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Abstract: Recently in [11] the (r,i,s,j)-projectivity
(i.e.”the projectivity with respect to two preradicals r and
s) has been investigated. In many cases the (r,i,s,j)-projec-
tivity is reduced to the (1,t)-projectivity for some preradi-
cal t. It is shown that a module P is (1,r)-projective if and
only if P/ch(r)(P) is projective in R/r(ﬁ)-mod. In § 2 we
shall show that the concepts of (1,r)-projectivity and the
strongly M-projectivity which is studied by K. Varadarajan in
L1871 are the same. Further, in the study (r,2)-projectivity,
where r is an idempotent preradical and ¥ is pseudohereditary,
r can be replaced by a hereditary radical. § g is devoted to
the study of (r,i,s,j)-quasiprojective modules. Some of these
results are motivated by J.S. Golan’s paper [8] on quasipro-
Jjective modules.

Key words: Generalized projectivity, generalized M-pro-
Jectivity, generalized quasiprojectivity, preradicals.
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By R-mod we understand the cbtegory of all unitary left
modules over an associative ring with unit element. The injec-
tive hull of a module M will be denoted by E(M), the direct

®
by .TT. M. 2 e
product (sum) y:‘el 5 (:_;ZI Ml)
First, several basic definitions from the theory of pre-

radicals (for details see [17],[2]1,(3],[5]) and [12]).

A preradical r for R-mod is a subfunctor of the identity
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functor, i.e. r assigns to each module M its submodule r(M)
in such a way that every homomorphism of M into N induces a
homomorphism of r(M) into r(N) by restriction. A module M is
r-torsion if r(M) = M and r-torsionfree if r(M) = O. We shall
denote by ‘3"r (:?‘r) the class of all r-torsion (r-torsion-
free) modules.

A preradical r is said to be
- idempotent if r(r(M)) = r(M) for every module M,
- a radical if r(M/r(M)) = O for every module M,
- hereditary if r(N) = Nnar(M) for every submodule N of a mo-
dule M,
- cohereditary if r(M/N) = (r(M) + N)/N for every submodule N
of a module M,
- pseudohereditary if every submodule of r(R) is r-torsion,
- faithful if r(R) = O.

We shall say that a module M splits in a preradical r if
r(M) is a direct summand in M. If r and s are preradicals then
we write r<s if r(M)=s(M) for all Me R-mod. The idempotent
core T of a preradical r is defined by ¥(M) == K, where K runs
through all r-torsion submodules K of M, and the radical clo-
sure ¥ is defined by ¥(M) = N L, where L runs through all sub-
modules L of M with M/L r-torsionfree. Further, the heredita-
ry closure h(r) is defined by h(r)(M) = Mn r(E(M)) and the co-
hereditary core ch(r) by ch(r)(M) = r(R)M. For a preradical r
ard modules N&E M let us define Cr(N:M) by Cr(N:M)/N = r(M/N).
Let r and s be two preradicals. A preradical t defined by
t(M) = C (r(M):M), Me R-mod, will be denoted by ras. For an
arbitrary class of R-modules O we define pd'(N) =NKer f, £
ranging over all feHomR(N,M), Med . As it is easy to see
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pa" is a radical. Further, M is a pseudo-injective module iff
p{w‘is hereditary and M is a faithful module if and only if 3“
is faithful.let £f:R—>S be a ring onto homomorphism and r be a
preradical for R-mod.For all M& S-mod let us define firl(M)=
=S-r(RM).’1‘hen fir] is a preradical for S-mod and f[?]=t_‘r;], PIRE

o~
=f[r]. Finally, the zero functor will be denoted by zer.

§ 1. (r,i,s,j)=projective modules. We start with some
definitions which are introduced in [11]. Let s be a preradi-
cal for R-mod. An epimorphism A—'%—r B is said to be:

- (s,1)-codense if there exist Ce R-mod and g:C—> A an epi-
morphism with s(g-l(Ker h)) S Ker g,

- (s,2)-codense if s(Ker h) = 0,

- (s,3)-codense if Ker hns(4) = 0.

Further if NcM is a submodule and M —> M/N is a natural epi-
morphism which is (s,l)-codense, then we write N (s'l)m. Si-
milarly Ne &2 (ve &Py,

Let r,s be two preradicals, i,je41,2,3% and M € R-mod.

A module P is said to be (r,i,s,j,M)-projective if every dia-
gram

P

le

MTN-———>O

with exact row, Ker hs(r’i)M and h-l(Im g) g:_(s’j)M can be
completed to commutative one.
We say that a module P is (r,i,s,j)-projective if it is
(r,i,s,j,M)-projective for all Me R-mod.
A module P is said to be (r,i,s,j)-quasiprojective if it is

(r,i,s,j,P)-projective.

- 485 -



A module P is said to be (r,i,M)-projective ((r,i)-(quasi)
projective), if it is (r,i,zer,1,M)-projective. ((r,i,zer,1)-
(quasi) projective).
A module P is said to be (i,r,M)-projective ((i,r)-(quasi)
projective), if it is (zer,l,r,i,M)-projective ((zer,1l,r,i)=
(quasi) projective).
As it is noted in [11] a module P is (r,i,s,j)-projective,
iff it is (r,i,M)-projective for all Me R-mod with Ms(a"j)M,
i,je11,2,33.

Let A,B be modules and let @ :A—> B be an epimorphism,
A pair (A, ) is said to be an (r,i,s,j,M)=projective ((r,i,
8,Jj)=(quasi) projective) precover of the module B if A is
(r,i,s,j,M)-projective ((r,i,s,j)-(quasi) projective),
AL c_8,B with gef =¢ , f,g epimorphisms and C
(r,i,s,j,M)-projective ((r,i,s,j)=-(quasi) projective) implies
f is an isomorphism. An (r,i,s, j,M)-projective ((r,i,s,j)-
(quasi) projective) precover (A,® ) which is a cover (i.e.
Kergy is superfluous in A) is said to be an (r,i,s,j,M)=-pro-
Jective ((r,i,s,j)-(quasi) projective) cover.

It is shown in [11] that (r,i,s,j,M)-projective ((r,i,s,j)-
projective) cover of a module B exists whenever B has a pro-

Jective cover. _

Proposition 1.1. Let r,s be preradicals for R-mod, j ¢
€ 11,2} and Pe R-mod. Then
(i) if P is projective and K e .T'r then P/K is (r,1)-projec-
tive,
(ii) if P is (r,2,s, j)-projective and K e T then PX is

(r,2,s,j)=projective.
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(iii) if P is (r,3,s,j)-projective and K& r(P) then P/ is
(r,3,8,j)-projective.

Proof: Obvious.

Proposition 1.2. Let r,s be preradicals for R-mod and

f£:R—> R/8(R) be a natural ring homomorphism. Then
(i) if r is idempotent then a module P is (r,2,s,1)-projec-
tive if and only if P/ch(s)(P) is (flrl,2)-projective in
R/s(R)-mod,
(ii) if r is a radical then a module P is (r,3,s,1)-projec-
tive if amd only if P/ch(s)(P) is (f[r],j)-projective in
R/s(R)-mod.
Proof: (i). Suppose P is (r,2,s,l)-projective and
0—> K< Q—&5 P/ch(s)(P)—> O is a projective presenta-
tion of P/ch(s)(P) in R/s(R)-mod. Then 0—> K/fIr](K) —>
-—>,Q/:‘.:f-’rJ (K)-—§—> P/ch(s)(P)—> 0 (g induced by g) is a
(fIrl],2)-projective presemtation in R/s(R)-mod by Proposi=-
tion 1.1(ii). Consider the following diagram in R-mod
P
a
0 —s K/F(K)e—> Q/F(K)—8 5 P/ch(s) (P)—> 0 ( natural)

As it is easy to see Q/F(K) e ych(s) and K/F(K) € (T2 g/#(x).
Now P is (r,2,s,1l)-projective and gev =ar for some v €

¢ Homp(P,&/F(K)) which induces ¥:P/ch(s)(P)— Q/F(K) with
eV =1, Thus g splits in R/s(R)-mod and consequently
P/ch(s)(P) is (fLrl,2)-projective in R/s(R)-mod.

Conversely, if
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M—8 sy N 50

is a diagram in R-mod with exact row, Ker gs(r’z)u, Me
e gch(a) and if P/ch(s)(P) is (f[r],2)-projective in
R/s(R)-mod, then

P/ch(s)(P)

n
M€ >N— >0

(R induced by h) is a diagram in R/s(R)-mod with Ker g €

c (f[r],Z)M’ and hence go v = h for some homomorphism v:
:P/ch(8)(P)—> M. Thus go (vea) = h (& :P—> P/ch(s)(P) is
& matural homomorphism) and consequently P is (r,2,s,1)=-pro-
Jective.

(ii) Similarly as in (i).

Corollary 1.3. Let s be a preradical. Then a module P
is (1,8)-projective if and only if P/ch(s)(P) is projective
in R/s(R)-mod.

Proposition 1.4. Let r be a preradical for R-mod and
P e R-mod. Then

(1) if r is idempotent then P is (¥,1)-projective if and on-
ly if it is (r,2)-projective,

(ii) if r is idempotent amd ¥ is pseudohereditary then P is
(r,2)-projective if and only if it is (1,¥)-projective,

(iii) if r is a radical then P is (r,3)=-projective if am
only if it is (1,r)-projective,

(iv) P is (3,r)-projective if and only if it is (2,r)=-pro-

Jective if and only if it is (1,F)-projective.
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Proof: (i). It suffices to prove the "only if part".
Let P be (r,2)-projective ami 0—>Ke—>Q-8,P—>00bea
projective presentation of P, Then 0—>K/F(K)——rQ/F(K‘)——E>
_8,p—0 (g inducedly g) is a (¥,1)-projective presenlta-
tion of P with K/F(K) e 3’r by Propoé:';tion 1.1(i). Thus g
splits and consequently P is (¥,1)-projective.

(ii) See Rangaswamy [14] Theorem 8 and Corollary 1l.3.

(iii) With respect to Corollary 1.3 it suffices to pro-
ve that P is (r,3)-projective if and only if P/ch(r)(P) is
projective in R/r(R)-mod. Let P be (r,3)-projective, f:R —>
—> R/r(R) = R be a natural ring homomorphism and 0— K—>
—> Q-85 P/ch(r)(P)—> O be a projective presemntation in
R-mod. Then Q e %, since £[r)(Q) = £[r1(R) Q, and hence go v =
=@ (& :P—> P/ch(r)(P) natural) for some ve Homp(P,Q) by the
(r,3)-proje;:tivity of P.Thus v induces v:P/ch(r)(P) —>Q with
go ¥ = 1, hence g splits in R/r(R)-mod and consequently
P/ch(r)(P) is projective in R/r(R)-mod.
We shall prove the sufficiency by modifying of the proof of
Theorem 8 in [14). Let P/ch(r)(P) be projective in R/r(R)-mod
and 0—> Kf——>Q-—5—>P—+O be a projective presentation of P.
Then by Proposition 1.1 (iii) 0 — K/(r(Q)nK)—> Q/(r(Q) N
f‘K)—LP—+O is a (r,3)-projective presentation of P with
K’= k/(r(Q)n ¥ €713/ (r(Q)nK) = Q° (Z induced by g).

Consider the following diagram

0 = K’ Q° E > p > 0

1 T
0—s (K +ch(r) (@°))/ch (r)(Q*)—=Q"/ch(r) (@) = P/ch (r) (P) —> 0

where Ty :r2 are natural epimorphisms.
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As it is easy to see the right hand square is a pullback. Now
£  splits since P/ch(r)(P) is projective in R/r(R)-mod, and
hence g splits. Thus P is (r,3)-projective.

(iv) With respect to Proposition 2.9 in [11) it suffi-
ces to prove that P is (2,r)-projective implies P is (1,r)-
projective for a radical r. It can be proved similarly as the
necessity in (iii).

Corollary 1.5. Let r,s be preradicals for R-mod and P ¢
€ R-mod. Then
(i) if r is idempotent and every submodule of T(R/s(R)) is
T-torsion then P is (r,2,s,1)-projective iff it is (1,sa F)-
projective,
(ii) if r is a radical then P is (r,3,s,l)-projective iff

it is (1,sa r)-projective. *

Proposition 1,6. Let r,s be preradicals. Then every sub-
module of F(R/s(R)) is F-torsion, provided at least one of the
following conditions is satisfied:

(i) r is hereditary,
(ii) s is idempotent and saf¥ is pseudohereditary.

Proof: Obvious,

§ 2. (r,i,s,j,M)=projective and strongly (r,i,s,j,M)-
projective modules

Definition 2.1. Let r,s be preradicals, i,je{1,2,3}

and Me R-mod. A module P is said to be strongly (r,i,s,j,M)-
projective if it is (r,i,e,j,MI)-projective for every index
set I.

If r = 8 = zer, then we obtain the strongly M-projecti-
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vity in the sense of K. Varadarajan (see [18]).

Let r,s be preradicals, i,jed{1,2,33. For any Pe R-mod
let us denote cl()r,i,s,j)(p) ={Me R-mod, P is (r,i,s,j,M)-pro-
Jective}. Further the class of all (r,i,s,j,M)-projective mo-
dules will be denoted by Cl()r'i’s.’j)(M).

Due to G. Azumaya an epimorphism f:A—> B is called an M-epi-
morphism if there exists h:A—> M with Ker fnKer h = 0.
These two following propositions are motivated by the results
of G. Azumaya (see [18) Propositions 1.3 and 1.5). We inclu-
de them here without the proof.

Proposition 2.2. Let r be a preradical and s be a cohe-

reditary radical. Then the following are equivalent for a mo-
dule P:

(i) P is (r,2,s,2,M)-projective,

(ii) given any M-epimorphism f:A—> B and any hdmomorphism
g:P—> B with r(Ker f£) = 0 and s(f-l(lm g)) = 0, there exists

& homomorphism v:P—A such that fev = g,

Proposition 2.3. Let r,s be preradicals and P,Me R-mod.
Then
(1) clgr,i,s,j)(m) is closed under arbitrary direct sums and
direct summands i,je{1,2,3},
(ii) Cr(,r,2,5,2)(P) is closed under submodules,
(iii) if r,s are idempotent Ke F,nF  and M ecl(’

then M/K € C?r,z,s,z)(P)’

r,2,s,2)(P)

- . : D i -
(iv) 1if r,s are both cohereditary then C(r,z,s,z)(P) is clo
sed under the formation of finite direct sums. Moreover, if

. . p .
P has a projective cover then C(r,2,s,2)(P) is closed under

the formation of arbitrary direct products.
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Proposition 2.4. Let r,s be preradicals. Then a module

P is strongly (r,2,s,2,M)-projective if and only if it is

M3 o)

(r,2,84p -projective.

Proof: Obvious.

Corollary 2.5. Let Me R-mod. Then the following are equi-
valent for a module P:
(i) P is strongly M-projective,
(ii) P is (l,p{M})-projective,
(iii) P is (Z,SM;)-projective,
(iv) P is (p{M3,3)-projective,
(v) Pis (3,p{Ml)-pr0ject1ve,
(vi) P/(0:M) P is projective in R/(0:M)-mod.
Moreover, if M is pseudo-injective then the above stated con-

ditions are equivalent to:
w5

M}

(vii) P is (p -projective,

(viii) P is (p"" ,1)-projective.

Proof: By Proposition 1.4 and Corollary 1.3.

Corollary 2.6. let r be a preradical. Then there is a
ch(r)-torsionfree module M such that a module P is (1,r)-pro-
Jjective if and only if it is strongly M-projective,

Proof: By [11] Proposition 2.9 (iv) P is (1,r)-projec~
tive iff it is (1,ch(r))-projective. Now by [2] Proposition
4.6 ch(r) = p‘m, where M'=AT€TQA, Q. is a representative set
of ch(r)-torsionfree cocyclic modules and Corollary 2.5 fi-

nishes the proof.

Theorem 2.7. Let r be an idempotent preradical such that
T is pseudohereditary. Then there is a hereditary radical s

such that a module P is (r,2)-projective if and only if it is
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(s,2)=-projective.

Proof: By Propositiom 1.4 (ii) and [11] Proposition
2.9 P is (r,2)-projective iff it is (1,ch(¥))-projective.
Now by [12] Proposition 1.5 ch(¥) = ch(pi% where Q =
= AEQLE(A), Q is a representative set of cyclic r-torsion-
free modules. It is enough to put s = p{Q} and use [11] Pro-
position 2.9 (iv) and Corollery 2.5 (vii).

Proposition 2.8. Let r,s be preradicals. If M is a co-
generator for R-mod then a module P is strongly (r,2,s,2,M)-
projective if and only if it is (r,2,s,2)-projective.

Proof: By Proposition 2.4,

M.S. Shrikhande calls a module cohereditary if every its

factormodule is injective (see [15]).

Proposition 2.9. Let M be an injective module. Consi-
der the following conditions:

(i) Every submodule of a strongly M-projective module is
strongly M-projective,
(ii) Every submodule of a projective module is strongly M-
projective.
(1ii) ut is cohereditary for every index set I.
(iv) R/(0:M) is a left hereditary ring.
Then conditions (i),(ii) and (iii) are equivalent and imply
(iv).
Moreover, if ch(p{u]) is hereditary then (iv) implies (i).
Proof: (i) is equivalent to (ii) and (ii) is equiva-
lent to (iii). It immediately follows from [15] Theorem 3.2°.
(i) implies (iv). By Corollary 2.5 (vi).
(iv) implies (i). Use Corollary 2.5 (vi) and the fact
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that ch.(pw}) is hereditary.

Corgllary 2.10. R is a left hereditary ring if and on-
1y if E(R)1 is cohereditary for every index set I.

The next Proposition is a modification of the well-known
Theorem on test modules for projectivity (see [4) Theorem 10).
We include it here without the proof for the sake of comple-

teness.

Proposition 2.11. Let Mé& R-mod. Then the following are
equivalent:
(i) every strongly M-projective module is projective,
(ii) (O:M) = pﬂu(R) is & ring direct summend of R and it is
completely reducible ring.

Proposi tion 2.12. Let r be an idempotent cohereditary
radical, s be a preradical and let P be a module possessing
an (r,2)-projective cover 0 —K—> Q-ip—.»P——)O. Theﬁ
(i) P is (r,2,s,l)-projective if and only if Ker ¢ Sch(s)(Q),
(ii) P is (r,2,s,2)-projective if and only if Ker ¢ £3(Q).

Proof: (i). By Proposition 1.1 (ii) r(K} = O. Let P be
(r,2,8,1)-projective. Consider the following commutative dia-

gram
&

Q——— P
3’4 LY

Q/ch(s)(Q)—£= P/ch(s)(P)
where ., , are natural epimorphisms. Then @ o Vv =a, for
some v:P—> Q/ch(s)(Q) since Ker & e %, Q/ch(8)(Q) e F (4
and P is (r,2,s,1)-projective. Now, Wy =vVeQ since Kerg +
+ Ker (’rl - v e@) =Q as is easily seen. Therefore Ker ¢ <
< ch(s)(Q).
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The converse implication is obvious.

(ii) Similarly as in (i).

Proposition 2.13. Let r be an idempotent cohereditary

radical, s be a preradical and let P be a module possessing
an (r,2)-projective cover 0 —> K—» Q-s—prP—-> 0. Then

(i) (Q/(ch(s)(Q)NKerqy), &) where $ is induced by ¢ is an
(r,2,s,1)=projective cover of P,

(i1) (Q/(8(Q)nKer@),F) where & is induced by ¢ is an
(r,2,8,2)-projective cover of P.

Proof: Use Proposition 2.12.

Proposition 2.14. Let r be an idempotent cohereditary
radical and s be a cohereditary radical. If a module P posses-
ses an (r,2)-projective cover 0 —» K-—-»QLP—)O then P is
(r,2,s,2,M)=-projective if and only if it is strongly
(r,2,8,2,M)=-projective.

Proof: Let P be (r,2,8,2,M)-projective. With respect to
Propositions 2.4 and 2.12 it suffices to prove Ker g:saap{m Q).

If £:Q/3(Q) —> M is arbitrary and

Ve(Q) —Z > p/a(p)
2 4 4

M— B N

is a push-out diagram (% induced Yy ¢ ), then Ker he '3‘1, and
n~i(m g) € ¥,. Now consider the diagram

e —% >

J, fo, l 8o,

_
M i N

where m'l,:rrz are natural epimorphisms. In the same way as in
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the proof of Proposition 2.12 we obtain Ker ¢ Ker f o Ty

and hence Ker ¢ < sApmi(Q).

Corollary 2.15. Let r be an idempotent cohereditary ra-
dical, s be a cohereditary radical, Me R-mod and P be a modu-
le possessing an (r,2)-projective cover 0—> K—Q % p—s 0.
Then (Q/(aAp{m (Q)nKerg),& ) where & is induced by ¢ is
an (r,2,s,2,M)=-projective cover of P,

Proof: By Propositions 2.13, 2.14 and 2.4.

§ 3. (r,i,s,Jj)-qugsiprojective modules

Proposition 3.1. Let r,s be two cohereditary radicals
and Q; € R-mod i € 11,2,...,n}, Then Q;® Q,@® ... ®Q, is
(r,2,8,2)-quasi-projective if and only if Q; is (r,2,s,2)=
quasiprojective anﬁ (r,2,s,2,Qj)-projective for every i,j e
e{1,2,...,n}, i%j.

Proof: It follows:immediately from Proposition 2.3 (i),

(iv).

Proposition 3.2. Let r,s be two idempotent preradicals
and Q be an (r,2,s,2)-quasiprojective module. If K is a cha-
racteristic submodule of Q such that K e 3; fa) G; then Q/K is
(r,2,s,2)-quasiprojective,

Proof: Obwious.

Proposition 3.3. Let r be an idempotent cohereditary ra-
dical and s be a cohereditary radical. If a module P possesses
an (r,2)-projective cover 0 —> K —» Q-Z> P—> 0 then
(V/(sa p“P} (Q)nKer @), %) where $ is induced by ¢ is an
(r,2,s,2)-quasiprojective cover of P,

Proof: Use Propositions 2.4, 2.13 and 2.14.
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Corollary 3.4. Let r be an idempotent cohereditary radi-
cal, s be a cohereditary radical and P€ R-mod possessing a pro-

jective cover 0 — K—> Q<> P—> 0. Men (V/(C yp3 (r(Kerg):
sap

:Q)nKer ¢),%) where § is induced by ¢ is an (r,2,s,2)-qua-
si projective cover of P.
Proof: By Proposition 3.3 and [111 Proposition 2.10 (vii).
Following closely the ideas of J.S. Golan (see [8]) we ob-
tain Propositions 3.5 - 3.8 which are included here without

the proof.

Proposition 3.5. Let r be an idempotent cohereditary ra-
dical. Then the following are equivalent:
(i) Every (finitely generated) R-module has an (r,2)-projec-
tive cover.
(ii) Every (finitely generated) R-module P has an (r,2)-quasi-

projective cover 0 —>K—> Q —> P—> 0 with K¢ ’J’r.

Proposition 3.6. ILet r be a cohereditary splitting radi-
cal (i.e. every module splits in r). Then the following are e-
quivalent:
(i) Every finitely presented R-module has an (r,2)-projective
cover,
(ii) Every finitely presented R-module P has an (r,2)=-quasi-

projective cover 0—> K—> Q —> P —> 0 with K e 3’1,.

Proposition 3.7. Let r be an idempotent preradical for
R-mod. Then R = R/F(R) is a completely reducible ring if and
only if for every simple R-module P R@®P is (2,r)-quasipro-

Jjective in R-mod.

Proposition 3.8. Let r be an idempotent preradical such

that T is pseudoheredi tary. Then the following are equivalent:
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(i) Every R-module is (r,2)-projective,

(ii) every R-module is (r,2)-quasiprojective,

(iii) every finitely generated R-module is (r,2)-quasipro-
Jjective.,

(iv) The class of all (r,2)-quasiprojective R-modules is clo-
sed under the formation of finite direct sums.

(v) R/F(R) is a completely reducible ring.
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