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FINITE ELEMENT ANALYSIS OF THE SIGNORINI PROBLEM
J. HASLINGER

?Etrect: Finite element analysis of the Signorini g -
blem is given. The paper extends results, contained in [ 1,

(10}, where the analysis for polygonal domains is studied, on-
1y. Finite dimensional approximations K, of the closed convex

set Kfof admiesible displacements are external, in general,
i¢e. K, c K, for the Signorini problem over domains with curved
YoundePy. The'main difficulty arises in semi-coercive cases,
where the coerciveness of the functional of total potential
energy on K doesn’'t ensure the same property on xxh. The ra-

te of convergence is studi'ed, mrovided the exact solutiom is
smooth enough. Since the regularity assumptioms are not satis-
fied, in general, we prove the convergence of u, to u, wiith-

out any regularity hypothesis, These results ean be extended to
contact problems of elastic bodies, see [5].

Key words: Finite elements, numerical solution of varia-
tional 1nequalities.

AMS: 65K30

Notations. Let fc Rz be a bounded domain with Lipschitz
boundary N . HE(N) (k20 integer) denotes the usual Sobo-
lev space of functions, derivatives of which up to the order k
are square integrable in N . We write HO(Q) = Lz(.n.), where
the scalar product will be denoted by ( , ). We set k=
= B*(0)x1%(n). ™e norm in a'e“, ihtroduced in the usual way,
will be dencted by fi 'k,.n. or simply |l Ilk. In the next, the
summation conventiom will be used: a repeated index implies al-
ways the summation over the range 1, 2. Instead of 9 v/ axj,

we shall write 'i,j'



1. Settimg of the problem. Let an elastic body occupy
the bounded domain ) ¢ R,, Lipschitz boundary of which is

decomposed as follows:

Qn-iul’,;uf'sﬂ-; )

where T, ,T.,

30 and Tg# f. Let F= (F,F)) e #° and P = (P,P)) €

T!s and T‘° are mutually disjoint parts open.in

(_(LZ(T',‘._, ))2 are prescribed body forces and surface loads, re-
spectively. The displacement field u = (uy,u,) is a classical
solution of the so called Signorini problem, if

u=0onT, ,
u, =wn; =0, T, = ’cijnjti =0on T,

Tim; = Pj,i= L,2om Ty

u £0, 7T

5 = %0040, wI =0on Tg

n

and the equilibrius equations
fi,j,j + Fi =0, 1i=1,2

hold in £ . Here u, denot es the normal component of the dis-

olacement vector u. n = (ny,n,) and t = (ty,tp) = (-ny,ny) are

the outward unit normal and the tangential vector te 4. Si-
milarly Tn and Tt are normal and tangential compenents, res-
pectively, of the stress vecteor T=(T,,T,)=(%
The stress tensor <% =( ., )2

2 S T !
= (eij)i’jgl are related by means of the generalized Hooke ‘s
law

ljnj, 'b’zjnj).
and the strain tenser ¢ =

':'iJ' = ’Hij(u) = cijkl Ekl(u),
where €., =¢,,(u) = 1/2(uk,1+ “l,k)' The elastic ceefficients
1€ L® (f.) satisfy the symmetry conditioms:

ikl = ®jik1 = Cx1ij a.e, in Q



and the condition of ellipticity:

(1.1) E| o, = const.> ozci;jkleijekl,z 635855

holds for any symmetric €55
In order to define the variational solution, we introdu-

ce the space of virtual displacements

V={ve%41v=00n Tw »v, =0 on T3

n

and the closed convex set of admissible displacements
K.={veV|v €0 on T3}.
Let
L(v) = 1/2A(v,v) - L(v),
where

Alu,v) = (w;;5(u), €;5(v)), Lv) = (F;,v;) +'f‘_' Piv; g,
T

be the functional of the total potential energy. An element
u €K will be called a weak solution of the Signorini problem,
if

(®) L(u) £ $(v) Y vek.

The classical and variational formulations are equiva-
lent in some sense. If F“* @ (coercive case) then there ex-
ists a unique solution of (P) (see [11). If T, =@ (sepi-
coercive case), some sufficient conditions for the existence

and uniqueness of the solution of (J?) can be formulated (for

details see [1],[21).

2. Approximation of (). 1In this Section we describe

the construction of finite-dimensional approximations of K.
For the sake of simplicity we restrict ourselves to the case,

when only ‘T'e ie curved. Let ¥ be a continuous concave (it
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is notvneceeeary) function defined on ¢ a,b) , the graph of
which is T"s . We choose (m + 1) poinis Al"""ﬁn+l on T's in
such a way that A,,A ., are boundary points of Tg - Let A,
Ai+1 € T; , Q€ L . By a curved element T we call a closed
set bounded by the straight-lines QAi,QAi+l and the arc
. A’;A-“_l. The minimal interior angle of the curved element T is
called the minimal angle of the curved element T. A triangula-
tion % of Il contains curved elements along '|"s and inter-
nal triangular elements. By the symbols h and a$» we denote
the maximal diameter and the minimal interior angle, respecti-
vely, of all elements T g ﬂ;v . We shall assume only the so cal-
led regular systems of triangulations:

a constant 1’6 > 0 exists, independent of h and such

that
-\9.».1% if h—p O+ .

A family of triangulations will be called o¢ - fg regular, if

'\% = & and

o & .
Hmin ﬂ ’

where hm‘in is the minimal diameter of all T & dj'v . Define

Y, =4ve (RN V| v|y 6P ()%, VTe T 3

and

K, ={veV | v.n(a;)40, i = 1,...,m+ 13},

where PI(T) denotes the set of linear polynomials, defined on
T. It is easy to see that K, represents a finite-dimensional
approximation of K and K, ¢ K, in general.

An approximation of the Signorini problem is defined as

the solution of the following problem:



{ find “he‘h such that

P Du) L) ¥V vek,.

3. Error estimates. In this Section we establish the
rate of convergence of u, to u, provided the both problems
(®) and (?h) have solutions and u is smooth enough. First
let us recall some well-known results, needed in what foll-

ows.
Lemma 3.1. It holds
(3.1) 1/2 A(u - up,u - u) & {Lu - v,) + Liw, - v) +
+ 1/2 Alvy -u,vy - u) + Au,v - w) +Au,v, - }1)}‘
Vvek, vyeK .
Proof. See [3].
Theorem 3.1. Let us assume
(3.2) VYvek 3vh¢Kh: lv-vhl 1—>0, h— 0+
(3.3) v, 6 K, vy~ v (weakly) in 'ae"‘ implies ve€K.
Let there exist ¢f > 0 such that )
A(v,v) = o lvl_f
holds for any ve V. Then
fu- uhl 1—>0, h—p0+ .

Proof. See [4].

Theorem 3.2. Let us auppose that $€ is coercive on
“’k’Jo K, i.e.
(3.4) wvek, Nvpl,—+ 00 implies &(vh)—-)+ 0o

and let (3.2) and (3.3) be satisfied. Let there exist % >0

-5«



such that
Alvy,v) 2 2, | vI? 5

- 1/2
where | v | = (eij(v), eij(V)) . Then

lu -w, | —>0, h—o0+.
Moreover if the solution u of ({®) is unique, then
lw-wull;—>0, h—>o+.
Proof. See L5].
Lemma 3.2. Let M) c R, be a bounded convex domain, the
boundary of which is twice continuously differentiable and

let {J % bea o- [ regular system of triangulations with
o« < I /8, (3 =2. Then

) 3/2 2
Il u uIno’anéch Ilullz’_n_ YueH (L),

where ug denotes the piecewise-linear Lagrange interpolate of
u, ¢>0 is independent of h>0.

Proof. See [6].

Lemma 3.3. Let vePl(T), where T is a closed triangular
element, Let Th be the triangle generated by reolacing the cur-
ved side by its chord. Then

2 2
“V“ l,A(T’Th)é'Ch “V“ l)Th

where A (T,T,) = (T\ Th)u (Th\ T) and ¢>0 is independent of
h.
Proof. See LT71.

Now we recall the well-known Green’s formula. To this end

we define



s(a) =fwe (PPN | vy = vy ace in 03

Y() ={res) | -uij,ju?(m, i=1,2%,

where <« is taken in the sense of distributions. Then the-

ij,d
re exists a unique Te L(¥Y(N), (H_l/z(a-ﬂ. ))2) such that

(v j(")) "("igl,,j"’i)* {T(T),v)

ij0 €1
holds for any & € Y(fl) and v & 3&4 . <,?% denotes the
duality between (H-l/z( 80 1?2 ana (nl/a(a_a ))2. Henceforth

we assume for simplicity that T(4 (m)) e(Lz(aJZ ))2, so that
T() = ('c'lj(u)nj, ezj(u)nj)

and
<T('=):V>' = &Tivi ds.

Theorem 3.3. Let both problems (P ) and (®y,) have solu-
tions u and Uy, respectively. Let uek naez, 2 (u) € Y(fL) and
T,(we Lz(T's ). Let the system of triangulations {%3 satis-
fy the assumptions of Lemma 3.2 and ¥ , describing T , be
from €3 (< a,b)). If the norms |l u, | ; remain bounded then

lu - u\ £ c(wn3/4,

Proof. Using the definition of (), Green’s formula and

(3.1), we deduce

1/2 A(u - uy,u = w )£1/2 Alvy - u,vy - u) +

+ J;} Ty vy = W) 48 J;é Ty(Vyp - W) d8 YveK,vy e K.

Let Y =Yg, where ur is the pjecewise linear Lagrange inter-

polate of u on fL . It is easy to see that uyé K, and



Alug - u,up - u)£ ch?Jull g,.ﬂ.
€1.5) { '

%Tn(ul - u).n dséc'uI -u “o,l} £

3/2
& ch Iulz’n

where the assertion of Lemma 3.2 has been used. The most dif-

ficult is to estimate the term

(3.6) L Ta(v, - wy) as.
s

In what follows we shall construct a function veK such that
(3.6) is small. We identify the origin of coordinate system
(x,%y) with the point A;. Let S_L be a closed set brunded
~~~
with the arc Ai‘i+1§ 8; € T's and the chord AiAi+l' Let x &
€ 2‘..1. By the symbol P(x) and Q(x), respectively, we denote
the intersection of the perpendicular line through the point
x with 5 and AiAi+1’ respectively. Let us define functions
~ N 3 .
Uh' Uh on 1'.L¢J12i by means of the following relatiors :

U, (x)

T, (x)

where we set ¥ (x) = w, (Q(x)). Clearly

uy (x).n(P(x)),
u, (Q(x))+n(P(x)) = A, (x).n(P(x)),

Uy, (x) ='0'h(x), x@AsA; 1.

Let Qi» (x), x€& AgA;, , be the linear lagrange interpolate of

~
Uy on AjA; ., and let us define § on %gﬁ. ; @8 follows:

= 3@, x € 2y, i=1,...m+1.

~
It is readily seen that & € O on T. . We shall estimate

I
N - v b

We may write:



Let q be the arc ‘s parameter of the point P(x) = (Pl(x),Pz(x))

and denote Q,(x) = x,. Then for j = 1,2 we have
1 1 3
B

~ g ~ -
uhj (q) - uhj(q) ‘é -a—g (uhj - uhj) dx2 =
(X
8 uy s (%q,%,) dx,.
o 5x2 hj**12"2 2
Integrating and using Fubini ‘s theorem we obtain
~ 2 2 2 1 =
luh’ - uhjuo,si‘ ch ‘“hll,si j=1,2.

From this and Lemma 3,3 we have

~ 2 2 2 3 2
(3.8) Ry, - U 1l £ ch &?4 ‘“h‘l,s_‘.'é ch” |y | 1,0

o,l‘s
. X _M 2
Let us estimate [ § Ul 0T .
~ i 2 - ~ _ ~ 2 .
ne uhho,f‘s i-eg1 i ® Uhl %P5
2,60
~ ~ ~
@ - 0@ = [ (800,00 - Toxg,00) axy +
B0
d ~
J B (8:00,0,15) - 0, (0),x,) ax, =
0
8,
 de (@0,0 - Tieg,00) ax,

o ~
Since ¥ e C3((a,b ?), we have U, & Hz(AiAi+1). Hence
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~
(3.9 13@ - T (@l%cn 13, - 'hli,AiAm “

32
& cn’|U |
n'2,A4,,, .

i 3
As U, (x) =T, (x).n(P(x)) and ¥ ePy(A;A;, ), we may write

17,12 2
2,A.A.
h'2,A;84,q ¢ luh | l’AiAi+1

Thus, (3.9) and the inverse inequality between Hl(aiAi+l) and

1/2 ; ;
H (AiAi+l) yield:

2

} 2
0,8

310 1@-Yud, contiul?,, <

i l'Al i+l B

3 2
éoh”lw 832,00, .

Adding (3.10) for i = 1,...,m we obtain:
4 ~ 2 3 2
(3.11) 13 - U 0,y 4 ch luhll 1/2,Ty, °

m . . - a
where T3 = i\ij‘l AiAi+1 is the polygonal approximation ufr's.

Using the trace’s theorem (see [8]) we obtain:
2 2 2
Vun Uiz, ¢ e by awys, € clumly g0
1

where ¢> 0 doesn’t depend on h for h sufficiently small. Us-

ing these estimates, (3.7),(3.8) and (3.11) we deduce

o
- 3/2 .
(3-12) l § Uhl o’T‘s < ch n uh' 1,.(1. .
Next, let v V be such that
von =@ on Ty .

Then v.n.4 O on \"‘ , consequently v €K. Finally we may wri-
te ’

- 10 =



(3.13) [ T(vy - wy) ds = L, 7 (§ -u) as £
s s
£ ch3/2luh| l,.Q. .

Since the norms || uhﬂ 1.0 remain bounded, the assertion of
’ ‘.

Theorem now follows from (3.5),(3.13) and (1l.1).

Remark 3.1. Coercive case is very simple. Both problems,
(P) and (?h) have only one solution u and u,, respectively.
Using the Korn’s inequality (see [1)) we obtain the rate of

. 1 .
convergence in ® - norm, i.e.:

Na-u ;= o34,
Moreover, the norms lluh' 1 are bounded. More difficult are
the semi-coercive cases. One of the first questions is, if &
i& coercive on H' K. As th: K, in general, the coerciveness
of & on H’ Kh doesn’t follow from the same property on K.
Coerciveness, together with (3.2) imply boundedness of lluh ((l.
That is why we had to agsume the boundedness of || uhll 1 expli-
citly. However, in some special cases, we can prove (3.4).
Here, we present one of the possible situations.

Let
1={9 = ( 301' soz), ‘01 = al - bx2, P2 = 82 +* bxl,
a;,a,,b€R; ¥
be the space of rigid body displacement,

R*= JEERNK| @ € R*mp ~p € R* 7,

-'Rv =R anav,
Assume that

(3.14) R*=403, aim Ry = 1,

- 11 =



(3.15) L@)kOoVees Ry - 40},
(3.16) KnR =403.
Then

tul? + {'&(u)chluﬂi Vuev,

where f3(u) = J;.‘ (u;;)2 ds (see [21,09]).
Let vy €K, llvhﬂi—, +0 , Then

(3.17) L (vy) = 1/2A(vy,vp) = Llvy) + Blvy) - ﬂ‘vh)z

zecll vhu i - @(vh) - Cl, c,c,>0.

~
Let §y be a non-positive function on Ty such that

4 3/2
Win = @nlom € p "l g -

The construction of such a function is given in the proof of
Thearem 3.3. Then

- + (2 X \+.2 3 2
plvy) = ng (V)< a8 £ j;_ls((vhn -9 )% asden v M]
From this and (3.17)

(3.18) & (vp)ze(l - h3) uvhl i-——r +o0 if Avll ;— + .

Now, combining (3.18) with (3.2) we-obtain the houndedness of

the sequence lluhl 1. Moreover, (3.15) ensures the unique-
ness of the solution u and up,.

The sufficient conditions, when (3.2) holds, are given in

lemma 3.5. Let us suppose that I3 n Ty =2, Fs AT =
= @ and there exists only a finite number of boundary points
el , Ry, T'.,nﬁ . Then the set

@B = Kn (C%(H))2

- 12 -



is dense in K in: ﬁ’ -norm.
Proof. The proof for polygondal domains is given in [101],
but its slight modification gives the same density result al-

80 in our case.

In.t_.he abave error estimates we needed strong regularity
assumptions, concerning the solution u. Unfortunately, there
are no measons to expect such a great smoothness. This is why
we are going to prove the convergence of u, to u without esti-
mating the rate of convergence, using no regularity assumptiors.
According to Theorems 3.1 and 3.2, it remains to analyse the
condition (3.3).

Iém 3.6. The condition (3.3) holds.
Proof. Let € Kh be such that

(3.19) by—~ v in V, h—r0+.

or equivalently

It is sufficient to show that v.n£0 on 'PS

f v.n.qpds £0
7 4

for any @ e ct (<a,b»), ¢ Z0on {a,b).
Since the trace mapping is completely continuous from V into
(Lz(T's,))z, we have
(3.20) Vo= v in (2(Ty D2, n—ro+
hence
Von—> ¥y in I2(Ty), h—ro+ .
Let ‘fh be the piecewise linear function defined on <a,b),

nodes of which are the points Al""’Amﬂ‘ Then

T‘shs {(xl,xz),xl‘ <a,b’ ’ 12 - Yh(xl)z

-13 -



is the linear approximation of '[;
'V(xl)
Vpn(xy) = vplx, ¥ (x)), x e<a,b).

. Let us set

v(xl, Y (xl)),

vy (xy, ¥ixg)),

By virtue of (3.20)

(3.21) Yo— V¥ in (P(a,0)N%, h—0+.
Let us prove also

(3.22) Vs — ¥V in (12((a,0)))%, h—> 0+ .
We may write

(3:23) WV = Yl 0oy € WV = Vo ly @ m *

Yy, - 'th“o,(a,b)'

From the definition of ’lfhh it follows that these ones are
piecewise linear Lagrange interpolates of 1):'% on { a,b ).
Corresponding division of {a,b) will be denoted by a =

= tlf< tg<...<t:+1 = b. Using the approximative prooerty of

'lf‘;b we have
W, - Uyl cen/2 v, &
h hh "o0,(a,b) = h'1/2,(a,b)
’

where ¢ >0 is independent of h for h sufficiently small and
(3.19) has been used. From this, (3.21) and (3.23),(3,22) fol-

lows. Now, let us prove that
) 4
Ve entxy, ¥ixy)) @lx)) axy4 0

for any @ € cl(<a,by), ¢ Z 0on <a,b?. Using (3.22) we

have

- 14 -



o
(3.24) fwvhh.ngdxl—a _&'U’ .n@dx,, h—> 0+.

Vo
For the numerical comoutation of V., .nepdx, we use the
J;, PV A |
trapezoid formula :
g ;
I m m m
jw Vip-ngdx@h((Vy, on) (1)) @ (1) + 2(1, .n)(£3) @ (3) +

o+ (Ve e N)sEV 0T,

. . g m m, _ m f =
Since (’l)’hn.n)(tj)?(tj) = (A @(t)£0 Vj=1,...
..., + 1 we have

[Vypmelso Y h>o.
The proof will be finished, if
&
(3.25) ['th.n,cg]—»_&?f.n?dxl, h — 0+ &
We may write
& I
(3.26) | fw"lf.n gdx, - [V, .n,qll & \fw'lf.nqul -

& o
- Lvhh ngdx, | + Ifw'lf'hh.ng:dxl - 1V-neldl.

By virtue of the inverse inequality between H1/2

Hl(¢a,0)):

(<a,b) ) and

&
| L Vpn-nedx; - LV, on,0dlech [ U, on 9‘1,(a,b) &

1/2
4 c(n,g> )h " "U'hh“ l,(a-f C(n,? )h “ ,v’hh “ 1/2’ (E'b) &

&c(n, cy)hl/2 v f 1,nh" c¢(n, @ )nl/2

where .ij is the polygonal domain bounded with \1‘, T,‘c . T‘a

and T‘Sﬂ\. . From this, (3.19),(3.24) and (2.26) we obtain (3,25),

Hence
(V.n)(xl) = (v.n)(xl,‘f(xl).)éo, x; € {a,b) .

- 15 -



Theorem 3.4. Iet the assumptions of Lemma 3.5 and (3.4)

be sgtisfied. Then

lu - uhl-—QO, h —> 0+

Moreover if the solution u of (%) is unique, then

fu- uh|l1—+o, h— 0+ .

Proof. The assertion of the Theorem is an immediate con-

sequence of Theorem 3.2, (1.1) and Lemma 3.6.

(1]

£21

(3

(43

5]

(61

(7l

L8l
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