

Werk

Label: Article **Jahr:** 1979

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0020|log45

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 20.3 (1979)

GENERALIZED PROJECTIVITY - II J. JIRÁSKO

Abstract: Recently in [11] the (r,i,s,j)-projectivity (i.e. the projectivity with respect to two preradicals r and s) has been investigated. In many cases the (r,i,s,j)-projectivity is reduced to the (l,t)-projectivity for some preradical t. It is shown that a module P is (l,r)-projective if and only if P/ch(r)(P) is projective in R/r(R)-mod. In § 2 we shall show that the concepts of (l,r)-projectivity and the strongly M-projectivity which is studied by K. Varadarajan in [18] are the same. Further, in the study (r,2)-projectivity, where r is an idempotent preradical and Y is pseudohereditary, r can be replaced by a hereditary radical. § 3 is devoted to the study of (r,i,s,j)-quasiprojective modules. Some of these results are motivated by J.S. Golan's paper [8] on quasiprojective modules.

<u>Key words</u>: Generalized projectivity, generalized M-projectivity, generalized quasiprojectivity, preradicals.

AMS: Primary 16A50 Secondary 18E40

By R-mod we understand the category of all unitary left modules over an associative ring with unit element. The injective hull of a module M will be denoted by E(M), the direct product (sum) by $\prod_{i=1}^{n} M_i$ ($\sum_{i=1}^{n} M_i$).

First, several basic definitions from the theory of preradicals (for details see [1],[2],[3],[5] and [12]).

A preradical r for R-mod is a subfunctor of the identity

functor, i.e. r assigns to each module M its submodule r(M) in such a way that every homomorphism of M into N induces a homomorphism of r(M) into r(N) by restriction. A module M is r-torsion if r(M) = M and r-torsionfree if r(M) = 0. We shall denote by \mathcal{T}_r (\mathcal{F}_r) the class of all r-torsion (r-torsionfree) modules.

A preradical r is said to be

- idempotent if r(r(M)) = r(M) for every module M,
- a radical if r(M/r(M)) = 0 for every module M,
- hereditary if $r(N) = N \cap r(M)$ for every submodule N of a module M.
- cohereditary if r(M/N) = (r(M) + N)/N for every submodule N of a module M.
- pseudohereditary if every submodule of r(R) is r-torsion,
- faithful if r(R) = 0.

We shall say that a module M splits in a preradical r if r(M) is a direct summand in M. If r and s are preradicals then we write $r \leq s$ if $r(M) \subseteq s(M)$ for all $M \in R$ -mod. The idempotent core \overline{r} of a preradical r is defined by $\overline{r}(M) = \sum K$, where K runs through all r-torsion submodules K of M, and the radical closure \widetilde{r} is defined by $\widetilde{r}(M) = \bigcap L$, where L runs through all submodules L of M with M/L r-torsionfree. Further, the hereditary closure h(r) is defined by $h(r)(M) = M \cap r(E(M))$ and the cohereditary core ch(r) by ch(r)(M) = r(R)M. For a preradical r and modules $N \subseteq M$ let us define $C_r(N:M)$ by $C_r(N:M)/N = r(M/N)$. Let r and s be two preradicals. A preradical t defined by $t(M) = C_s(r(M):M)$, $M \in R$ -mod, will be denoted by $r \triangle s$. For an arbitrary class of R-modules Q we define $p^Q(N) = \bigcap Ker f$, f ranging over all $f \in Hom_R(N,M)$, $M \in Q$. As it is easy to see

 p^{a} is a radical. Further, M is a pseudo-injective module iff p^{M} is hereditary and M is a faithful module if and only if p^{M} is faithful.Let $f:R \rightarrow S$ be a ring onto homomorphism and r be a preradical for R-mod.For all M \in S-mod let us define $f[r](M) = S \cdot r(R^{M})$. Then f[r] is a preradical for S-mod and f[r] = f[r], f[r] = f[r]. Finally, the zero functor will be denoted by zer.

§ 1. (r,i,s,j)-projective modules. We start with some definitions which are introduced in [11]. Let s be a preradical for R-mod. An epimorphism A \xrightarrow{h} B is said to be:

- (s,1)-codense if there exist $C \in \mathbb{R}$ -mod and $g:C \longrightarrow A$ an epi-morphism with $s(g^{-1}(\operatorname{Ker}\ h)) \subseteq \operatorname{Ker}\ g$,
- (s,2)-codense if s(Ker h) = 0,
- (s,3)-codense if Ker $h \cap s(A) = 0$.

Further if $N\subseteq M$ is a submodule and $M\longrightarrow M/N$ is a natural epimorphism which is (s,1)-codense, then we write $N\subseteq (s,1)$ M. Similarly $N\subseteq (s,2)$ M $(N\subseteq (s,3)$ M).

Let r,s be two preradicals, i,j \in {1,2,3} and M \in R-mod. A module P is said to be (r,i,s,j,M)-projective if every diagram

$$\begin{array}{c}
P \\
\downarrow g \\
N \longrightarrow 0
\end{array}$$

with exact row, Ker $h \in {}^{(r,i)}M$ and $h^{-1}(Im\ g) \in {}^{(s,j)}M$ can be completed to commutative one.

We say that a module P is (r,i,s,j)-projective if it is (r,i,s,j,M)-projective for all $M \in \mathbb{R}$ -mod.

A module P is said to be (r,i,s,j)-quasiprojective if it is (r,i,s,j,P)-projective.

A module P is said to be (r,i,M)-projective ((r,i)-(quasi) projective), if it is (r,i,zer,1,M)-projective ((r,i,zer,1)-(quasi) projective).

A module P is said to be (i,r,M)-projective ((i,r)-(quasi) projective), if it is (zer,l,r,i,M)-projective ((zer,l,r,i)-(quasi) projective).

As it is noted in [11] a module P is (r,i,s,j)-projective, iff it is (r,i,M)-projective for all $M \in R$ -mod with $M \subseteq {(s,j)}_{M}$, $i,j \in \{1,2,3\}$.

Let A,B be modules and let $\varphi:A \longrightarrow B$ be an epimorphism. A pair (A,φ) is said to be an (r,i,s,j,M)-projective ((r,i,s,j)-(quasi) projective) precover of the module B if A is (r,i,s,j,M)-projective ((r,i,s,j)-(quasi) projective), A \xrightarrow{f} C \xrightarrow{g} B with $g \circ f = \varphi$, f,g epimorphisms and C (r,i,s,j,M)-projective ((r,i,s,j)-(quasi) projective) implies f is an isomorphism. An (r,i,s,j,M)-projective ((r,i,s,j)-(quasi) projective) precover (A,φ) which is a cover (i.e. Ker φ is superfluous in A) is said to be an (r,i,s,j,M)-projective ((r,i,s,j)-(quasi) projective) cover.

It is shown in [11] that (r,i,s,j,M)-projective ((r,i,s,j)-projective) cover of a module B exists whenever B has a projective cover.

<u>Proposition 1.1.</u> Let r,s be preradicals for R-mod, j \in {1,2} and P \in R-mod. Then

- (i) if P is projective and $K \in \mathcal{F}_{\mathbf{r}}$ then P/K is (r,1)-projective,
- (ii) if P is (r,2,s,j)-projective and $K \in \mathcal{T}_{\widetilde{r}}$ then P/K is (r,2,s,j)-projective.

(iii) if P is (r,3,s,j)-projective and $K \subseteq r(P)$ then P/K is (r,3,s,j)-projective.

Proof: Obvious.

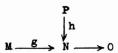
<u>Proposition 1.2.</u> Let r,s be preradicals for R-mod and $f:R \longrightarrow R/s(R)$ be a natural ring homomorphism. Then

(i) if r is idempotent then a module P is (r,2,s,1)-projective if and only if P/ch(s)(P) is (f[r],2)-projective in R/s(R)-mod,

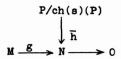
(ii) if r is a radical then a module P is (r,3,s,1)-projective if and only if P/ch(s)(P) is (f[r],3)-projective in R/s(R)-mod.

<u>Proof</u>: (i). Suppose P is (r,2,s,1)-projective and $0 \longrightarrow K \longrightarrow Q \xrightarrow{g} P/ch(s)(P) \longrightarrow 0$ is a projective presentation of P/ch(s)(P) in R/s(R)-mod. Then $0 \longrightarrow K/f[r](K) \longrightarrow Q/f[r](K) \xrightarrow{g} P/ch(s)(P) \longrightarrow 0$ (\overline{g} induced by g) is a (f[r],2)-projective presentation in R/s(R)-mod by Proposition 1.1(ii). Consider the following diagram in R-mod

 $0 \longrightarrow K/\widetilde{f}(K) \longleftarrow Q/\widetilde{r}(K) \xrightarrow{\overline{g}} P/\operatorname{ch}(s)(P) \longrightarrow 0 \ (\pi \ \text{natural})$ As it is easy to see $Q/\widetilde{r}(K) \in \mathcal{F}_{\operatorname{ch}(S)}$ and $K/\widetilde{r}(K) \subseteq (r,2)Q/\widetilde{r}(K)$. Now P is (r,2,s,1)-projective and $\overline{g} \circ v = \pi$ for some $v \in \operatorname{Hom}_{\mathbb{R}}(P,Q/\widetilde{r}(K))$ which induces $\overline{v}:P/\operatorname{ch}(s)(P) \longrightarrow Q/\widetilde{r}(K)$ with $\overline{g} \circ \overline{v} = 1$. Thus \overline{g} splits in R/s(R)-mod and consequently $P/\operatorname{ch}(s)(P)$ is (f[r],2)-projective in R/s(R)-mod. Conversely, if



is a diagram in R-mod with exact row, Ker $g \in {}^{(r,2)}M$, $M \in {}^{\mathcal{G}}_{ch(s)}$ and if P/ch(s)(P) is (f[r],2)-projective in R/s(R)-mod, then



(\overline{h} induced by h) is a diagram in R/s(R)-mod with Ker g \subseteq \subseteq $(f[r],2)_M$, and hence go v = \overline{h} for some homomorphism v: :P/ch(s)(P) \longrightarrow M. Thus go (vor) = h (r:P \longrightarrow P/ch(s)(P) is a natural homomorphism) and consequently P is (r,2,s,1)-projective.

(ii) Similarly as in (i).

Corollary 1.3. Let s be a preradical. Then a module P is (1,s)-projective if and only if P/ch(s)(P) is projective in R/s(R)-mod.

<u>Proposition 1.4</u>. Let r be a preradical for R-mod and $P \in R$ -mod. Then

- (i) if r is idempotent then P is $(\tilde{r},1)$ -projective if and only if it is (r,2)-projective,
- (ii) if r is idempotent and \tilde{r} is pseudohereditary then P is (r,2)-projective if and only if it is $(1,\tilde{r})$ -projective,
- (iii) if r is a radical then P is (r,3)-projective if and only if it is (1,r)-projective,
- (iv) P is (3,r)-projective if and only if it is (2,r)-projective if and only if it is $(1,\tilde{r})$ -projective.

<u>Proof</u>: (i). It suffices to prove the "only if part". Let P be (r,2)-projective and $0 \longrightarrow K \longleftrightarrow Q \xrightarrow{g} P \longrightarrow 0$ be a projective presentation of P. Then $0 \longrightarrow K/\tilde{r}(K) \longrightarrow Q/\tilde{r}(K) \xrightarrow{\tilde{g}} P \longrightarrow 0$ (\bar{g} induced by g) is a $(\tilde{r},1)$ -projective presentation of P with $K/\tilde{r}(K) \in \mathcal{S}_r$ by Proposition 1.1(i). Thus \bar{g} splits and consequently P is $(\tilde{r},1)$ -projective.

(ii) See Rangaswamy [14] Theorem 8 and Corollary 1.3.

(iii) With respect to Corollary 1.3 it suffices to prove that P is (r,3)-projective if and only if $P/\operatorname{ch}(r)(P)$ is projective in R/r(R)-mod. Let P be (r,3)-projective, $f:R \to \mathbb{R}/r(R) = \overline{R}$ be a natural ring homomorphism and $0 \to K \to \mathbb{R}/r(R) = \overline{R}$ be a natural ring homomorphism and $0 \to K \to \mathbb{R}/r(R) = \overline{R}$ be a natural ring homomorphism and $0 \to K \to \mathbb{R}/r(R) = \overline{R}$ be a natural ring homomorphism and $0 \to K \to \mathbb{R}/r(R) = \mathbb{R}/r(R)$ be a projective presentation in \overline{R} -mod. Then $Q \in \mathcal{F}_r$ since $f[r](Q) = f[r](\overline{R})$ Q, and hence $g \circ v = \mathbb{R}/r(R) = \mathbb{R}/r(R)$ by the (r,3)-projectivity of P.Thus V induces \overline{V} : V-chV

We shall prove the sufficiency by modifying of the proof of Theorem 8 in [14]. Let $P/\operatorname{ch}(r)(P)$ be projective in R/r(R)-mod and $0 \longrightarrow K \longrightarrow Q \xrightarrow{g} P \longrightarrow 0$ be a projective presentation of P. Then by Proposition 1.1 (iii) $0 \longrightarrow K/(r(Q) \cap K) \longrightarrow Q/(r(Q) \cap K) \xrightarrow{\overline{g}} P \longrightarrow 0$ is a (r,3)-projective presentation of P with $K' = K/(r(Q) \cap K) \subseteq {r,3} Q/(r(Q) \cap K) = Q'(\overline{g})$ induced by g). Consider the following diagram

 $0 \longrightarrow K' \longrightarrow Q' \xrightarrow{\overline{g}} P \longrightarrow 0$ $0 \longrightarrow (K' + \operatorname{ch}(r)(Q'))/\operatorname{ch}(r)(Q') \longrightarrow Q'/\operatorname{ch}(r)(Q') \xrightarrow{\overline{g}'} P/\operatorname{ch}(r)(P) \longrightarrow 0$

where π_1 , π_2 are natural epimorphisms.

As it is easy to see the right hand square is a pullback. Now \overline{g}' splits since P/ch(r)(P) is projective in R/r(R)-mod, and hence \overline{g} splits. Thus P is (r,3)-projective.

(iv) With respect to Proposition 2.9 in [11] it suffices to prove that P is (2,r)-projective implies P is (1,r)-projective for a radical r. It can be proved similarly as the necessity in (iii).

Corollary 1.5. Let r,s be preradicals for R-mod and P ϵ ϵ R-mod. Then

- (i) if r is idempotent and every submodule of $\widetilde{r}(R/s(R))$ is \widetilde{r} -torsion then P is (r,2,s,1)-projective iff it is $(1,s\Delta\widetilde{r})$ -projective,
- (ii) if r is a radical then P is (r,3,s,1)-projective iff it is $(1,s \triangle r)$ -projective.

<u>Proposition 1.6</u>. Let r,s be preradicals. Then every submodule of $\widetilde{r}(R/s(R))$ is \widetilde{r} -torsion, provided at least one of the following conditions is satisfied:

- (i) r is hereditary,
- (ii) s is idempotent and $s\Delta \tilde{r}$ is pseudohereditary. Proof: Obvious.
 - § 2. (r,i,s,j,M)-projective and strongly (r,i,s,j,M)-projective modules

<u>Definition 2.1.</u> Let r,s be preradicals, i, j \in {1,2,3} and M \in R-mod. A module P is said to be strongly (r,i,s,j,M)-projective if it is (r,i,s,j,M^I)-projective for every index set I.

If r = s = zer, then we obtain the strongly M-projecti-

vity in the sense of K. Varadarajan (see [18]).

Let r,s be preradicals, i,j \in {1,2,3}. For any P \in R-mod let us denote $C^p_{(\mathbf{r},i,s,j)}(P) = \{M \in R-mod, P \text{ is } (\mathbf{r},i,s,j,M)-\text{projective}\}$. Further the class of all $(\mathbf{r},i,s,j,M)-\text{projective modules}$ will be denoted by $C^{(\mathbf{r},i,s,j)}_{D}(M)$.

Due to G. Azumaya an epimorphism $f:A \longrightarrow B$ is called an M-epimorphism if there exists $h:A \longrightarrow M$ with Ker $f \cap K$ er h = 0. These two following propositions are motivated by the results of G. Azumaya (see [18] Propositions 1.3 and 1.5). We include them here without the proof.

<u>Proposition 2.2.</u> Let r be a preradical and s be a cohereditary radical. Then the following are equivalent for a module P:

- (i) P is (r,2,s,2,M)-projective,
- (ii) given any M-epimorphism $f:A \longrightarrow B$ and any homomorphism $g:P \longrightarrow B$ with r(Ker f) = 0 and $s(f^{-1}(\text{Im } g)) = 0$, there exists a homomorphism $v:P \longrightarrow A$ such that $f \circ v = g$.

<u>Proposition 2.3.</u> Let ${\bf r}, {\bf s}$ be preradicals and ${\bf P}, {\bf M}\, \epsilon$ R-mod. Then

- (i) $C_p^{(r,i,s,j)}(M)$ is closed under arbitrary direct sums and direct summands $i,j\in\{1,2,3\}$,
- (ii) $C^p_{(\mathbf{r},2,\mathbf{s},2)}(P)$ is closed under submodules,
- (iii) if r,s are idempotent $K \in \mathcal{F}_{\mathbf{r}} \cap \mathcal{F}_{\mathbf{s}}$ and $M \in \mathbb{C}^{\mathbb{D}}_{(\mathbf{r},2,\mathbf{s},2)}(P)$ then $M/K \in \mathbb{C}^{\mathbb{D}}_{(\mathbf{r},2,\mathbf{s},2)}(P)$,
- (iv) if r,s are both cohereditary then $C^p_{(r,2,s,2)}(P)$ is closed under the formation of finite direct sums. Moreover, if P has a projective cover then $C^p_{(r,2,s,2)}(P)$ is closed under the formation of arbitrary direct products.

<u>Proposition 2.4</u>. Let r,s be preradicals. Then a module P is strongly (r,2,s,2,M)-projective if and only if it is $(r,2,s\triangle p^{\{M\}},2)$ -projective.

Proof: Obvious.

Corollary 2.5. Let $M \in R$ -mod. Then the following are equivalent for a module P:

- (i) P is strongly M-projective,
- (ii) P is (1,p^{M})-projective,
- (iii) P is (2,pM)-projective,
- (iv) P is $(p^{\{M\}},3)$ -projective,
- (v) P is (3,p^{M})-projective,
- (vi) P/(0:M) P is projective in R/(0:M)-mod.

Moreover, if M is pseudo-injective then the above stated conditions are equivalent to:

- (vii) P is (p^{M},2)-projective,
- (viii) P is (p^{M},1)-projective.

Proof: By Proposition 1.4 and Corollary 1.3.

Corollary 2.6. Let r be a preradical. Then there is a ch(r)-torsionfree module M such that a module P is (1,r)-projective if and only if it is strongly M-projective.

<u>Proof:</u> By [11] Proposition 2.9 (iv) P is (1,r)-projective iff it is (1,ch(r))-projective. Now by [21] Proposition 4.6 ch(r) = $p^{\{M\}}$, where $M = \prod_{A \in A} \Pi_A A$, A is a representative set of ch(r)-torsionfree cocyclic modules and Corollary 2.5 finishes the proof.

Theorem 2.7. Let r be an idempotent preradical such that \tilde{r} is pseudohereditary. Then there is a hereditary radical s such that a module P is (r,2)-projective if and only if it is

(s,2)-projective.

<u>Proof:</u> By Proposition 1.4 (ii) and [11] Proposition 2.9 P is (r,2)-projective iff it is $(1,ch(\tilde{r}))$ -projective. Now by [12] Proposition 1.5 $ch(\tilde{r}) = ch(p^{\{Q\}})$ where $Q = A \subset A \subset A$ is a representative set of cyclic r-torsion-free modules. It is enough to put $S = p^{\{Q\}}$ and use [11] Proposition 2.9 (iv) and Corollery 2.5 (vii).

<u>Proposition 2.8.</u> Let r,s be preradicals. If M is a cogenerator for R-mod then a module P is strongly (r,2,s,2,M)-projective if and only if it is (r,2,s,2)-projective.

Proof: By Proposition 2.4.

M.S. Shrikhande calls a module cohereditary if every its factormodule is injective (see [15]).

<u>Proposition 2.9</u>. Let M be an injective module. Consider the following conditions:

- (i) Every submodule of a strongly M-projective module is strongly M-projective.
- (ii) Every submodule of a projective module is strongly M-projective.
- (iii) $\mathbf{M}^{\mathbf{I}}$ is cohereditary for every index set I.
- (iv) R/(0:M) is a left hereditary ring.

Then conditions (i),(ii) and (iii) are equivalent and imply (iv).

Moreover, if $ch(p^{\{M\}})$ is hereditary then (iv) implies (i).

Proof: (i) is equivalent to (ii) and (ii) is equivalent to (iii). It immediately follows from [15] Theorem 3.2'.

- (i) implies (iv). By Corollary 2.5 (vi).
- (iv) implies (i). Use Corollary 2.5 (vi) and the fact

that ch(p^{M}) is hereditary.

Corollary 2.10. R is a left hereditary ring if and only if $E(R)^{I}$ is cohereditary for every index set I.

The next Proposition is a modification of the well-known Theorem on test modules for projectivity (see [4] Theorem 10). We include it here without the proof for the sake of completeness.

<u>Proposition 2.11</u>. Let $M \in R$ -mod. Then the following are equivalent:

- (i) every strongly M-projective module is projective,
- (ii) $(0:M) = p^{\{M\}}(R)$ is a ring direct summand of R and it is completely reducible ring.

<u>Proposition 2.12</u>. Let r be an idempotent cohereditary radical, s be a preradical and let P be a module possessing an (r,2)-projective cover $0 \longrightarrow K \longrightarrow Q \xrightarrow{\mathcal{G}} P \longrightarrow 0$. Then

- (i) P is (r,2,s,1)-projective if and only if $\operatorname{Ker} \varphi \subseteq \operatorname{ch}(s)(Q)$,
- (ii) P is (r,2,s,2)-projective if and only if $\ker \varphi \subseteq \widetilde{s}(\mathbb{Q})$.

Proof: (i). By Proposition 1.1 (ii) r(K) = 0. Let P be
(r,2,s,1)-projective. Consider the following commutative diagram

$$\begin{array}{ccc}
Q & \xrightarrow{\mathscr{G}} & P \\
\downarrow^{\pi_1} & & \downarrow^{\pi_2} \\
Q/\operatorname{ch}(s)(Q) & \xrightarrow{\overline{\mathscr{G}}} & P/\operatorname{ch}(s)(P)
\end{array}$$

where π_1, π_2 are natural epimorphisms. Then $\overline{\varphi} \circ \mathbf{v} = \pi_2$ for some $\mathbf{v}: \mathbf{P} \longrightarrow \mathbb{Q}/\mathrm{ch}(\mathbf{s})(\mathbb{Q})$ since Ker $\overline{\varphi} \in \mathcal{F}_{\mathbf{r}}$, $\mathbb{Q}/\mathrm{ch}(\mathbf{s})(\mathbb{Q}) \in \mathcal{F}_{\mathrm{ch}(\mathbf{s})}$ and P is $(\mathbf{r}, 2, \mathbf{s}, 1)$ -projective. Now, $\pi_1 = \mathbf{v} \circ \varphi$ since Ker $\varphi + \mathrm{Ker} (\pi_1 - \mathbf{v} \circ \varphi) = \mathbb{Q}$ as is easily seen. Therefore Ker $\varphi \subseteq \mathrm{ch}(\mathbf{s})(\mathbb{Q})$.

The converse implication is obvious.

(ii) Similarly as in (i).

<u>Proposition 2.13</u>. Let r be an idempotent cohereditary radical, s be a preradical and let P be a module possessing an (r,2)-projective cover $0 \longrightarrow K \longrightarrow Q \xrightarrow{\mathfrak{S}} P \longrightarrow 0$. Then

- (i) $(Q/(ch(s)(Q) \cap Ker \varphi), \overline{\varphi})$ where $\overline{\varphi}$ is induced by φ is an (r,2,s,1)-projective cover of P,
- (ii) $(Q/(\tilde{s}(Q) \cap \text{Ker } \varphi), \overline{\varphi})$ where $\overline{\varphi}$ is induced by φ is an (r,2,s,2)-projective cover of P.

Proof: Use Proposition 2.12.

<u>Proposition 2.14.</u> Let r be an idempotent cohereditary radical and s be a cohereditary radical. If a module P possesses an (r,2)-projective cover $0 \longrightarrow K \longrightarrow Q \xrightarrow{\mathscr{G}} P \longrightarrow 0$ then P is (r,2,s,2,M)-projective if and only if it is strongly (r,2,s,2,M)-projective.

<u>Proof</u>: Let P be (r,2,s,2,M)-projective. With respect to Propositions 2.4 and 2.12 it suffices to prove $\ker g \subseteq s \triangle p^{\{M\}}(Q)$. If $f:Q/s(Q) \longrightarrow M$ is arbitrary and

$$\begin{array}{ccc} Q/s(Q) & \overline{g} & P/s(P) \\ \downarrow f & \downarrow & g \\ M & & h & N \end{array}$$

is a push-out diagram ($\overline{\varphi}$ induced by φ), then Ker he $\mathscr{F}_{\mathbf{r}}$ and h⁻¹(Im g) $\in \mathscr{F}_{\mathbf{s}}$. Now consider the diagram

$$\begin{array}{ccc}
Q & \xrightarrow{\mathcal{G}} & P \\
\downarrow & f \circ \pi_1 & & \downarrow & g \circ \pi_2 \\
M & \xrightarrow{h} & & N
\end{array}$$

where π_1, π_2 are natural epimorphisms. In the same way as in

the proof of Proposition 2.12 we obtain $\ker \varphi \subseteq \ker f \circ \pi_1$, and hence $\ker \varphi \subseteq \operatorname{S} \Delta p^{\{M\}}(Q)$.

Corollary 2.15. Let r be an idempotent cohereditary radical, s be a cohereditary radical, $M \in \mathbb{R}$ -mod and P be a module possessing an (r,2)-projective cover $0 \longrightarrow K \longrightarrow Q \xrightarrow{\mathscr{G}} P \longrightarrow 0$. Then $(Q/(s \triangle p^{\{M\}}(Q) \cap Ker \varphi), \overline{\varphi})$ where $\overline{\varphi}$ is induced by φ is an (r,2,s,2,M)-projective cover of P.

Proof: By Propositions 2.13, 2.14 and 2.4.

§ 3. (r,i,s,j)-quasiprojective modules

<u>Proposition 3.1</u>. Let r,s be two cohereditary radicals and $Q_i \in \mathbb{R}$ -mod $i \in \{1,2,\ldots,n\}$. Then $Q_1 \oplus Q_2 \oplus \ldots \oplus Q_n$ is (r,2,s,2)-quasi-projective if and only if Q_i is (r,2,s,2)-quasiprojective and $(r,2,s,2,Q_j)$ -projective for every $i,j \in \{1,2,\ldots,n\}$, $i \neq j$.

Proof: It follows:immediately from Proposition 2.3 (i),
(iv).

<u>Proposition 3.2.</u> Let r,s be two idempotent preradicals and Q be an (r,2,s,2)-quasiprojective module. If K is a characteristic submodule of Q such that $K \in \mathcal{F}_{\mathbf{r}} \cap \mathcal{F}_{\mathbf{S}}$ then Q/K is (r,2,s,2)-quasiprojective.

Proof: Obvious.

<u>Proposition 3.3.</u> Let r be an idempotent cohereditary radical and s be a cohereditary radical. If a module P possesses an (r,2)-projective cover $0 \longrightarrow K \longrightarrow Q \xrightarrow{\mathcal{P}} P \longrightarrow 0$ then $(Q/(s \triangle p^{4P_3^k}(Q) \cap Ker \varphi), \overline{\varphi})$ where $\overline{\varphi}$ is induced by φ is an (r,2,s,2)-quasiprojective cover of P.

Proof: Use Propositions 2.4, 2.13 and 2.14.

Corollary 3.4. Let r be an idempotent cohereditary radical, s be a cohereditary radical and $P \in \mathbb{R}$ -mod possessing a projective cover $0 \longrightarrow K \longrightarrow Q \xrightarrow{\mathcal{G}} P \longrightarrow 0$. Then $(Q/(C_{SAP}^{\dagger}P)^{\dagger}(r(Ker_{\mathcal{G}}):Q) \cap Ker_{\mathcal{G}}), \overline{\mathcal{G}})$ where $\overline{\mathcal{G}}$ is induced by \mathcal{G} is an (r,2,s,2)-quasi projective cover of P.

<u>Proof</u>: By Proposition 3.3 and [11] Proposition 2.10 (vii). Following closely the ideas of J.S. Golan (see [8]) we obtain Propositions 3.5 - 3.8 which are included here without the proof.

<u>Proposition 3.5</u>. Let r be an idempotent cohereditary radical. Then the following are equivalent:

- (i) Every (finitely generated) R-module has an (r,2)-projective cover.
- (ii) Every (finitely generated) R-module P has an (r,2)-quasi-projective cover $0 \longrightarrow K \longrightarrow Q \longrightarrow P \longrightarrow 0$ with $K \in \mathcal{F}_{r}$.

<u>Proposition 3.6</u>. Let r be a cohereditary splitting radical (i.e. every module splits in r). Then the following are equivalent:

- (i) Every finitely presented R-module has an (r,2)-projective cover.
- (ii) Every finitely presented R-module P has an (r,2)-quasi-projective cover $0 \longrightarrow K \longrightarrow Q \longrightarrow P \longrightarrow 0$ with $K \in \mathcal{F}_r$.

<u>Proposition 3.7.</u> Let r be an idempotent preradical for R-mod. Then $\overline{R} = R/\tilde{r}(R)$ is a completely reducible ring if and only if for every simple \overline{R} -module P $\overline{R} \oplus P$ is (2,r)-quasiprojective in R-mod.

<u>Proposition 3.8.</u> Let r be an idempotent preradical such that \tilde{r} is pseudohereditary. Then the following are equivalent:

- (i) Every R-module is (r,2)-projective,
- (ii) every R-module is (r,2)-quasiprojective,
- (iii) every finitely generated R-module is (r,2)-quasiprojective.
- (iv) The class of all (r,2)-quasiprojective R-modules is closed under the formation of finite direct sums.
- (v) $R/\widetilde{r}(R)$ is a completely reducible ring.

Acknowledgments. The author thanks Professors K.M. Rangaswamy and K. Varadarajan for sending him the articles [14] and [18] which motivated the present paper.

References

- [1] L. BICAN, P. JAMBOR, T. KEPKA, P. NĚMEC: Preradicals, Comment. Math. Univ. Carolinae 15(1974), 75-83.
- [2] L. BICAN, P. JAMBOR, T. KEPKA, P. NĚMEC: Hereditary and cohereditary preradicals, Czech. Math. J. 26(1976), 192-206.
- [3] L. BICAN, P. JAMBOR, T. KEPKA, P. NEMEC: Composition of preradicals, Comment. Math. Univ. Carolinae 15(1974), 393-405.
- [4] L. BICAN, P. JAMBOR, T. KEPKA, P. NĚMEC: A note on test modules, Comment. Math. Univ. Carolinae 17(1976), 345-355.
- [5] L. BICAN, P. JAMBOR, T. KEPKA, P. NEMEC: Preradicals and change of rings, Comment. Math. Univ. Carolinae 16 (1975), 201-217.
- [6] P.E. BLAND: Divisible and codivisible modules, Math. Scand. 34(1974), 153-161.
- [7] P.E. BIAND: A note on divisible and codivisible dimension, Bull. Austral. Math. Soc. 12(1975), 171-177.

- [8] J.S. GOIAN: Characterisation of rings using quasiprojective modules, I, Israel J. Math. 8(1970),34-38.
- [9] J.S. GOLAN: Localization of noncommutative rings, Marcel Dekker 1975.
- [10] J. JIRASKO: Generalized injectivity, Comment. Math. Univ. Carolinae 16(1975), 621-636.
- [11] H. JIRÁSKOVÁ, J. JIRÁSKO: Generalized projectivity, Czech.
 Math. J. 28(1978), 632-646.
- [12] J. JIRÁSKO: Pseudohereditary and pseudocohereditary preradicals (to appear).
- [13] K. NISHIDA: Divisible modules, Codivisible modules, and quasi-divisible modules, Comm. Alg. 5(1977), 591-610.
- [14] K.M. RANGASWAMY: Codivisible modules, Comm. Alg. 2(1974), 475-489.
- [15] M.S. SHRIKHANDE: On hereditary and cohereditary modules, Canad. J. Math. 25(1973), 892-896.
- [16] Bo STENSTRÖM: Rings of quotients, Springer Verlag 1975.
- [17] M.L. TEPIX: Codivisible and projective covers, Comm. Alg. 1(1974), 23-38.
- [18] K. VARADARAJAN: M-projective and strongly M-projective modules, Illinois J. Math. 20(1976), 507-515.

Matematicko-fyzikální fakulta Universita Karlova Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 21.3. 1979)