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A LIMIT THEOREM FOR FUNCTIONALS OF A POISSON PROCESS
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Abstract: Let «w be a random point measure defined on
a locally compact topological space X with countable basis
and let w have the Poisson distribution Q, with intensity
measure » . The asymptotic behaviour of the distribution
function of the random variable Z (u)= (u'(hlxn) as the com-

pact subset KnT X is considered. This work also deals with
the rate of convergence to the limit distribution.

. Key words: Stochastic point process, asymptotic norma-
lity, intemsity measure, exponential trend. ’

Classification: 60F05

§ 1. Introduction. Poisson processes form an important
class of point processes. Many interesting problems of sta-
tistical analysis of Poisson processes on the line have been
considered in [1] by D.R. Cox and P.A.W. Lewis and (on more
general spaces) by M. Brown [3]. This article is concerned
with the limit distribution of certain linear functionals of
a Poisson process. Limit theorems will be stated in Section
2. The rate of convergence to the limit distribution function
will be considered in Section 3. Section 4 contains some ap-

plications of the results obtained in Section 2.
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§ 2. Limit thecrem. Following [4],[5] let us consider
a locally compact topological space X with countable basis.
Let H(X) be the & -algebra of Borel subsets of X, A = M(X)
the family of Radon measures on (X,(X)) and ¥ - the class
of continuous functions with compact supports defined on X.

Let us also consider a Poisson process Q, on X with in-
tensity measure » (» ¢ JA(X)), i.e., a probability distribu-
tion defined on the 6 -algebra < (/) generated by all open
subsets with respect to the topology of vague convergence x)
with the characteristic functional defined by

@) Q)= | exp(de(r)) Q@)= exp(» (e1F-1)), 265,

where »(f) tfxf(x)v(dx).

Suppose that w e A is a realization of Q, . Usually
one can only observe the realization ¢ on some compact set
K of X, as X too large.

Let us consider a statistic of the form

(2) Zg(@) = w(nlp),

where I is the indicator of K, h is some measurable function
on X, ‘

The statistic Zg(w) plays an important role for many
problems of testing hypothesis and estimating the parameters
of Poisson processes, The distribution function of Zx( «) de-
pends on h, K and v , and is rather complicated, the asympto-

x) {(wn} is called to be vaguely convergent to w ife
(“n(r) —,(.p(f) for all fe.’JCc.
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tic theory for such statistics is therefore convenient for
practical purposes.

Suppose that Kn is a sequence of compact sets such that
K,1 X. Let 2, (w)= an(@,), and let us consider the asympto-
tie behaviour of the distribution law under Q, of the random

variable of the form
(3) T (@)=(Z,(w)-a,) /b,

where & , b, (bn7 0, for all n) are constams.
Note that

Zo(w)=* o iff A ={x:h(x)=* ®} c K,Nsupp & -

Consequently, letting

Ry= (e @hIg )2y (@) ¥ £ 0!
we obtain (see [4])

Qv(nn)'-exp(- 2 (K,A)).
Consequently, for the existence of the limit distribution of
Y, (@) the necessary condition is
Q,{Z (@)=t = 1 = Q(R))= 1 - exp(-»(AKy))— 1-exp(=2XA))=0
or
(4) » (AKy) —> »(A)=»ix:h(x)=*0} = 0
Therefore, in the following theorems we always assume that (4)
is fulfilled.

Let A= »(K), »g(-) be the restricted measure of » on
K, i.e. vyg(A)=»(AK), for all K and A ¢ R (X), and » (-)=
= Dxn(-), G,(t) be the characteristic function ch.f. of Z,(w)
under Q, .

We have the following theorems
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Theorem 1. Assume that A = 2(X)< co » then
(5) G (t) — exp(ALg(t)- 1]) = G(t), say,

holds, where
(6) g(t)=v(exp(ith))/A

is the ch.r. of random variable h(T) with T being a random
element in X possessing the distribution law »(-)/A .

Further, G(t) is the ch.f. of the random variable ¥ f,
where 7 is some constant, g has the Poisson distribution
with the mean value A , iff h = 7T, »-a.e. ., G(t) is al-
ways the ch.f. of a nonnormal random variable,

The case A = is more interesting.

Theorem 2. Suppose that A = 00 . Then the following
conditions (i),(ii) are sufficient for the existence of num-
ber sequences {a,} and {bn?; with by — @ such that

M = ity ()< = Q,i(Z,(w)-a)/b < 33— F(y)

where, here and in the sequel, the convergence is meant in
the weak sense,

(1) a2 5 o (« - finite)

(11)  Pi(S,- a)/b < y3— K(y)

where
La,]

Sy = w4 hixg)
is the sum of independent random variables h(xnk) with Xk
k=1,2,..., [A,), being identically distributed independent
random elements in X possessing the common distribution law
Pple )/JLn for each n and with [a.n] denoting the entire of
Ape
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Further, F has the form
(8) F(y) = Kx ¢d‘(y)

where ¢_(y) is the normal distribution function with mean
value zero and variance 2.

Notice. ¢, (y) is the distribution function with Jump
one at zero, whereas &,(y) is redenoted by ¢(y).

Proof of Theorem 1. It is easy to see that the ch.f.
G,(t) of Z, under Q, is defined by

G, (t) =EQv(exp(it(u (hIKn)) )=Q),n(th)

(9)

=exp( v (exp(ith)- 1))=exp( A lg,(t)= 1))
with
(10) gn(t)= vn(exp(ith))/an

Since A, — A as Kn‘r X, g,(t) converges to g(t) amd
(5) follows from (9).

The second statement of Theorem 1 comes true iff g(t)=
=exp(iy t), but this occurs iff h(x)=7y, » -a.e.. )

As to the last statement, let us suppose inversely that
G(t)=exp(iat - b2t2/2), then g(t)=1+iat/A - b2tZ/24.

However, the right hand side of this equality is not a
ch.f.. This proves the last statement.

Proof of Theorem 2. Let V, be a Poisson distributed
random variable with mean jLn. For the sake of simplicity we
suppose that A, is an integer.

Put A (y)=PiV <y}

A=V = A/ % 37 = Kz At/ 22
It is obvious that A, (y) — $(y) since ‘ﬂ'n—’ A = o0
It follows from (9) that
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k

Op(timexp(-2) % 20 g (k.
n’ <o &n
(11) ks

- 1/2
'j:oisn(tnyd L,(y)= I:[gﬂ(t)]y’a'n *An an (y)

Let k(t), £(t) be the ch.f. corresponding to K, F and
Hy(t), k,(t) be the ch.f. of Yy (Sp-ap)/b,, respectively.
It is easy to see from (11) that

Bh(t)ﬂexp(-it.n/bn) Gn(t/bn) =

- © +y 12

._fm[kn(ml M erp(ityan/bnﬂf)' dA (y) —

® 2.2
— k(t) fwexp(iocty) a4 ¢ (y)=k(t)exp(- ®t?/2)

This proves Theorem 2.

Remark, According to Theorem 2 the problem of investi-
gating the convergence of Fn(y) reduces to the classical 1i-
mit problem for the sum S, of independent random variables,
and with the aid of this theorem we can obtain a large class
of limit distributions of Zpe

The following theorem states conditions for asymptotic
normality of Zn'

We say that Z, is asymptotically normal N(an’blzx) ir

_w<:‘u<pwlr((zn-an)/bn< Y) -¢(y)|— 0

Theorem }. Assume that .ﬂ.n—>oo « Then necessary and
sufficient conditions for the existence of number eequences
{a,} ana ib,} with b >0 ama b,—>® such that
(1) gyle)= »(K N{x:|h(x)| > €b.})— 0 as n > for all
& >0 )

2
(i) Z, is asymptotically normal N(an,bn)
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are that there exists a number sequence {dn'é with 4, — 0@
such that
(a) 2= “"“‘21&,,8 )—> 0o where S ={x:|h(x)|<a;
n
(®) ay=o(C,), »(K;Sp)—>0

Further, in this case the constants a, bn can be defi-
ned by

(12)  ay= »(nIg g ), v2=c2= ”(hzlxnsn)‘

Proof of necessity.

Suppose that (i),(ii) are fulfill-
ed. Since gn(ev)——z» 0, there exists a sequence -ian} such that
€,V 0 and g (g ) — 0. ’

Putting d = € b =o(b,), we obtain »(K Sp)—> 0

Further, the logarithm of the ch.f. Hn(t) of !n=(zn-
- %)/’bn can be extended in the following form (see (9))

Lait, (t)=-itay/bye » (Lexp(ith/by)- DIy ) =

(13)
-ita,/b +» (lexp(ith/b,)-1] IKAsn)w‘ o(1)
since
|»([exp(ith/by) - LIy o)) £2» (K ;S5)—> 0
Furthermore,

n n
(14)

2 2 2 3 2 2
- t“p(h IKnsn)/zbnw It (a,/0,) » (h IKnsn)/ﬁbn

with |18l < 1.

It follows from (13),(14) and from the assumption of
asymptotic normality of Z, that
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2 2 2

s 1nnn(t)--itan/bn+it. v(hxxnsn)/bn-t » (h I%Sn)/Zb!;

15
3 3 2 2

oltl (dn/Gbn) v (h Ixnsnh o(1) — =-t</2,

(15) holds iff
2 2 2 52
Y(h Ixnsn)/bn—> 1, or Ci/bp —> 1

and it follows from d,/b, —> O that a,/C,— 0.

Proof of sufficiency. Suppose that (a),(b) are satis-
Tied. Then putting in (15) a, = v(hll%sn), b,=C,, we obtain

InH (t) — -t2/2

i.e. (ii) is fulfilled,whereas (i) follows immediately from
(b) with b,=C, .

Remark. The statement on the sufficiency of conditions

(a),(b) of Theorem 3 may be considered ams a corollary of

Theorem 2,

Indeed, according to Theorem 2.3 in [ 21, F (y)=P{(Z -~
-a,)/b < y§ — & (y) iff for any subsequence {n‘} of {n} the-
re exists a subsequence ik} of {n‘} such that F (y) — ¢ ().
We shall show that the statement holds, provided (a),(b) are
satisfied.

Note that if &ny b, are givenby (12) we have
1/2
lay /b, A"l £1

The logarithm of the ch.f. kn(t) of (Sn"n)/bn defined
in Theorem 2 is given by

(16) 1nk (t)=-ita /b + Aplng, (t),
where
(17) gn(t)= v(exp(ith/bn)lxn)/ﬂ,n.
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On the other hand,
|»(exp(ith/b, )Ty ge)l 4 (K, S5)—> 0
hence
8 (1)= P(exp(ith/oy) Iy g )/ Ag? otz =
n

(18) =1 + ita /b, A ~t3/22 + O(a /b, A )+ o(A]Y) =

=1 + itay/by A -t2/22 4 o(A7D).

From (16) - (18) we obtain easily

(19)  1nk,(t)= -t3/2 + t%aZ/22 b2+ o(1).

On the other hend, for any subsequence in‘} of {n} the-
re exists a subsequence {k} of {n“} such that ai/ ?n,kbi——->oc2,

hence
5 (.2 2 2
(20) lim 1nk, (t)=(cc“=1)t/2, o €21,
*—co k
Consequently, by Theorem 2, F (y) — Kx* ¢_(y), where K is
the distribution function corresponding to the ch.f., the lo-

garithm of which is equal to the right hand part of (20).
The logarithm of the ch.f. of K ¢ _(y) is therefore equal to

(?-1)t2/2 - 2t2/2= -t2/2.

Consequently, K* ¢ (y)=¢(y). This proves the "sufficiency"”
part of Theorem 3.

Corollary 1. Assume that

2 2 -
bn_’ »(h IKn)< @ , bp—>c0 and . esu}gnlh(x)l- o(by).

Then Z, is asymptotically normal N(an,bﬁ) with a = »(hI, ).

Xn

Proof. Corollary 1 fellows immediately from Theorem 3

= 555-



by putting
sup |h(x)| if sup|h(x)]— o
| :
n

w

bxl‘/z if sup Ih(x)| #4> 0

m
Corollary 2. (Theorem of Brown (1972).) Let P9y Vo @
be Radon measures on (X, B(X)) and Y1y Y5 < © . Further,
Suppose that the following conditions (i),(ii),(iii), or (i),
(ii),(iv) are satisfied:
(1) << Yy £1=aV,/dp , £,=d Vy/dp -
(ii) There exists a finite positive number M such that
Yi{x:1n(£,/2(x))) > M3 < oo -

(i) 2 (Ue/2)23102 1) )= ©  for a1l >0,
c
where
Dy=ix:| [rz(x)/fl(x)la -lj<e3.

(iv) There exists a finite number llo such that

2 {x: |ln(f2/f1)l ZM =00 .

Then, as K 1 X, (“'(Ix%ln(fz/fl)) is esymptotically nor-
mal N(an,bi) under Qvl' where

& ¥ (In(Ey/2)Ty g ),y Bi= ) (AP (2y/1)) Iy s,

with Sy=ix:|In(f,/£) 12 M3 .

Proof. Corollary 2 can be obtained immediately from
Theorem 3 by putting hﬂ.n(lefl).

Indeed, for »,<< V3, In(£,/f)) is well defined
Py-a.e.. Let us now suppose that (ii),(iii) hold, then

(£,/1))%-1v 21n(2, /1)) ae |(£,/0)%11 <,
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hence it follows from (iii) that »,(h%r )=0 and
& Sc/2
2 2
(@) P01 g )z VI g ) > @ it csM
If (ii),(iv) hold, then M <M and

22 . (n2 . 2

bp= 0y g )= K,,nanfo-Mi n?» (ax) >
(22)  zMZ» (M 4 nl<MINK)=M2[»,({InlZ M INK)) -

-2 Iz MINEY]—> ®

Consequently, choosing 4,= o(b;), 4 —> o , then it fol-
lows from (21),(22) that

"
i Ixnsdn)“"’ ® -

Further, vl(x.nsgn) < 'Dl(S:n)——r 0, since

Cra > c
Vy(sy)= ;2 P(a5< |hl£ a;, )< o implies vl(s%) =

=é§mv1(a5< I(£ d4,)) —> 0, letting M=d)<d;<... . Thus

the conditions (a),(b) of Theorem 3 are satisfied. The con-
dition »; (h=*c0 )=0 is also fulfilled since

2 (h=tw) £ vl'(sgn)-—y 0.
Consequently, the statements of Corollary follows from Theo-
rem 3.

Remark 1. We observe that the assumptions of Theorem 3
are strictly weaker than those of the cited theorem of Brown.

In fact, let »; be Lebesgue measure on the half line
X=[0,0), V<< P; with d4,/d p =exp(t)=f,(t), £(t)= 1,
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Then h(t)=1ln To(t)=t. It is obvious that conditiom (ii) of
the theorem of Brown is not fulfilled, since

% {lh|>Ni= Piftit>Mi=o for all M>0,

Theorem 3 is, however, utilizable. Indeed, if Kna[o,Tn] with
Tyt o , letting Tngdn we have KN S:-ﬂ,

d
b;‘:- j;mtadt = a%/:s, 80 that . = o(bn)-

Consequently, by Theorem 3, Z, is asymptotically normal
N(a.n,bi) with

TW

o [ ot = 272, 82 = 22,

§ 3. The rate of convergence to limit distri tution,

Theorem 4. Suppose that »(Jh|3 I‘n)< 0 and let

8" » (I ), b2= v(hzi“l), ¥p= »(1n13 I ),

R W Z N N P (Z,-a,)/b <y} -
Then

(23) sup 1B (3)-d(y)lea 'yn/bgﬂ 7;/b£3 A%/Z

-c0 l%.
where A may be taken the value '
A= (3/25) 24021/ ) /(20 )372

with C(t) being the solution of the equation

Cit)
JO( (sin®w/u?)au =ar/4 + 1/8¢

Proof. Let H (t) be the ch.f, corresponding to Fpe
Then (see (9))
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Hy (t)=exp{~ita,/b + »([exp(ith/b,)-1] Ixn)§=
= expi-itay/by+it »(hly ) -2 1)(h2Il%)/2b§+ oiti3y, /6031=
=exp(-t2/246 [t 13 7 /6b3) with 16141,

hence

B, (t)-exp(-t2/2)1 zexp(~t2/2) lexp(8 [t |3y /6b0)-11 £
201213 ¢ p/63)exp(t3/2+1t13 3, /6b3) £ 1t13exp(-t2/6) 7, /603
provided [t|%2b3/ ¥ =T, say.
In accordance with Theorem 2, p. 137,[61, we have
sup! F, (y)- 6(3)| £
%

j. | Rn(t) - exp(-t. /2)

We therefore receive from (25)

| atsc?(1/s y/2x VER

s;plrn(y)- d(y)ie ( /657'b3) f t exp(-t2/6)dt+
402 (Ut ) oy /03 (251 )3 220 /03
Remark 2. If 77/b3£M (in general, it is usually ful-
£illed), then
oup 17, (3)= $(y)1 < Ak ol

and this is the best estimation of the deviation between
Fp(y) and ¢(y). Indeed, if h =1 then Z,(w)= w(K,) has Pois-
son distribution with the mean value JLn= v(%) and it is to
see that

supan(y)- $(y)1 =0( 1;1/2) where Fn(y)=Q),{ [(u(l%)- Agq) .2.;1/2<
%

<y}
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Exsmple. Let us consider the example described in Re-
mark 1. We have

An"Tns Ta=Ta/4, bi2e12/3, hence 7./03%3 V3/4, thus,
by (23), suplF, (y)- ¢(y)| < 3A\/3/42:/2.

§ 4. Some applications

1. Estimating the parameter of exponential trend. Let us

consider a family of Poisson processes {Q°=Q§De, 8e®} on
(X, B(X)), where the intensity measure P PoBsesses the den-

8ity with respect to some Radon measure A
d©Eo/dA =exp(8T(x)), 6 ¢ ® - an open interval of RL.

Usually we can only observe a realization @« of the pro-
cess Q9 on a compact set & of X. In this case let us consider

the -algebra ./an generated by {w(A) tASK . Then, accor-
ding to [4] the restrictions Qén), Q_gln) of Qg, Q, on 4

have
K

the property that Qe(n)<< Q‘,(Ln), and the logarithm of the like-
lihood function of the process is given by

(26)  1,(8)=1n(aQ{™ saQ{™))=A(x ) - Po () +0ulTg ).
Let

By (6)= @ (K )= ATy exp(om))

Suppose that hn(s) satisfied the following conditions:

(1) ah, (8)/ae= 'MIKnT exp(OT))=%(G), say, and a (6) is finite,

(11)  a®n, (6)/a6= Aty Pexp(em)=b2(0) < @ , and b (8) >

as n — w ,
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(i11) c,(8)= .K.(ITI3oxp(eT) Ixn) is finite and there exists
a number J(8)> 0 such that

sup {1 (6°)1, 10°~ 81< "} /bg(0)-> Oasn >

It is obvious that {4 Qén)/dQ_g'n), 6 e®% is an expo-
nential family of one parameter amd Z (w )= (L(TIKn) is a com-

plete sufficient statistic for © and is an unbiased estimate
of a,(0). In particular, Z () takes in the form of the sta-
tistic considered in Theorem 2 and 3. We have the following

statement :

Proposition. Assume that the above conditions (i),(ii),
(1ii) are satisfied. Then the likelihood equation dIn(e)/de=
=0 or a,(8)-Z,(w )=0 has under Qg unique solution 8(w) as

°

n—> o and with probability approaching to 1, and 'é(‘u) is
asymptotically normal N(Go,b;a(eo)).
Proof. At first let us remark that according to (23) of

Theorem 4

(21) sup | Qg 1(2y-8,)/5(8) < 98~ d()1 £ AC,(8,)/3(8 ) — 0
Further,

(28) ay(0 % 0")=a, (8,)+ & b2(8 )+ Bo2C, (8 + xd')/2,

Ip),lwcl 21,

Choosing d'imn/bn(eo) so that w/b —> 0 and w,(6)) — @,

2(0_)=0(b3/C..) (thie is always fulfilled) we obtain from (28)
Yn'% n’“n

;‘g‘%’“" )-2, () 2 n(85)-Z (@)
b,(8,) 5,(6,)

u;,(8,)+0(1)

Consequently, the function an(e)-zn will change its sign on
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the interval (8,-0,6,+J"). Purthermare, by (ii), for n
sufficiently large an(O) is strictly increasing, hence the
likelihood equation has only solution 8. Further,

(29) b,(8,)18-87) < tes>my, (8)< ay (6 +tb 1 —s
= Zo(u)d< an(e;nb;l) >
whereas an(eoﬂ.b;l) can be extended in the form (see (28))
(30) &, (Og+tbzT)=m, (6,)+tb, (8, )+ at2C, (8, cctb7l) /2n2
It follows from (29),(30),(27) and (iii) that
%, b, (6,)18-6,) < t1=Qg {12, (e )-ayl /b, <t * 120, (0
+atvzl)/2p3 5 (1)
a8 n—>0 for any t fixed. This proves the asymptotic norma-
lity of Z, ().

Example. Let X=[0,c0), K=[0,T,1 with Zh o , T(x)=x,
A be Lebesgue measure, @ = (0,00). Then 6 is the unique

8solution of the equation
Tm/ Tﬁl»
fo x exp(6x)dx= _{) xw(ax)=2 (w), say, or equivalently

Ty, €XP(6T,)/0 ~[exp(0T,) - 11/6%=Z (@)
and it is easy to verify that
Cp(0°)/02(8)w 03 2exp((6°-6-6/21 1) /6°—> 0 for a1

0°:10°-01< 6/2= J(8). Consequently, by the above proposition
8 ie asymptotically normal N(e,b;"’(e)) under Qg with bi(e)z
~ T2exp(6T ) /6.

Remark. By the theorem of Rao - Blackwell and by the
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above proposition estimate 6 of 6 is asymptotically effi-

cient.'

2, Distinguishing two Poisson processes. lLet us consi-

der two Poisson processes Q"’l' Q,,2 and assume that 21 ”2«
<< A . Further, suppose that we have a realization of ¢ on=
ly on compact subset K at our disposal. Let Ax be 6 -algeb-
ra generated by {w(A):AcKi. Then (see [4)) the restric-

tions Q i’ Q‘7‘K of Qvi, Q, on Agy 11,2, respectively, have

the property that Q ”'K<< an and
i

dQ"’iK/dQJ'K“xp {A(K)= »; (K)+ @(Ig In(a»;3/42))3, i=1,2,

Consequently, for testing Q”l against Q.‘,z we can employ
the likelihood ratio test, under which Q”l will be rejected
if

exp [LA(K)=~ »,(K)+ u(1n(d »,/a2 )Iy))

exp [A(K)- »; (K)+ w(1n(a vl/dﬂ. )IK)]

or equivalently
@(hI)>Cy
av, jdny
where hsln(d—:; / d—l) and the constant Coc is defined so that

the test has significance level «(0 < <1), If K is rat-
her large in the sense Yi(K)—> @ , i=1,2 as KX we can
employ the asymptotical normality of (L(hlx) in order to de-

fine approximately C, and the power of the test.

Acknowledgement. The author is indebted to Mr. P. Mamil
for his helpful and valuable discussion.
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