(p+w)/p, o= o /f(oe=1) and CgyC o are positive
constants. Now (3.2) is an easy consequence of (3.3),(3.4),
(3.5) ana (3.6).

Proof of Theorem 2.1: in virtue of Theorems 3.1 and
3.2 we may apply Corollary 30 of [ 5] and state that there
exists ueD(9) such that

4 A(:.)u#s.\ﬂ":z)u, v-u) > @ (u)= ¢ (v), Vve [oj::Pm).

The proof is completed by means of known procedures (see e.g.
Theorem 3.1 of [3]) which allow to show that u is also a so-

lution of the problem (3.1).

Remark. Let us observe that a weaker Nemytskii condi-
tion, such as in [7] and in 1131, allows us to prove Theo-

rem 3.1 but it fails in the proof of coercivity.

4. Example. We consider the problem on (.
(4.1) Eu= A2y A wtf(x,u,grad u)=0,
{ ue ﬁf(ﬂ.).
It is equivalent to
Egu= 92'(2) [A%- A u+f(x,u,gred u)l = o,
{ ue ﬁs(n).

We set f(x,u,grad u)=f, (u)+£,(x,u,grad u).
Now E, may be written in the form
with

Egu= (n\ﬁa.u-ﬂsa)u# Saz'fl(u),
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with
A= Acp?Aw- =, axi‘s"z’ R

[ 2
Bgu= 4§4 (axi @2’)( axiu)-z(grad So'“,gradA u)-

-4 0%)(Aw),

Asu- gozarz(x,u,grad u).

By supposing that f is a real function defined in = R x
= IR®, we shall also assume that the functions £, and £,

satisfy the properties
(e¢7) £, is increasing, £,(0)=0,
12, (A t)) £ TQIL (L)l for every A ,tc R,
with 3 : R— R,
£, ()12 clt|i*e w> 0;
(e0y) £, satisfies the Carathéodory conditions and
1£5(x,t, €)1 2 h(x)+dy t] +b, 151 ;
: 0,2
with he83:2 ana by,b, ¢ R, -

It is easy to verify that the operator E satisfies as-
sumptions Kl,K3,K4 and KS; then Theorem 2.1 implies that the
problem (4.1) has at least one solution.

We shall conclude this section by giving some examples of fl

and f,: The functions t2n+1,n eNand t1t1¥ | x e R, , sa-
tisfy condition ;. The functions g(x)+ VIt|= ¢ 1P, 0<e,

(<1 and g(x)+arctg t+arctg |§| where ge¢ 62'2(11), satisfy

condition oo
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